首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shao L  Sun X  Xu L  Young LT  Wang JF 《Life sciences》2006,78(12):1317-1323
The mood stabilizing drug lithium is a highly effective treatment for bipolar disorder. Previous studies in our laboratory found that chronic treatment with the mood stabilizing drug valproate in rat brain increased the expression of endoplasmic reticulum (ER) stress proteins GRP78, GRP94 and calreticulin. We report here that in primary cultured rat cerebral cortical cells, expression of GRP78, GRP94 and calreticulin are increased not only by valproate, but also by lithium after chronic treatment for 1 week at therapeutically relevant concentrations. However, two other mood stabilizing drugs carbamazepine and lamotrigine had no effect on expression of GRP78, GRP94 or calreticulin. Chronic treatment with lithium for 1 week increased both mRNA and protein levels of ER stress proteins. In contrast to a classic GRP78 inducer thapsigargin, an inhibitor of the ER Ca2+ -ATPase, chronic treatment with lithium or valproate for 1 week modestly increased GRP78 expression in neuronal cells, had no effect on basal intracellular free Ca2+ concentration and does not induce cell death. These results indicate that lithium and valproate may increase expression of GRP78, GRP94 and calreticulin in primary cultured rat cerebral cortical cells without causing cell damage. These results also suggest that the mechanism of GRP78 increase induced by lithium and valproate may be different from that of thapsigargin.  相似文献   

2.
Abstract

Mood stabilizers are a heterogeneous class of drugs having antidepressant and anti-manic effects in bipolar disorders, depression and schizophrenia. Despite wide clinical applications, the mechanisms underlying their shared actions and therapeutic specificity are unknown. Here, we examine the effects of the structurally unrelated mood stabilizers lamotrigine, lithium and valproate on G protein and beta-arrestin-dependent components of dopamine D2 receptor signaling and assess their contribution to the behavioral effects of these drugs. When administered chronically to mice lacking either D2 receptors or beta-arrestin 2, lamotrigine, lithium and valproate failed to affect Akt/GSK3 signaling as they do in normal littermates. This lack of effect on signaling resulted in a loss of responsiveness to mood stabilizers in tests assessing “antimanic” or “antidepressant”-like behavioral drug effects. This shows that mood stabilizers lamotrigine, lithium and valproate can exert behavioral effects in mice by disrupting the beta-arrestin 2-mediated regulation of Akt/GSK3 signaling by D2 dopamine receptors, thereby suggesting a shared mechanism for mood stabilizer selectivity.  相似文献   

3.
Observations that dopaminergic antagonists are beneficial in bipolar disorder and that dopaminergic agonists can produce mania suggest that bipolar disorder involves excessive dopaminergic transmission. Thus, mood stabilizers used to treat the disease might act in part by downregulating dopaminergic transmission. In agreement, we reported that dopamine D2-like receptor mediated signaling involving arachidonic acid (AA, 20:4n-6) was downregulated in rats chronically treated with lithium. To see whether chronic carbamazepine, another mood stabilizer, did this as well, we injected i.p. saline or the D2-like receptor agonist, quinpirole (1 mg/kg), into unanesthetized rats that had been pretreated for 30 days with i.p. carbamazepine (25 mg/kg/day) or vehicle, and used quantitative autoradiography to measure regional brain incorporation coefficients (k*) for AA, markers of signaling. We also measured brain prostaglandin E2 (PGE2), an AA metabolite. In vehicle-treated rats, quinpirole compared with saline significantly increased k* for AA in 35 of 82 brain regions examined, as well as brain PGE2 concentration. Affected regions belong to dopaminergic circuits and have high D2-like receptor densities. Chronic carbamazepine pretreatment prevented the quinpirole-induced increments in k* and in PGE2. These findings are consistent with the hypothesis that effective mood stabilizers generally downregulate brain AA signaling via D2-like receptors, and that this signaling is upregulated in bipolar disorder.  相似文献   

4.
Brain creatine kinase activity in an animal model of mania   总被引:4,自引:0,他引:4  
There is evidence pointing to dysfunction at the mitochondrial level as an important target for the understanding of the pathophysiology of bipolar disorder (BD). We assessed creatine kinase (CK) activity in rats submitted to an animal model of mania which included the use of lithium and valproate. In the acute treatment, amphetamine (AMPH) or saline was administered to rats for 14 days, and between day 8 and 14, rats were treated with either lithium, valproate or saline. In the maintenance treatment, rats were pretreated with lithium, valproate or saline, and between day 8 and 14, AMPH or saline were administered. In both experiments, locomotor activity was assessed by open-field test and CK activity was evaluated in hippocampus, striatum, cerebellum, whole cortex and prefrontal cortex. Our results showed that mood stabilizers reversed AMPH-induced behavioral effects. Moreover, AMPH (acute treatment) inhibited CK activity in hippocampus, striatum and cortex, but not in cerebellum and prefrontal cortex, and administration of lithium or valproate did not reverse the enzyme inhibition. In the maintenance treatment, AMPH decreased CK activity in saline-pretreated rats in hippocampus, striatum and cortex, but not in cerebellum and prefrontal cortex. AMPH administration in lithium- or valproate-pretreated animals decreased CK activity in hippocampus, striatum and cortex. Our results showed that AMPH inhibited CK activity and that mood stabilizers were not able to reverse and/or prevent the enzyme inhibition. These findings reinforce the hypothesis that mitochondrial dysfunction plays an important role in the pathophysiology of BD.  相似文献   

5.
Bipolar disorder is a devastating disease with a lifetime incidence of about 1% in the general population. Suicide is the cause of death in 10 to 15% of patients and in addition to suicide, mood disorders are associated with many other harmful health effects. Mood stabilizers are medications used to treat bipolar disorder. In addition to their therapeutic effects for the treatment of acute manic episodes, mood stabilizers are useful as prophylaxis against future episodes and as adjunctive antidepressant medications. The most established and investigated mood-stabilizing drugs are lithium and valproate but other anticonvulsants (such as carbamazepine and lamotrigine) and antipsychotics are also considered as mood stabilizers. Despite the efficacy of these diverse medications, their mechanisms of action remain, to a great extent, unknown. Lithium’s inhibition of some enzymes, such as inositol monophosphatase and gycogen synthase kinase-3, probably results in its mood-stabilizing effects. Valproate may share its anticonvulsant target with its mood-stabilizing target or may act through other mechanisms. It has been shown that lithium, valproate, and/or carbamazepine regulate numerous factors involved in cell survival pathways, including cyclic adenine monophospate response element-binding protein, brain-derived neurotrophic factor, bcl-2, and mitogen-activated protein kinases. These drugs have been suggested to have neurotrophic and neuroprotective properties that ameliorate impairments of cellular plasticity and resilience underlying the pathophysiology of mood disorders. This article also discusses approaches to develop novel treatments specifically for bipolar disorder.  相似文献   

6.
Bipolar disorder is a devastating illness that is marked by recurrent episodes of mania and depression. There is growing evidence that the disease is correlated with disruptions in synaptic plasticity cascades involved in cognition and mood regulation. Alleviating the symptoms of bipolar disorder involves chronic treatment with mood stabilizers like lithium or valproate. These two structurally dissimilar drugs are known to alter prominent signaling cascades in the hippocampus, but their effects on the post-synaptic density complex remain undefined. In this work, we utilized mass spectrometry for quantitative profiling of the rat hippocampal post-synaptic proteome to investigate the effects of chronic mood stabilizer treatment. Our data show that in response to chronic treatment of mood stabilizers there were not gross qualitative changes but rather subtle quantitative perturbations in post-synaptic density proteome linked to several key signaling pathways. Our data specifically support the changes in actin dynamics on valproate treatment. Using label-free quantification methods, we report that lithium and valproate significantly altered the abundance of 21 and 43 proteins, respectively. Seven proteins were affected similarly by both lithium and valproate: Ank3, glutamate receptor 3, dynein heavy chain 1, and four isoforms of the 14-3-3 family. Immunoblotting the same samples confirmed the changes in Ank3 and glutamate receptor 3 abundance. Our findings support the hypotheses that BPD is a synaptic disorder and that mood stabilizers modulate the protein signaling complex in the hippocampal post-synaptic density.  相似文献   

7.
Valproate, an anticonvulsant drug used to treat bipolar disorder, was studied for its ability to promote neurogenesis from embryonic rat cortical or striatal primordial stem cells. Six days of valproate exposure increased by up to fivefold the number and percentage of tubulin beta III-immunopositive neurons, increased neurite outgrowth, and decreased by fivefold the number of astrocytes without changing the number of cells. Valproate also promoted neuronal differentiation in human fetal forebrain stem cell cultures. The neurogenic effects of valproate on rat stem cells exceeded those obtained with the neurotrophins brain-derived growth factor (BDNF) or NT-3, and slightly exceeded the effects obtained with another mood stabilizer, lithium. No effect was observed with carbamazepine. Most of the newly formed neurons were GABAergic, as shown by 10-fold increases in neurons that immunostained for GABA and the GABA-synthesizing enzyme GAD65/67. Double immunostaining for bromodeoxyuridine and tubulin beta III showed that valproate increased by four- to fivefold the proliferation of neuronal progenitors derived from rat stem cells and increased cyclin D2 expression. Valproate also regulated the expression of survival genes, Bad and Bcl-2, at different times of treatment. The expression of prostaglandin E synthase, analyzed by quantitative RT-PCR, was increased by ninefold as early as 6 h into treatment by valproate. The enhancement of GABAergic neuron numbers, neurite outgrowth, and phenotypic expression via increases in the neuronal differentiation of neural stem cell may contribute to the therapeutic effects of valproate in the treatment of bipolar disorder.  相似文献   

8.
Oligonucleotide microarray technology was used to analyze gene expression profiles after chronic treatment with the mood stabilizing drug valproate at a therapeutically relevant concentration in primary cultured rat cerebral cortical cells. We discovered that valproate regulates expression of 28 genes, including three isoenzymes (M1, A3 and A4) of glutathione S-transferase (GST), an important protective factor against oxidative stress. Because previous studies in our laboratory found that chronic valproate treatment protected cultured neurons against oxidative stress, further experiments on the regulation of GST were performed. Regulation of GST M1, GST A3 and GST A4 was verified using northern blotting hybridization. Chronic valproate treatment increased mRNA levels of M1 and A4, but decreased the A3 mRNA level dose-dependently, indicating further complexities in the regulation of GST by valproate. The level of GST M1 protein and GST activity were also increased by chronic valproate treatment. In addition, chronic treatment with lithium, another commonly prescribed mood stabilizer, also increased levels of GST M1 mRNA and protein. The present findings suggest that regulation of GST M1, and possibly GST A4, may mediate the anti-oxidative effects of valproate treatment, and regulation of GST may be involved in the mood stabilizing effect of valproate and lithium.  相似文献   

9.
10.
11.
The atypical antipsychotic, olanzapine (OLZ), is used to treat bipolar disorder, but its therapeutic mechanism of action is not clear. Arachidonic acid (AA, 20:4n-6) plays a critical role in brain signaling and an up-regulated AA metabolic cascade was reported in postmortem brains from bipolar disorder patients. In this study, we tested whether, similar to the action of the mood stabilizers lithium, carbamazepine and valproate, chronic OLZ treatment would reduce AA turnover in rat brain. We administered OLZ (6 mg/kg/day) or vehicle i.p. to male rats once daily for 21 days. A washout group received 21 days of OLZ followed by vehicle on day 22. Two hours after the last injection, [1-1?C]AA was infused intravenously for 5 min, and timed arterial blood samples were taken. After the rat was killed at 5 min, its brain was microwaved, removed and analyzed. Chronic OLZ decreased plasma unesterified AA concentration, AA incorporation rates and AA turnover in brain phospholipids. These effects were absent after washout. Consistent with reduced AA turnover, OLZ decreased brain cyclooxygenase activity and the brain concentration of the proinflammatory AA-derived metabolite, prostaglandin E?, In view of up-regulated brain AA metabolic markers in bipolar disorder, the abilities of OLZ and the mood stabilizers to commonly decrease prostaglandin E?, and AA turnover in rat brain phospholipids, albeit by different mechanisms, may be related to their efficacy against the disease.  相似文献   

12.
The therapeutic mechanisms of lithium for treating bipolar mood disorder remain poorly understood. Recent studies demonstrate that lithium has neuroprotective actions against a variety of insults. Here, we studied neuroprotective effects of lithium against excitotoxicity in cultured cerebral cortical neurons. Glutamate-induced excitotoxicity in cortical neurons was exclusively mediated by NMDA receptors. Pre-treatment of cortical neurons with LiCl time-dependently suppressed excitotoxicity with maximal protection after 6 days of pre-treatment. Significant protection was observed at the therapeutic and subtherapeutic concentration of 0.2-1.6 mm LiCl with almost complete protection at 1 mM. Neuroprotection was also elicited by valproate, another major mood-stabilizer. The neuroprotective effects of lithium coincided with inhibition of NMDA receptor-mediated calcium influx. Lithium pre-treatment did not alter total protein levels of NR1, NR2A and NR2B subunits of NMDA receptors. However, it did markedly reduce the level of NR2B phosphorylation at Tyr1472 and this was temporally associated with its neuroprotective effect. Because NR2B tyrosine phosphorylation has been positively correlated with NMDA receptor-mediated synaptic activity and excitotoxicity, the suppression of NR2B phosphorylation by lithium is likely to result in the inactivation of NMDA receptors and contributes to neuroprotection against excitotoxicity. This action could also be relevant to its clinical efficacy for bipolar patients.  相似文献   

13.
Atypical antipsychotics show preferential 5-HT 2A versus dopamine (DA) D2 receptor affinity. At clinical doses, they fully occupy cortical 5-HT2 receptors, which suggests a strong relationship with their therapeutic action. Half of the pyramidal neurones in the medial prefrontal cortex (mPFC) express 5-HT 2A receptors. Also, neurones excited through 5-HT 2A receptors project to the ventral tegmental area (VTA). We therefore hypothesized that prefrontal 5-HT 2A receptors can modulate DA transmission through excitatory mPFC-VTA inputs. In this study we used single unit recordings to examine the responses of DA neurones to local (in the mPFC) and systemic administration of the 5-HT 2A/2C agonist 1-[2,5-dimethoxy-4-iodophenyl-2-aminopropane] (DOI). Likewise, using microdialysis, we examined DA release in the mPFC and VTA (single/dual probe) in response to prefrontal and systemic drug administration. The local (in the mPFC) and systemic administration of DOI increased the firing rate and burst firing of DA neurones and DA release in the VTA and mPFC. The increase in VTA DA release was mimicked by the electrical stimulation of the mPFC. The effects of DOI were reversed by M100907 and ritanserin. These results indicate that the activity of VTA DA neurones is under the excitatory control of 5-HT 2A receptors in the mPFC. These observations may help in the understanding of the therapeutic action of atypical antipsychotics.  相似文献   

14.
15.
16.
昆虫多巴胺及其受体的研究进展   总被引:1,自引:0,他引:1  
吴顺凡  徐刚  齐易香  夏仁英  黄佳  叶恭银 《昆虫学报》2013,56(11):1342-1358
多巴胺(dopamine, DA)是脊椎动物和无脊椎动物体内一种重要的生物胺, 其参与调控了昆虫的多种生理反应和行为过程, 如学习与记忆、 认知、 性取向、 抉择、 运动以及型变等。多巴胺主要通过结合特异性的G蛋白偶联受体, 即多巴胺受体(dopamine receptors, DARs)来发挥生理作用。本文综述了多巴胺在昆虫中的调控、 分布及所参与的生理功能, 如多巴胺调控昆虫的交配、 发育、 嗅觉以及运动行为等, 特别对DARs的信号转导、 生理功能以及药理学等方面进行了详细评述。昆虫的DARs大致可分为两大类: D1-like DARs和D2-like DARs。D1-like DARs包含有2种亚型, 分别为DOP1和DOP2。DOP1仅能偶联胞内cAMP的上升, 而DOP2不仅可以起胞内cAMP的上升, 还可偶联胞内Ca2+的释放。 D2-like DARs仅包含有1种亚型DOP3, 其被激活后引起胞内cAMP的降低。DA通过激活不同的DARs可偶联不同的第二信使系统, 所产生的下游细胞反应则与昆虫的各种行为相关, 而对昆虫DARs的药理学研究将有助于我们开发特异性的杀虫剂用于害虫防治。  相似文献   

17.
Mood disorders and schizophrenia share a number of common properties, including: genetic susceptibility; differences in brain structure and drug based therapy. Some genetic loci may even confer susceptibility for bipolar mood disorder and schizophrenia, and some atypical antipsychotic drugs are used as mood stabilizers. As schizophrenia is associated with aberrant neurodevelopment, could this also be true for mood disorders? Such changes could arise pre- or post-natal, however the recent interest in neurogenesis in the adult brain has suggested involvement of these later processes in the origins of mood disorders. Interestingly, the common mood stabilizing drugs, lithium, valproic acid (VPA) and carbamazepine, are teratogens, affecting a number of aspects of animal development. Recent work has shown that lithium and VPA interfere with normal cell development, and all three drugs affect neuronal morphology. The molecular basis for mood stabilizer action in the treatment of mood is unknown, however these studies have suggested both targets and potential mechanisms. Lithium directly inhibits two evolutionarily conserved signal transduction pathways: the protein kinase Glycogen Synthase Kinase-3 (GSK-3) and inositol signaling. VPA can up-regulate gene expression through inhibition of histone deacetylase (HDAC) and indirectly reduce GSK-3 activity. VPA effects are not conserved between cell types, and carbamazepine has no effect on the GSK-3 pathway. All three mood stabilizers suppress inositol signaling, results further supported by studies on the enzyme prolyl oligopeptidase (PO) and the sodium myo-inositol transporter (SMIT). Despite these intriguing observations, it remains unclear whether GSK-3, inositol signaling or both underlie the origins of bipolar disorder.  相似文献   

18.
Treatment of cultured Kupffer cells with the beta-adrenergic agonist isoproterenol (10 microM) for a short period of time (30 min) attenuated the subsequent platelet-activating factor (PAF)-induced arachidonic acid release and cyclooxygenase-derived eicosanoid (e.g. thromboxane B2 and prostaglandin E2) production. This effect of isoproterenol was highly specific since the alpha-adrenergic agonist phenylephrine and the beta-adrenergic antagonist propranolol had no effect on the stimulatory effect of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC). The inhibitory effect of isoproterenol on the AGEPC-induced arachidonic acid release was demonstrated through the use of a specific beta-adrenergic subtype agonist and antagonist to be mediated by beta 2-adrenergic receptors on Kupffer cells. These inhibitory effects of isoproterenol can be mimicked by dibutyryl cAMP but not by dibutyryl cGMP, suggesting that a cAMP-dependent mechanism is likely involved in the regulatory action of isoproterenol. Ligand binding studies indicated that short term (i.e. 30 min) treatment of the cultured Kupffer cells with either isoproterenol or dibutyryl cAMP had no effect on the specific [3H]PAF binding. However, long term incubation (9-24 h) with dibutyryl cAMP caused down-regulation of the PAF receptors in rat Kupffer cells. Forskolin (0.1 mM), an adenylyl cyclase activator, down-regulated the surface expression of the AGEPC receptors more rapidly, decreasing the specific [3H]AGEPC binding by approximately 40% within 2 h. The receptor regulatory effect of dibutyryl cAMP and forskolin was time- and concentration-dependent. These observations suggest that a cAMP-dependent mechanism coupled with beta 2-adrenergic receptors may have important regulatory effects on the PAF receptor and post-receptor signal transducing mechanisms for PAF in hepatic Kupffer cells.  相似文献   

19.
BackgroundThere is limited, poorly characterized information about adverse events occurring during maintenance treatment of bipolar disorder. We aimed to determine adverse event rates during treatment with lithium, valproate, olanzapine, and quetiapine.ConclusionsLithium use is associated with more renal and endocrine adverse events but less weight gain than commonly used alternative mood stabilizers. Risks need to be offset with the effectiveness and anti-suicidal benefits of lithium and the potential metabolic side effects of alternative treatment options.  相似文献   

20.
Mental disorders frequently begin in childhood or adolescence. Psychotropic medications have various indications for the treatment of mental dis­orders in this age group and are used not infrequently off‐label. However, the adverse effects of these medications require special attention during developmentally sensitive periods of life. For this meta‐review, we systematically searched network meta‐analyses and meta‐analyses of randomized controlled trials (RCTs), individual RCTs, and cohort studies reporting on 78 a priori selected adverse events across 19 categories of 80 psychotropic medications – including antidepressants, antipsychotics, anti‐attention‐deficit/hyperactivity disorder (ADHD) medications and mood stabilizers – in children and adolescents with mental disorders. We included data from nine network meta‐analyses, 39 meta‐analyses, 90 individual RCTs, and eight cohort studies, including 337,686 children and adolescents. Data on ≥20% of the 78 adverse events were available for six antidepressants (sertraline, escitalopram, paroxetine, fluoxetine, venlafaxine and vilazodone), eight antipsychotics (risperidone, quetiapine, aripiprazole, lurasidone, paliperidone, ziprasidone, olanzapine and asenapine), three anti‐ADHD medications (methylphenidate, atomoxetine and guanfacine), and two mood stabilizers (valproate and lithium). Among these medications with data on ≥20% of the 78 adverse events, a safer profile emerged for escitalopram and fluoxetine among antidepressants, lurasidone for antipsychotics, methylphenidate among anti‐ADHD medications, and lithium among mood stabilizers. The available literature raised most concerns about the safety of venlafaxine, olanzapine, atomoxetine, guanfacine and valproate. Nausea/vomiting and discontinuation due to adverse event were most frequently associated with antidepressants; sedation, extrapyramidal side effects, and weight gain with antipsychotics; anorexia and insomnia with anti‐ADHD medications; sedation and weight gain with mood stabilizers. The results of this comprehensive and updated quantitative systematic meta‐review of top‐tier evidence regarding the safety of antidepressants, antipsychotics, anti‐ADHD medications and mood stabilizers in children and adolescents can inform clinical practice, research and treatment guidelines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号