首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Replication-dependent histone mRNAs are the only eukaryotic cellular mRNAs that are not polyadenylated, ending instead in a conserved stem-loop. The 3′ end of histone mRNA is required for histone mRNA translation, as is the stem-loop binding protein (SLBP), which binds the 3′ end of histone mRNA. We have identified five conserved residues in a 15-amino-acid region in the amino-terminal portion of SLBP, each of which is required for translation. Using a yeast two-hybrid screen, we identified a novel protein, SLBP-interacting protein 1 (SLIP1), that specifically interacts with this region. Mutations in any of the residues required for translation reduces SLIP1 binding to SLBP. The expression of SLIP1 in Xenopus oocytes together with human SLBP stimulates translation of a reporter mRNA ending in the stem-loop but not a reporter with a poly(A) tail. The expression of SLIP1 in HeLa cells also stimulates the expression of a green fluorescent protein reporter mRNA ending in a stem-loop. RNA interference-mediated downregulation of endogenous SLIP1 reduces the rate of translation of endogenous histone mRNA and also reduces cell viability. SLIP1 may function by bridging the 3′ end of the histone mRNA with the 5′ end of the mRNA, similar to the mechanism of translation of polyadenylated mRNAs.  相似文献   

3.
Translationally inactive histone mRNA is stored in frog oocytes, and translation is activated at oocyte maturation. The replication-dependent histone mRNAs are not polyadenylated and end in a conserved stem-loop structure. There are two proteins (SLBPs) which bind the 3′ end of histone mRNA in frog oocytes. SLBP1 participates in pre-mRNA processing in the nucleus. SLBP2 is oocyte specific, is present in the cytoplasm, and does not support pre-mRNA processing in vivo or in vitro. The stored histone mRNA is bound to SLBP2. As oocytes mature, SLBP2 is degraded and a larger fraction of the histone mRNA is bound to SLBP1. The mechanism of activation of translation of histone mRNAs may involve exchange of SLBPs associated with the 3′ end of histone mRNA.  相似文献   

4.
Metazoan replication-dependent histone mRNAs end in a conserved stem-loop rather than in the poly(A) tail found on all other mRNAs. The 3' end of histone mRNA binds a single class of proteins, the stem-loop binding proteins (SLBP). In Xenopus, there are two SLBPs: xSLBP1, the homologue of the mammalian SLBP, which is required for processing of histone pre-mRNA, and xSLBP2, which is expressed only during oogenesis and is bound to the stored histone mRNA in Xenopus oocytes. The stem-loop is required for efficient translation of histone mRNAs and substitutes for the poly(A) tail, which is required for efficient translation of other eucaryotic mRNAs. When a rabbit reticulocyte lysate is programmed with uncapped luciferase mRNA ending in the histone stem-loop, there is a three- to sixfold increase in translation in the presence of xSLBP1 while xSLBP2 has no effect on translation. Neither SLBP affected the translation of a luciferase mRNA ending in a mutant stem-loop that does not bind SLBP. Capped luciferase mRNAs ending in the stem-loop were injected into Xenopus oocytes after overexpression of either xSLBP1 or xSLBP2. Overexpression of xSLBP1 in the oocytes stimulated translation, while overexpression of xSLBP2 reduced translation of the luciferase mRNA ending in the histone stem-loop. A small region in the N-terminal portion of xSLBP1 is required to stimulate translation both in vivo and in vitro. An MS2-human SLBP1 fusion protein can activate translation of a reporter mRNA ending in an MS2 binding site, indicating that xSLBP1 only needs to be recruited to the 3' end of the mRNA but does not need to be directly bound to the histone stem-loop to activate translation.  相似文献   

5.
Meiotic maturation stimulates a change in the translation of stored mRNAs: mRNAs encoding proteins needed for growth of oocytes are translated before meiotic maturation, whereas those encoding proteins required for cleavage are translated after meiotic maturation. Studies of translational regulation during meiotic maturation have been limited by the lack of translationally active cell-free supernatants. Starfish oocytes are ideal for preparing cell-free translation systems because experimental application of the hormone 1-methyladenine induces their maturation, synchronizing meiosis. We have prepared such systems from both immature and mature oocytes of starfish. Changes in protein synthesis rates and the specificity of proteins synthesized in these cell-free translation supernatants mimic those seen in vivo. Supernatants both from immature and mature oocytes have a high capacity to initiate new translation because 90% of the proteins made are newly initiated from mRNAs. Cell-free supernatants from mature oocytes have a much higher rate of initiation of translation than those from immature oocytes and use the 43S preinitiation complexes more efficiently in initiation of translation. Similarly, we have shown that mRNAs and initiation factors are rate limiting in cell-free translation systems prepared from immature oocytes. In addition, cell-free translation systems prepared from immature oocytes are only slightly, if at all, inhibitory to cell-free translation systems from mature oocytes. Thus, soluble inhibitors, if they exist, are rapidly converted by cell-free supernatants from mature oocytes. The similarities between translation in our starfish cell-free translation systems and in intact oocytes suggests that the cell-free translation systems will be useful tools for further studies of maturation events and translational control during meiosis.  相似文献   

6.
7.
Metazoan replication-dependent histone mRNAs end in a stem-loop sequence. The one known exception is the histone mRNA in amphibian oocytes, which has a short oligo(A) tail attached to the stem-loop sequence. Amphibian oocytes also contain two proteins that bind the 3' end of histone mRNA: xSLBP1, the homologue of the mammalian SLBP, and xSLBP2, which is present only in oocytes. xSLBP2 is an inhibitor of histone mRNA translation, while xSLBP1 activates translation. The short A tail on histone mRNAs appears at stage II to III of oogenesis and is present on histone mRNAs throughout the rest of oogenesis. At oocyte maturation, the oligo(A) tail is removed and the xSLBP2 is degraded, resulting in the activation of translation of histone mRNA. Both SLBPs bind to the stem-loop with the oligo(A) tail with similar affinities. Reporter mRNAs ending in the stem-loop with or without the oligo(A) tail are translated equally well in a reticulocyte lysate, and their translation is stimulated by the presence of xSLBP1. In contrast, translation of the reporter mRNA with an oligo(A) tail is not activated in frog oocytes in response to the presence of xSLBP1. These results suggest that the oligo(A) tail is an active part of the translation repression mechanism that silences histone mRNA during oogenesis and that its removal is part of the mechanism that activates translation.  相似文献   

8.
Xtr in the fertilized eggs of Xenopus has been demonstrated to be a member of a messenger ribonucleoprotein (mRNP) complex that plays a crucial role in karyokinesis during cleavage. Since the Xtr is also present both in oocytes and spermatocytes and its amount increases immediately after spematogenic cells enter into the meiotic phase, this protein was also predicted to act during meiotic progression. Taking advantage of Xenopus oocytes' large size to microinject anti-Xtr antibody into them for inhibition of Xtr function, we examined the role of Xtr in meiotic progression of oocytes. Microinjection of anti-Xtr antibody into immature oocytes followed by reinitiation of oocyte maturation did not affect germinal vesicle break down and the oscillation of Cdc2/cyclin B activity during meiotic progression but caused abnormal spindle formation and chromosomal alignment at meiotic metaphase I and II. Immunoprecipitation of Xtr showed the association of Xtr with FRGY2 and mRNAs such as RCC1 and XL-INCENP mRNAs, which are involved in the progression of karyokinesis. When anti-Xtr antibody was injected into oocytes, translation of XL-INCENP mRNA, which is known to be repressed in immature oocytes and induced after reinitiation of oocyte maturation, was inhibited even if the oocytes were treated with progesterone. A similar translational regulation was observed in oocytes injected with a reporter mRNA, which was composed of an enhanced green fluorescent protein open reading frame followed by the 3' untranslational region (3'UTR) of XL-INCENP mRNA. These results indicate that Xtr regulates the translation of XL-INCENP mRNA through its 3'UTR during meiotic progression of oocyte.  相似文献   

9.
Metazoan cell cycle-regulated histone mRNAs are unique cellular mRNAs in that they terminate in a highly conserved stem-loop structure instead of a poly(A) tail. Not only is the stem-loop structure necessary for 3'-end formation but it regulates the stability and translational efficiency of histone mRNAs. The histone stem-loop structure is recognized by the stem-loop-binding protein (SLBP), which is required for the regulation of mRNA processing and turnover. In this study, we show that SLBP is required for the translation of mRNAs containing the histone stem-loop structure. Moreover, we show that the translation of mRNAs ending in the histone stem-loop is stimulated in Saccharomyces cerevisiae cells expressing mammalian SLBP. The translational function of SLBP genetically required eukaryotic initiation factor 4E (eIF4E), eIF4G, and eIF3, and expressed SLBP coisolated with S. cerevisiae initiation factor complexes that bound the 5' cap in a manner dependent on eIF4G and eIF3. Furthermore, eIF4G coimmunoprecipitated with endogenous SLBP in mammalian cell extracts and recombinant SLBP and eIF4G coisolated. These data indicate that SLBP stimulates the translation of histone mRNAs through a functional interaction with both the mRNA stem-loop and the 5' cap that is mediated by eIF4G and eIF3.  相似文献   

10.
The levels of replication-dependent histone mRNAs are coordinately regulated with DNA synthesis. A major regulatory step in histone mRNA metabolism is regulation of the half-life of histone mRNAs. Replication-dependent histone mRNAs are the only metazoan mRNAs that are not polyadenylated. Instead, they end with a conserved stem-loop structure, which is recognized by the stem-loop binding protein (SLBP). SLBP is required for histone mRNA processing, as well as translation. We show here, using histone mRNAs whose translation can be regulated by the iron response element, that histone mRNAs need to be actively translated for their rapid degradation following the inhibition of DNA synthesis. We also demonstrate the requirement for translation using a mutant SLBP which is inactive in translation. Histone mRNAs are not rapidly degraded when DNA synthesis is inhibited or at the end of S phase in cells expressing this mutant SLBP. Replication-dependent histone mRNAs have very short 3' untranslated regions, with the stem-loop located 30 to 70 nucleotides downstream of the translation termination codon. We show here that the stability of histone mRNAs can be modified by altering the position of the stem-loop, thereby changing the distance from the translation termination codon.  相似文献   

11.
12.
RNA isolated from Urechis caupo mature oocytes and embryos was analyzed for the presence of histone messenger RNAs (mRNAs) by in vitro translation and by filter blot hybridization to determine the contribution of maternal and newly transcribed histone mRNAs to the pattern of histone synthesis during early development. Histone mRNAs were not detected in mature oocyte RNA which suggests that relatively few if any maternal histone mRNAs are sequestered in the mature oocytes. Histone mRNAs were detected in cleavage-stage RNA and increased in amount from midcleavage through late gastrula stages. The in vitro translation analysis also demonstrated that the amount of H1 histone mRNA in late cleavage- and early blastula-stage embryos exceeds that of the individual core histone mRNAs. The disproportionate accumulation of individual histone mRNAs correlates with the noncoordinate synthesis of H1 and core histones which occurs during early embryogenesis.  相似文献   

13.
Zygote arrest (Zar) proteins are crucial for early embryonic development, but their molecular mechanism of action is unknown. The Translational Control Sequence (TCS) in the 3' untranslated region (UTR) of the maternal mRNA, Wee1, mediates translational repression in immature Xenopus oocytes and translational activation in mature oocytes, but the protein that binds to the TCS and mediates translational control is not known. Here we show that Xenopus laevis Zar2 (encoded by zar2) binds to the TCS in maternal Wee1 mRNA and represses translation in immature oocytes. Using yeast 3 hybrid assays and electrophoretic mobility shift assays, Zar2 was shown to bind specifically to the TCS in the Wee1 3'UTR. RNA binding required the presence of Zn(2+) and conserved cysteines in the C-terminal domain, suggesting that Zar2 contains a zinc finger. Consistent with regulating maternal mRNAs, Zar2 was present throughout oogenesis, and endogenous Zar2 co-immunoprecipitated endogenous Wee1 mRNA from immature oocytes, demonstrating the physiological significance of the protein-RNA interaction. Interestingly, Zar2 levels decreased during oocyte maturation. Dual luciferase reporter tethered assays showed that Zar2 repressed translation in immature oocytes. Translational repression was relieved during oocyte maturation and this coincided with degradation of Zar2 during maturation. This is the first report of a molecular function of zygote arrest proteins. These data show that Zar2 contains a zinc finger and is a trans-acting factor for the TCS in maternal mRNAs in immature Xenopus oocytes.  相似文献   

14.
A Barkoff  S Ballantyne    M Wickens 《The EMBO journal》1998,17(11):3168-3175
Cytoplasmic polyadenylation of specific mRNAs commonly is correlated with their translational activation during development. Here, we focus on links between cytoplasmic polyadenylation, translational activation and the control of meiotic maturation in Xenopus oocytes. We manipulate endogenous c-mos mRNA, which encodes a protein kinase that regulates meiotic maturation. We determined that translational activation of endogenous c-mos mRNA requires a long poly(A) tail per se, rather than the process of polyadenylation. For this, we injected 'prosthetic' poly(A)_synthetic poly(A) tails designed to attach by base pairing to endogenous c-mos mRNA that has had its own polyadenylation signals removed. This prosthetic poly(A) tail activates c-mos translation and restores meiotic maturation in response to progesterone. Thus the role of polyadenylation in activating c-mos mRNA differs from its role in activating certain other mRNAs, for which the act of polyadenylation is required. In the absence of progesterone, prosthetic poly(A) does not stimulate c-mos expression, implying that progesterone acts at additional steps to elevate c-Mos protein. By using a general inhibitor of polyadenylation together with prosthetic poly(A), we demonstrate that these additional steps include polyadenylation of at least one other mRNA, in addition to that of c-mos mRNA. These other mRNAs, encoding regulators of meiotic maturation, act upstream of c-Mos in the meiotic maturation pathway.  相似文献   

15.
Metazoan replication-dependent histone mRNAs do not have a poly(A) tail but end instead in a conserved stem-loop structure. Efficient translation of these mRNAs is dependent on the stem-loop binding protein (SLBP). Here we explore the mechanism by which SLBP stimulates translation in vertebrate cells, using the tethered function assay and analyzing protein-protein interactions. We show for the first time that translational stimulation by SLBP increases during oocyte maturation and that SLBP stimulates translation at the level of initiation. We demonstrate that SLBP can interact directly with subunit h of eIF3 and with Paip1; however, neither of these interactions is sufficient to mediate its effects on translation. We find that Xenopus SLBP1 functions primarily at an early stage in the cap-dependent initiation pathway, targeting small ribosomal subunit recruitment. Analysis of IRES-driven translation in Xenopus oocytes suggests that SLBP activity requires eIF4E. We propose a model in which a novel factor contacts eIF4E bound to the 5' cap and SLBP bound to the 3' end simultaneously, mediating formation of an alternative end-to-end complex.  相似文献   

16.
17.
Histone biogenesis is tightly controlled at multiple steps to maintain the balance between the amounts of DNA and histone protein during the cell cycle. In particular, translation and degradation of replication-dependent histone mRNAs are coordinately regulated. However, the underlying molecular mechanisms remain elusive. Here, we investigate remodeling of stem-loop binding protein (SLBP)-containing histone mRNPs occurring during the switch from the actively translating mode to the degradation mode. The interaction between a CBP80/20-dependent translation initiation factor (CTIF) and SLBP, which is important for efficient histone mRNA translation, is disrupted upon the inhibition of DNA replication or at the end of S phase. This disruption is mediated by competition between CTIF and UPF1 for SLBP binding. Further characterizations reveal hyperphosphorylation of UPF1 by activated ATR and DNA-dependent protein kinase upon the inhibition of DNA replication interacts with SLBP more strongly, promoting the release of CTIF and eIF3 from SLBP-containing histone mRNP. In addition, hyperphosphorylated UPF1 recruits PNRC2 and SMG5, triggering decapping followed by 5′-to-3′ degradation of histone mRNAs. The collective observations suggest that both inhibition of translation and recruitment of mRNA degradation machinery during histone mRNA degradation are tightly coupled and coordinately regulated by UPF1 phosphorylation.  相似文献   

18.
The stem–loop binding protein (SLBP) binds the 3′ end of histone mRNA and is present both in nucleus, and in the cytoplasm on the polyribosomes. SLBP participates in the processing of the histone pre-mRNA and in translation of the mature message. Histone mRNAs are rapidly degraded when cells are treated with inhibitors of DNA replication and are stabilized by inhibitors of translation, resulting in an increase in histone mRNA levels. Here, we show that SLBP is a component of the histone messenger ribonucleoprotein particle (mRNP). Histone mRNA from polyribosomes is immunoprecipitated with anti-SLBP. Most of the SLBP in cycloheximide-treated cells is present on polyribosomes as a result of continued synthesis and transport of the histone mRNP to the cytoplasm. When cells are treated with inhibitors of DNA replication, histone mRNAs are rapidly degraded but SLBP levels remain constant and SLBP is relocalized to the nucleus. SLBP remains active both in RNA binding and histone pre-mRNA processing when DNA replication is inhibited.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号