首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existence of gamma-tubulin was first reported approximately ten years ago, and it is appropriate to review the progress that has been made in gamma-tubulin research and to discuss some of the unanswered questions about gamma-tubulin function. gamma-Tubulin is ubiquitous in eukaryotes and is generally quite conserved. Two highly divergent gamma-tubulins have been discovered, however, one in Saccharomyces cerevisiae and one in Caenorhabditis elegans. Several organisms have two gamma-tubulin genes. In Drosophila melanogaster, the two gamma-tubulins differ significantly in sequence and expression pattern. In other organisms the two gamma-tubulins are almost identical and expression patterns have not been determined. gamma-Tubulin is located at microtubule organizing centers in many organisms, and it is also frequently associated with the mitotic spindle. gamma-Tubulin is essential for the formation of functional mitotic spindles in all organisms that have been examined to date. In animal cells, complexes containing gamma-tubulin are located at microtubule organizing centers where they nucleate the assembly of microtubules. In spite of the considerable progress that has been made in gamma-tubulin research important questions remain to be answered. The exact mechanisms of microtubule nucleation by gamma-tubulin complexes remain to be resolved as do the mechanisms by which microtubule nucleation from gamma-tubulin complexes is regulated. Finally, there is evidence that gamma-tubulin has important functions in addition to microtubule nucleation, and these functions are just beginning to be investigated.  相似文献   

2.
Horio T  Oakley BR 《Plant physiology》2003,133(4):1926-1934
gamma-Tubulin localizes to microtubule-organizing centers in animal and fungal cells where it is important for microtubule nucleation. Plant cells do not have morphologically defined microtubule organizing centers, however, and gamma-tubulin is distributed in small, discrete structures along microtubules. The great difference in distribution has prompted speculation that plant gamma-tubulins function differently from animal and fungal gamma-tubulins. We tested this possibility by expressing Arabidopsis gamma-tubulin in the fission yeast Schizosaccharomyces pombe. At high temperatures, the plant gamma-tubulin was able to bind to microtubule-organizing centers, nucleate microtubule assembly, and support the growth and replication of S. pombe cells lacking endogenous gamma-tubulin. However, the distribution of microtubules was abnormal as was cell morphology, and at low temperatures, cells were arrested in mitosis. These results reveal that Arabidopsis gamma-tubulin can carry out essential functions in S. pombe and is, thus, functionally conserved. The morphological abnormalities reveal that it cannot carry out some nonessential functions, however, and they underscore the importance of gamma-tubulin in morphogenesis of fission yeast cells and in maintaining normal interphase microtubule arrays.  相似文献   

3.
Outer dynein arms, the force generators for axonemal motion, form arrays on microtubule doublets in situ, although they are bouquet-like complexes with separated heads of multiple heavy chains when isolated in vitro. To understand how the three heavy chains are folded in the array, we reconstructed the detailed 3D structure of outer dynein arms of Chlamydomonas flagella in situ by electron cryo-tomography and single-particle averaging. The outer dynein arm binds to the A-microtubule through three interfaces on two adjacent protofilaments, two of which probably represent the docking complex. The three AAA rings of heavy chains, seen as stacked plates, are connected in a striking manner on microtubule doublets. The tail of the alpha-heavy chain, identified by analyzing the oda11 mutant, which lacks alpha-heavy chain, extends from the AAA ring tilted toward the tip of the axoneme and towards the inside of the axoneme at 50 degrees , suggesting a three-dimensional power stroke. The neighboring outer dynein arms are connected through two filamentous structures: one at the exterior of the axoneme and the other through the alpha-tail. Although the beta-tail seems to merge with the alpha-tail at the internal side of the axoneme, the gamma-tail is likely to extend at the exterior of the axoneme and join the AAA ring. This suggests that the fold and function of gamma-heavy chain are different from those of alpha and beta-chains.  相似文献   

4.
The dynein arms of ciliary doublet microtubules cause adjacent axonemal doublets to slide apart with fixed polarity. This suggests that there is a unique mechanochemistry to the dynein arm with unidirectional force generation in all active arms and also that not all arms are active at once during a ciliary beat. Negative stain and thin-section images of arms in axonemes treated with beta, gamma methylene adenosine triphosphate (AMP-PCP) show a consistent subunit construction where the globular head of the arm interacts with subfiber B of doublet N+1. This interpretation differs from that provided by freeze etch and STEM interpretations of in situ arm construction and has implications for the mechanochemical cycle of the arm. A computer model of the arms in relation to other axonemal structures has been constructed to test these interpretations. Attachment of the head of the arm subfiber B is directly demonstrable in splayed axonemes in AMP-PCP. About half of the doublets in an axoneme show such attachments, while half do not. This might imply that about half the doublets in an axoneme are active at any given instant and can be identified as such. This information may be useful in probing questions of how active arms differ biochemically from inactive arms and of how microtubule translocators in general become active.  相似文献   

5.
In metazoans, gamma-tubulin acts within two main complexes, gamma-tubulin small complexes (gamma-TuSCs) and gamma-tubulin ring complexes (gamma-TuRCs). In higher eukaryotes, it is assumed that microtubule nucleation at the centrosome depends on gamma-TuRCs, but the role of gamma-TuRC components remains undefined.For the first time, we analyzed the function of all four gamma-TuRC-specific subunits in Drosophila melanogaster: Dgrip75, Dgrip128, Dgrip163, and Dgp71WD. Grip-motif proteins, but not Dgp71WD, appear to be required for gamma-TuRC assembly. Individual depletion of gamma-TuRC components, in cultured cells and in vivo, induces mitotic delay and abnormal spindles. Surprisingly, gamma-TuSCs are recruited to the centrosomes. These defects are less severe than those resulting from the inhibition of gamma-TuSC components and do not appear critical for viability. Simultaneous cosilencing of all gamma-TuRC proteins leads to stronger phenotypes and partial recruitment of gamma-TuSC. In conclusion, gamma-TuRCs are required for assembly of fully functional spindles, but we suggest that gamma-TuSC could be targeted to the centrosomes, which is where basic microtubule assembly activities are maintained.  相似文献   

6.
The structure of the Holliday junction, and its resolution   总被引:50,自引:0,他引:50  
The Holliday (four-way) junction is a critical intermediate in homologous genetic recombination. We have studied the structure of a series of four-way junctions, constructed by hybridization of four 80 nucleotide synthetic oligonucleotides. These molecules migrate anomalously slowly in gel electrophoresis. Each arm of any junction could be selectively shortened by cleavage at a unique restriction site, and we have studied the relative gel mobilities of species in which two arms were cleaved. The pattern of fragments observed argues strongly for a structure with two-fold symmetry, based on an X shape, the long arms of which are made from pairwise colinear association of helical arms. The choice of partners is governed by the base sequence at the junction, allowing a potential isomerization between equivalent structural forms. Resolvase enzymes can distinguish between these structures, and the resolution products are determined by the structure adopted, i.e., by the sequence at the junction. In the absence of cations, the helical arms of the junction are fully extended in a square configuration, and unstacking results in junction thymines becoming reactive to osmium tetroxide.  相似文献   

7.
Mitochondrial complex I is the main site for electron transfer to the respiratory chain and generates much of the proton gradient across the inner mitochondrial membrane. Complex I is composed of two arms, which form a conserved L-shape. We report the structures of the intact, 47-subunit mitochondrial complex I from Arabidopsis thaliana and the 51-subunit complex I from the green alga Polytomella sp., both at around 2.9 Å resolution. In both complexes, a heterotrimeric γ-carbonic anhydrase domain is attached to the membrane arm on the matrix side. Two states are resolved in A. thaliana complex I, with different angles between the two arms and different conformations of the ND1 (NADH dehydrogenase subunit 1) loop near the quinol binding site. The angle appears to depend on a bridge domain, which links the peripheral arm to the membrane arm and includes an unusual ferredoxin. We propose that the bridge domain participates in regulating the activity of plant complex I.

An unusual ferredoxin completes a protein bridge that links the two arms of plant mitochondrial complex I and adjusts their angle in an open or closed conformation.  相似文献   

8.
gamma-Tubulin is a protein associated with microtubule (Mt)-organizing centers in a variety of eukaryotic cells. Unfortunately, little is known about such centers in plants. Genomic and partial cDNA clones encoding two gamma-tubulins of Arabidopsis were isolated and sequenced. Comparisons of genomic and cDNA sequences showed that both genes, TubG1 and TubG2, contain nine introns at conserved locations. The sequences of the two genes both predict proteins containing 474 amino acids, with molecular masses of 53,250 and 53,280 D, respectively. The predicted gamma 1- and gamma 2-tubulins exhibit 98% amino acid identity with each other and approximately 70% amino acid identity with the gamma-tubulins of animals and fungi. RNA gel blot results demonstrated that both genes are transcribed in suspension culture cells, seedlings, and roots and flowers of mature plants. Immunoblots of Arabidopsis proteins using an antibody specific to a conserved peptide of gamma-tubulin showed a major cross-reacting polypeptide with an M(r) of 58,000. The same antibody stained all Mt arrays in tissue and suspension culture cells of this species. Binding was inhibited by the homologous oligopeptide in the gamma-tubulins predicted by the two Arabidopsis gene sequences. Antibody staining avoided the plus ends of Mts at the kinetochores and cell plate, but unlike the case in animal cells, seemed to be localized over broad stretches of the kinetochore fibers and phragmoplast toward the minus ends. We concluded that at least two gamma-tubulin protein homologs are present in Arabidopsis and that at least one of them is localized along Mt arrays. Its distribution is correlated with and may help explain unique characteristics of Mt organization in plants.  相似文献   

9.
Organization of microtubules in centrosome-free cytoplasm   总被引:8,自引:4,他引:4       下载免费PDF全文
Many different cell types possess microtubule patterns which appear to be polarized and oriented, in part, by cytoplasmic factors not directly associated with a centrosome. Recently, we demonstrated that cytoplasmic extensions ("arms") of teleost melanophores will reorganize their microtubule population outward from their centers after surgical isolation (McNiven, M. A., M. Wang, and K. R. Porter. 1984. Cell. 37:753-765). In the study reported here, we examine microtubule dynamics within the centrosome-free fragments and find that, after severing, microtubule reorganization is initiated at the proximal (cut) end of an arm and migrates distally with the aggregated pigment mass until it becomes permanently positioned at the middle of the arm. Computer-aided image analysis demonstrates that this middle position is located at the arm centroid, implicating the action of a cytoplasmic gel in this process. Morphological studies of arms devoid of pigment reveal that microtubules do not emanate from a single site or structure within the centroid area, but from a more generalized region. Taken together, these findings suggest that factors distributed throughout cytoplasm participate in microtubule assembly and organization.  相似文献   

10.
The two-way alternative avoidance of a weak electric shock by male Wistar rats in Y-maze was studied. The following behavioral characteristics of a rat were determined in each test series: total time of an arm choice (going away into one of two safe maze arms), number and sequence of alternate turnings to the outlets in the process of choice, time of immobility in the Y-maze center, and "freezing" reaction. Rat behavior of choice of safe arms in Y-maze be interpreted on the basis of the rules of summation of complex probability amplitudes, which characterize a predictive estimation of achievement by a rat of its relative safety. With the need to avoid an electric shock, rat's estimations of suitabilities of two different avoidance ways can interfere. This makes it difficult for an animal to take a choice decision (if both pathways are equally acceptable for a rat). After entering a safe arm, sometimes a rat can leave it for another arm, such passages occur quasiperiodically.  相似文献   

11.
The Achilles tendon (AT) moment arm is an important determinant of ankle moment and power generation during locomotion. Load and depth-dependent variations in the AT moment arm are generally not considered, but may be relevant given the complex triceps surae architecture. We coupled motion analysis and ultrasound imaging to characterize AT moment arms during walking in 10 subjects. Muscle loading during push-off amplified the AT moment arm by 10% relative to heel strike. AT moment arms also varied by 14% over the tendon thickness. In walking, AT moment arms are not strictly dependent on kinematics, but exhibit important load and spatial dependencies.  相似文献   

12.
To produce oscillatory bending movement in cilia and flagella, the activity of dynein arms must be regulated. The central-pair microtubules, located at the centre of the axoneme, are often thought to be involved in the regulation, but this has not been demonstrated definitively. In order to determine whether the central-pair apparatus are directly involved in the regulation of the dynein arm activity, we analyzed the movement of singlet microtubules that were brought into contact with dynein arms on bundles of doublets obtained by sliding disintegration of elastase-treated flagellar axonemes. An advantage of this new assay system was that we could distinguish the bundles that contained the central pair apparatus from those that did not, the former being clearly thicker than the latter. We found that microtubule sliding occurred along both the thinner and the thicker bundles, but its velocity differed between the two kinds of bundles in an ATP concentration dependent manner. At high ATP concentrations, such as 0.1 and 1 mM, the sliding velocity on the thinner bundles was significantly higher than that on the thicker bundles, while at lower ATP concentrations the sliding velocity did not change between the thinner and the thicker bundles. We observed similar bundle width-related differences in sliding velocity after removal of the outer arms. These results provide first evidence suggesting that the central pair and its associated structures may directly regulate the activity of the inner (and probably also the outer) arm dynein.  相似文献   

13.
《The Journal of cell biology》1995,130(5):1137-1147
alpha-, beta-, and gamma-tubulins are evolutionarily highly conserved members of the tubulin gene superfamily. While the abundant members, alpha- and beta-tubulins, constitute the building blocks of cellular microtubule polymers, gamma-tubulin is a low abundance protein which localized to the pericentriolar material and may play a role in microtubule assembly. To test whether gamma-tubulin mediates the nucleation of microtubule assembly in vivo, and co-assembles with alpha- and beta-tubulins into microtubules or self-assembles into macro- molecular structures, we experimentally elevated the expression of gamma-tubulin in the cell cytoplasm. In most cells, overexpression of gamma-tubulin causes a dramatic reorganization of the cellular microtubule network. Furthermore, we show that when overexpressed, gamma-tubulin causes ectopic nucleation of microtubules which are not associated with the centrosome. In a fraction of cells, gamma-tubulin self-assembles into novel tubular structures with a diameter of approximately 50 nm (named gamma-tubules). Furthermore, unlike microtubules, gamma-tubules are resistant to cold or drug induced depolymerization. These data provide evidence that gamma-tubulin can cause nucleation of microtubule assembly and can self-assemble into novel tubular structures.  相似文献   

14.
15.
Comparison of congruent to 160 alpha-, beta-, and gamma-tubulins, and excluding the highly divergent C-terminal peptide, indicates that the three subclasses have similar tertiary structures. Conserved sequences within or between the subclasses have been identified, together with the locations of known epitopes, chemical modifications, and mutations. Evidence is also reviewed concerning the identity of the GTP-binding sites, about which residues are exposed in the assembled microtubule and at subunit:subunit interfaces. These characteristics constrain the possible tertiary structure of the tubulin subunit.  相似文献   

16.
The functional significance of distinct gamma-tubulins in several unrelated eukaryotes remains an enigma due to the difficulties to investigate this question experimentally. Using specific nucleotidic and immunological probes, we have demonstrated that the two divergent Drosophila gamma-tubulins, gamma-tub23C and gamma-tub37CD, are expressed in cultured cells. Gamma-tub37CD is constantly detected at the centrosome and absent in the mitotic spindle, while gamma-tub23C is extensively recruited to the centrosome during mitosis and relocalizes in the mitotic spindle. The two gamma-tubulins exhibit distinct biochemical properties. Gamma-tub23C is present in the soluble gamma-tubulin small complexes (10S) and gamma-tubulin big complexes (35S) and is loosely associated to the cytoskeleton. In contrast, gamma-tub37CD is undetectable in the soluble fraction and exhibits a tight binding to the centrosome. Syncytial embryos also contain the two gamma-tubulin isotypes, which are differentially recruited at the centrosome. Gamma-tub23C is present in the 10S soluble complexes only, while y-tub37CD is contained in the two soluble complexes and is recruited at the centrosome where it exhibits an heterogeneous binding. These results demonstrated an heterogeneity of the two Drosophila gamma-tubulin isotypes both in the cytoskeletal and the soluble fractions. They suggest the direct implication of the 35S complex in the centrosomal recruitment of gamma-tubulin and a conditional functional redundancy between the two gamma-tubulins.  相似文献   

17.
Yang  Jing  Li  Jiazhi  Wang  Jiuyu  Sheng  Gang  Wang  Min  Zhao  Hongtu  Yang  Yanhua  Wang  Yanli 《中国科学:生命科学英文版》2020,63(4):516-528
Cas1 is a key component of the CRISPR adaptation complex, which captures and integrates foreign DNA into the CRISPR array,resulting in the generation of new spacers. We have determined crystal structures of Thermus thermophilus Cas1 involved in new spacer acquisition both in complex with branched DNA and in the free state. Cas1 forms an asymmetric dimer without DNA.Conversely, two asymmetrical dimers bound to two branched DNAs result in the formation of a DNA-mediated tetramer, dimer of structurally asymmetrical dimers, in which the two subunits markedly present different conformations. In the DNA binding complex, the N-terminal domain adopts different orientations with respect to the C-terminal domain in the two monomers that form the dimer. Substrate binding triggers a conformational change in the loop 164–177 segment. This loop is also involved in the 3′ fork arm and 5′ fork arm strand recognition in monomer A and B, respectively. This study provides important insights into the molecular mechanism of new spacer adaptation.  相似文献   

18.
Electrophoresis in polyacrylamide gels provides a simple yet powerful means of analyzing the relative disposition of helical arms in branched nucleic acids. The electrophoretic mobility of DNA or RNA with a central discontinuity is determined by the angle subtended between the arms radiating from the branchpoint. In a multi-helical branchpoint, comparative gel electrophoresis can provide a relative measure of all the inter-helical angles and thus the shape and symmetry of the molecule. Using the long-short arm approach, the electrophoretic mobility of all the species with two helical arms that are longer than all others is compared. This can be done as a function of conditions, allowing the analysis of ion-dependent folding of branched DNA and RNA species. Notable successes for the technique include the four-way (Holliday) junction in DNA and helical junctions in functionally significant RNA species such as ribozymes. Many of these structures have subsequently been proved correct by crystallography or other methods, up to 10 years later in the case of the Holliday junction. Just as important, the technique has not failed to date. Comparative gel electrophoresis can provide a window on both fast and slow conformational equilibria such as conformer exchange in four-way DNA junctions. But perhaps the biggest test of the approach has been to deduce the structures of complexes of four-way DNA junctions with proteins. Two recent crystallographic structures show that the global structures were correctly deduced by electrophoresis, proving the worth of the method even in these rather complex systems. Comparative gel electrophoresis is a robust method for the analysis of branched nucleic acids and their complexes.  相似文献   

19.
Tails of Tetrahymena   总被引:6,自引:0,他引:6  
SYNOPSIS. The source of force generation of beating cilia and flagella is an interaction between the doublet microtubules mediated by the dynein-1 arms which cause the doublets to slide relative to one another. Previously, we demonstrated direct sliding of Tetrahymena ciliary axonemes by dark field light microscopy. In this paper, the results of such an experiment have been captured on a polylysine-coated grid surface for whole-mount electron microscopy. Images in which sliding between doublets has taken place can be identified. We conclude that doublets slide relative to one another with a constant polarity. To produce the observed displacement, the direction of the dynein-1 arm force generation must be from base to tip, so that the doublet (n), to which the arms are attached, pushes the next doublet (n+ 1) toward the tip. In addition to the functional polarity, the dynein-1 arms are found to have a structural polarity: they tilt toward the base when viewed along the edges of the A-subfiber. A scheme is presented which reconciles the finding of a single polarity of active sliding with the geometry of microtubule tip displacement of bent cilia.  相似文献   

20.
In animal cells, centrosomes nucleate microtubules that form polarized arrays to organize the cytoplasm. Drosophila presents an interesting paradox however, as centrosome-deficient mutant animals develop into viable adults. To understand this discrepancy, we analyzed behaviors of centrosomes and microtubules in Drosophila cells, in culture and in vivo, using a combination of live-cell imaging, electron microscopy, and RNAi. The canonical model of the cycle of centrosome function in animal cells states that centrosomes act as microtubule-organizing centers throughout the cell cycle. Unexpectedly, we found that many Drosophila cell-types display an altered cycle, in which functional centrosomes are only present during cell division. On mitotic exit, centrosomes disassemble producing interphase cells containing centrioles that lack microtubule-nucleating activity. Furthermore, steady-state interphase microtubule levels are not changed by codepleting both gamma-tubulins. However, gamma-tubulin RNAi delays microtubule regrowth after depolymerization, suggesting that it may function partially redundantly with another pathway. Therefore, we examined additional microtubule nucleating factors and found that Mini-spindles, CLIP-190, EB1, or dynein RNAi also delayed microtubule regrowth; surprisingly, this was not further prolonged when we codepleted gamma-tubulins. Taken together, these results modify our view of the cycle of centrosome function and reveal a multi-component acentrosomal microtubule assembly pathway to establish interphase microtubule arrays in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号