首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arterial wall smooth muscle cells, originating from the inner layer (media) of pig aortas, were grown in culture. The synthesis and secretion of proteoglycans by these cells were investigated. These cells were incubated in the presence of [35S] sulfate or [14C] glucosamine and these precursors incorporation into glycosaminoglycans was followed.Proteoglycans synthesized by media cells exhibit different glycosaminoglycan distribution patterns according to their localization. The glycosaminoglycan components are largely confined to the medium (80 per cent) and exhibit a distribution pattern that ressembles closely that found in pig aorta tissue. In comparison with the extracellular and intracellular pools, the pericellular pool (trypsin released material) contains proportionally more heparan sulfate.Isotopic chase experiments demonstrated that glycosaminoglycans leave the intracellular and pericellular compartments with initial half-lives of 7 – 8 h and 13 – 14 h, respectively.About half of the labelled glycosaminoglycans was released into the medium, in an apparently undegraded form, while the rest was degraded.The production of proteoglycans is not affected by modifying the exogenous concentration of hyaluronic acid or chondroitin sulfate present in the culture medium. The synthesis of proteoglycans, but not their secretion is inhibited with cytochalasin-B, a microfilament modifying agent. The secretion of proteoglycans and also — in part — their synthesis is inhibited by antimicrotubular agents: colchicine and vinblastine, with observed intracellular accumulation of proteoglycans.These data suggest that, in arterial cells, the intracellular movement of proteoglycans during the secretory process is mediated by microtubular elements.In conclusion, our results provide evidence for the responsiveness of cultured mediacytes to antimicrotubular and antimicrofilamentar drugs, the utilization of which allows modification in the metabolism and secretion of arterial proteoglycans.  相似文献   

2.
The effect of insulin upon proteoglycan synthesis was studied in cultured smooth muscle cells from pig aorta blocked in the G0 phase by serum deprivation. Insulin enhanced [35S]sulfate incorporation into cell layer and medium-secreted proteoglycans. The increase in incorporation of the precursor was not due to a mitogenic response by smooth muscle cells to the hormone and the specific radioactivity of proteoglycans showed that the stimulation reflected a real increase in sulfated proteoglycan synthesis. Maximal stimulation was observed, for the cell layer as well as for the medium, 40 h after the addition of 1.7 x 10(-7) M insulin and reached respectively 65 and 53%. This stimulation was about 80 and 60% of the level achieved with 10% fetal calf serum for cell layer and medium-secreted proteoglycans, respectively. The half-maximal effect was attained, for both the cell layer and the medium, in the presence of 2.1 x 10(-9) M insulin. Proteoglycans secreted into the medium, in the presence of 1.7 x 10(-8) M insulin for 40 h, showed a higher proportion of complexes (24%) than those synthesized in control medium (11%) and at least 95% of the monomers from culture treated with insulin were characterized by a smaller hydrodynamic size than those synthesized by cells maintained in control medium. This decrease in the size of proteoglycans was partly due to a decrease in the size of their glycanic chains.  相似文献   

3.
Confluent monolayers of bovine aortic endothelial cells were examined 2-72 h after exposure to 0.5-5.0 Gy of 60Co gamma-rays. Accumulation of prostacyclin [PGI2, measured as 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha)] in the culture media and PGI2 production stimulated by exogenous arachidonate were correlated with cell detachment and release of lactate dehydrogenase (LDH) activity. Platelet adherence to irradiated and control monolayers also was studied. There were simultaneous time- and dose-dependent increases in cell detachment and in the titers of 6-keto-PGF1 alpha and LDH activity in the culture medium. These changes were evident between 4 and 8 h after 5 Gy or at 24 h after 0.5 Gy. Four hours after 5 Gy, both adherent and detached endothelial cells showed a twofold increase in PGI2 production during a 15-min incubation with arachidonate (10 microM). However, by 72 h this increase was less significant. The accumulation of 6-keto-PGF1 alpha appeared to be related to cell destruction, but radiation also stimulated PGI2 synthesis independent of cell detachment. There was an increased platelet interaction with irradiated monolayers, as a result of platelet adherence to subendothelial matrix exposed after cell detachment. However, irradiation did not alter the nonadherent property of the endothelial cell surface toward platelets.  相似文献   

4.
"Fibroblast-like" cells from the intimal layer of bovine aorta were grown in culture. The formation, composition, molecular weight and turnover rate of different pools of glycosaminoglycans were investigated in cultures incubated in the presence [35S]sulfate or [14C]glucosamine. The newly synthesized glycosaminoglycans are distributed into an extracellular pool (37 - 58%), a cell-membrane associated or pericellular pool (23 - 33%), and an intracellular pool (19 - 30%), each pool exhibiting a characteristic distribution pattern of chondroitin sulfate, dermatan sulfate, heparan sulfate and hyaluronate. The distribution pattern of the extracellular glycosaminoglycans resembles closely that found in bovine aorta. A small subfraction of the pericellular pool - tentatively named "undercellular" pool--has been characterized by its high heparan sulfate content. The intracellular and pericellular [35S]glycosaminoglycan pools reach a constant radioactivity after 8-12 h and 24 h, respectively, whereas the extracellular [35S]glycosaminoglycans are secreted into the medium at a linear rate over a period of at least 6 days. The intracellular glycosaminoglycans are mainly in the process of degradation, as indicated by their low molecular weight and by their half-life of 7 h, but intracellular dermatan sulfate is degraded more rapidly (half-life 4-5 h) than intracellular chondroitin sulfate and heparan sulfate (half-life 7-8 h). Glycosaminoglycans leave the pericellular pool with a half-life of 12-14 h by 2 different routes: about 60% disappear as macromolecules into the culture medium, and the remainder is pinocytosed and degraded to a large extent. Extracellular and at least a part of the pericellular glycosaminoglycans are proteoglycans. Even under dissociative conditions (4M guanidinium chloride) their hydrodynamic volume is sufficient for partial exclusion from Sepharose 4B gel. The existence of topographically distinct glycosaminoglycan pools with varying metabolic characteristics and differing accessibility for degradation requiresa reconsideration and a more reserved interpretation of results concerning the turnover rates of glycosaminoglycans as determined in arterial tissue.  相似文献   

5.
6.
Prostaglandin synthesis in aortic smooth muscle cells originating from healthy an atherosclerotic rabbits was studied by incubating [14C]arachidonic acid with intact confluent cells and cell homogenates. In spite of a reduced 6-keto prostaglandin F1 alpha formation, no potentiating effect on the prostaglandin E2 generation occurred. Indeed, both cyclooxygenase and prostaglandin I2 synthetase activities appear to be reduced. These results suggest that an impaired arachidonic acid utilisation in aortic smooth muscle cells may be involved in the course of the atherosclerotic process.  相似文献   

7.
Cultured smooth muscle cells from pig aorta arrested in G0 phase by serum deprivation were stimulated to proliferate by replacing the medium with one containing 10% serum. Studies in DNA replication and proliferation of cells showed a relatively good synchrony: 90% of the cells were in G1 phase for 16 h after addition of serum; they entered S phase between 18 and 24 h, completed S phase and traversed G2 phase between 24 and 30–32 h; 75% of these cells multiplied after 30–32 h and the remainder were blocked at the end of G2 phase. The synthesis and secretion of sulfated proteoglycans were examined throughout a full cell cycle using metabolic labelling with [35S]sulfate. Smooth muscle cells in G1 or G2 phase synthesized and secreted sulfated proteoglycans with a possible pause at the end of the G2 phase but at the beginning of the S phase and during mitosis the incorporation of [35S]sulfate into these macromolecules stopped entirely. Structural characteristics of sulfated proteoglycans secreted into the medium during G1 phase and an entire cell cycle were investigated. The proportion of proteoglycan complexes and the relative hydrodynamic size of monomers and of constituent subunits of complexes were determined after chromatography on Sepharose CL-2B and CL-6B columns run under both associative and dissociative conditions. No significant differences were observed for the periods of the cell cycle that were studied:
1. 1. [35S]Proteoglycan complexes represented at the end of G1 phase and of the cell cycle respectively 19 and 16% of the total [35S]proteoglycans secreted into the medium.
2. 2. More than 90% of the subunits, obtained after dissociation of complexes, were characterized by a similar kav after chromatography on Sepharose CL-2B columns eluted under dissociative conditions (kav 0.68 at the end of G1 phase and 0.65 at the end of full cell cycle).
3. 3. About 95% of monomers synthesized at the two stages of the cell cycle were eluted at kav 0.25 after chromatography on Sepharose CL-6B column run under associative conditions and were characterized by a similar glycosaminoglycan distribution. These results suggest that smooth muscle cells in culture liberate similar populations of proteoglycans into the medium during the G1 and G2 phases.
  相似文献   

8.
We have previously shown (Berrou et al., J. Cell. Phys., 137:430-438, 1988) that porcine endothelial cell-conditioned medium (ECCM) stimulates proteoglycan synthesis by smooth muscle cells from pig aorta. ECCM stimulation requires protein cores for glycosaminoglycan chain initiation and is accompanied by an increase in the hydrodynamic size of proteoglycans secreted into the medium. This work investigates the mechanisms involved in the ECCM effect. 1) Control and ECCM stimulated proteoglycan synthesis (measured by a 20 min [35S]-sulfate labeling assay) was not inhibited by cycloheximide, indicating that the proteoglycans were composed of preexisting protein cores and that ECCM stimulates glycosylation of these protein cores. 2) Whereas ECCM stimulation of [35S]-methionine incorporation into secreted proteins only occurred after a 6 h incubation, the increase in [35S] methionine-labeled proteoglycans was observed after 1 h, and the increase was stable for at least 16 h. 3) As analysed by electrophoresis in SDS, chondroitinase digestion generated from [14C] serine-labeled proteoglycans 7 protein cores of high apparent molecular mass (550-200 kDa) and one of 47 kDa. The two protein cores of highest apparent molecular masses (550 and 460 kDa), but not the 47 kDa protein cores, showed increased [14C]-serine incorporation in response to ECCM (51%, as measured by Sepharose CL-6B chromatography). 4) Finally, incorporation of [35S]-sulfate into chondroitinase-generated glycosaminoglycan linkage stubs on protein cores was determined by Sepharose CL-6B chromatography: ECCM did not modify the ratio [35S]/[14C] in stimulated protein cores, indicating that ECCM did not affect the number of glycosaminoglycan chains. The results of these studies reveal that 1) endothelial cells secrete factor(s) that preferentially stimulate synthesis of the largest smooth muscle cell proteoglycans without structural modifications and 2) the stimulation proceeds via increased glycosylation of protein core through enhancement of xylosylated protein core, followed by enhanced protein synthesis.  相似文献   

9.
Several di-cationic amphiphilic compounds are known to cause lysosomal accumulation of sulfated glycosaminoglycans (sGAG) in intact rats and in cultured rat fibroblasts. The purpose of the present investigation was to examine whether this drug side effect also occurs in bovine and human cells. Cultured fibroblasts from both species were exposed to tilorone (3 μM and 5 μM) for 72 h; lysosomal sGAG-storage was demonstrated by cytochemical staining with cuprolinic blue and by measuring the intracellular accumulation of [35S]-GAG. The cytological alterations as well as the radiochemical results in both species were in good agreement with previous data from rat fibroblasts. The present findings indicate that the drug-induced lysosomal storage of sGAG is a species-independent phenomenon. Thus, cultured bovine and human fibroblasts are a suitable model for further studies concerning the as yet unknown molecular mechanisms underlying this adverse drug action.  相似文献   

10.
Angiotensin peptides (AI, AII, AIII) increased the rate of Na+ accumulation by smooth muscle cells (SMC) cultured from rat aorta. The stimulatory effect of AII on Na+ uptake was observed when Na+ exodus via the Na+/K+ pump was blocked either by ouabain or by the removal of extracellular K+. AII was at least ten times more potent than AIII and about 100 times more potent than AI in stimulating Na+ uptake. Saralasin had little effect on Na+ uptake by itself but almost completely blocked the increase caused by AII. The stimulation of net Na+ entry by AI, but not AII, was prevented by protease inhibitors. The stimulation of Na+ uptake was almost completely blocked by amiloride. Tetrodotoxin, which prevented veratridine from increasing Na+ uptake, had no effect on the response to AII. Angiotensin increased the rate of ouabain-sensitive 86Rb+ uptake (Na+/K+ pump activity) but had no effect on ouabain-sensitive ATPase activity in frozen-thawed SMC or in microsomal membranes isolated from cultured SMC. The stimulation of ouabain-sensitive 86Rb+ uptake by AII was blocked by saralasin. Omitting Na+ from the external medium prevented AII from increasing 86Rb+ uptake. AII had no effect on cell volume or cyclic AMP levels in the cultured SMC. These results suggest that angiotensin peptides activate an amiloride-sensitive Na+ transporter which supplies the Na+/K+ pump with more Na+, its rate-limiting substrate.  相似文献   

11.
A turnover of cytoplasmic triacylglycerol was studied in cultured rat, rabbit, and bovine aortic smooth muscle cells. Cytoplasmic triacylglycerol was labeled with [3H]glycerol in the presence of oleic acid in the medium and its loss from the cell was studied in the presence of carrier glycerol. Multiple additions of Isuprel or dibutyryl cyclic AMP during the chase period did not enhance the loss of labeled triacylglycerol. The rate of hydrolysis of cellular triacylglycerol was unchanged in the absence or in the presence of 100 microM chloroquine. Modulation of cellular cholesterol content by addition of low density lipoprotein or high density apolipoprotein--sphingomyelin liposomes did not affect the residence time of the cellular triacylglycerol. We conclude that cytoplasmic triacylglycerol in cultured aortic smooth muscle cells is metabolized by an extralysosomal enzyme which is neither catecholamine responsive nor affected by modulation of cellular cholesterol.  相似文献   

12.
Nonmuscle and smooth muscle myosin isoforms in bovine endothelial cells   总被引:3,自引:0,他引:3  
A panel of monoclonal antibodies, specific for human platelet (NM-A9, NM-F6, and NM-G2) and for bovine smooth muscle (SM-E7) myosin heavy chains (MHC), were used to study the composition and the distribution of myosin isoforms in bovine endothelial cells (EC), in vivo and in vitro. Using indirect and double immunofluorescence techniques, we have found that in the intact aortic endothelium there is expression of nonmuscle MHC (NM-MHC), exclusively. By contrast, hepatic sinusoidal endothelium as well as cultured bovine aortic EC (BAEC) in the subconfluent phase of growth show coexistence of NM- and smooth muscle MHC (SM-MHC) isoforms. SM myosin immunoreactivity disappears when cultured BAEC become confluent. In this phase of cell growth, NM-MHC isoforms are localized differently within the cells, i.e., in the cytoplasm around the nucleus or in the cortical, submembranous region of EC cytoplasm. A third type of intracellular distribution of NM-MHC immunoreactivity was evident in the cell periphery of binucleated, confluent BAEC. These data indicate that (1) several myosin isoforms are differently distributed in bovine endothelia; and (2) SM myosin expression and the specific subcellular localization of NM myosin isoforms within EC might be regulated by cell-cell interactions.  相似文献   

13.
Cultured bovine aortic smooth muscle and endothelial cells each display distinct specific binding sites for radiolabeled atrial natriuretic peptide (ANF). 125I-pro-rANF (103-126)I binding to both cell types is rapid, reversible and competitive. Scatchard plots of the binding data show Bmax values of 5.5 and 0.1 - 2.1 X 10(5) sites/cell and Kd values of 2.1 and 0.3 nM for smooth muscle and endothelial cells, respectively. In addition, ANF elevates levels of cGMP substantially in both cell types at concentrations of ANF close to its Kd and Ki for binding. Sodium nitroprusside, however, has essentially no effect on cGMP levels in either cell type. These results show that distinct functionally active receptor sites for ANF exist on both vascular smooth muscle and endothelial cells.  相似文献   

14.
Sulphated glycosaminoglycans have been analysed in cloned bovine aortic endothelial cells cultured on collagen gels after incubation with [3H]glucosamine and Na2(35)SO4. Radioactive products were analysed in the culture medium, in sequential collagenase and trypsin extracts of the cell monolayer and the associated extracellular matrix, and in the remaining viable cells. Heparan sulphate and chondroitin sulphate were found in each compartment: the heparan sulphate had a low degree of sulphation (approximately 0.4 N-sulphate and 0.2 O-sulphate groups per disaccharide unit on average). In the nitrous acid scission products of heparan sulphate, O-sulphated substituents were confined to disaccharide and tetrasaccharide fragments, indicating that local regions of the chain (which might be susceptible to excission by the platelet endoglycosidase) are highly sulphated. Only minor structural differences in heparan sulphate were observed between the various compartments. In contrast the chondroitin sulphate found in the collagenase extract had a higher iduronic acid content than corresponding material in the trypsin extract and the culture medium, indicating that collagenase and trypsin may extract glycosaminoglycans from different regions of the extracellular and pericellular matrix.  相似文献   

15.
Low density lipoprotein (LDL) metabolism in bovine arterial smooth muscle cells (SMC) was increased upon exposure to endothelial cell conditioned medium. The mass of LDL degraded in the SMC lysosomal system was increased, and kinetic analysis demonstrated that the rate constant for LDL degradation arising from receptor-mediated endocytosis was unchanged. The effects on LDL metabolism were accompanied by stimulation of DNA synthesis in the SMC. These results are in contrast to reports concerning a porcine endothelial cell system where LDL degradation was inhibited by endothelial-derived NH4+. We show that bovine endothelial cells produce insufficient NH4+ to inhibit LDL degradation and conclude that endothelial cell-derived NH4+ is unlikely to be a factor affecting LDL metabolism in the bovine vascular cell culture system.  相似文献   

16.
Several di-cationic amphiphilic compounds are known to cause lysosomal accumulation of sulfated glycosaminoglycans (sGAG) in intact rats and in cultured rat fibroblasts. The purpose of the present investigation was to examine whether this drug side effect also occurs in bovine and human cells. Cultured fibroblasts from both species were exposed to tilorone (3 microM and 5 microM) for 72 h; lysosomal sGAG-storage was demonstrated by cytochemical staining with cuprolinic blue and by measuring the intracellular accumulation of [35S]-GAG. The cytological alterations as well as the radiochemical results in both species were in good agreement with previous data from rat fibroblasts. The present findings indicate that the drug-induced lysosomal storage of sGAG is a species-independent phenomenon. Thus, cultured bovine and human fibroblasts are a suitable model for further studies concerning the as yet unknown molecular mechanisms underlying this adverse drug action.  相似文献   

17.
18.
An ATP diphosphohydrolase (EC 3.6.1.5) is an enzyme hydrolyzing pyrophosphate bonds in nucleoside di- and triphosphates with broad substrate specificity in the presence of divalent cations. The ATPase and ADPase activities in the enzyme purified to homogeneity from bovine aortic vessel wall were insensitive to oligomycin, ouabain, and various protease treatments, and sensitive to azide and Ap5A. Bovine aorta endothelial and smooth muscle cells were cultured separately to characterize the ectonucleotidase activities. The activities were dependent on the addition of divalent cations and had broad substrate specificity. The ecto-ATPase and -ADPase activities were insensitive to oligomycin, ouabain, and protease treatments, and sensitive to azide and Ap5A. No enzyme degrading only ADP was found in the aortic vessel wall. Moreover, antiserum raised against purified ATP diphosphohydrolase inhibited the ecto-ATPase and -ADPase activities. These results indicated that ecto-ATPase and ecto-ADPase are not separate enzymes but are expressed by one enzyme, ATP diphosphohydrolase.  相似文献   

19.
1. Properties of the voltage-dependent anion-selective channel in cultured smooth muscle cells of the rat aorta were studied using the patch-clamp technique. 2. The channel had a single channel conductance of 346 +/- 4 pS (n = 43, mean +/- SEM) with symmetrical 142 mM-Cl- solution in inside-out patch configurations. 3. The channel was activated spontaneously at a potential range -20 approximately +20 mV and inactivated more rapidly with increases to more positive or negative potentials. 4. The channel was selective for anions and the permeability ratio for monovalent anion was Br-:Cl-:HCOO-:CH3COO-:propionate-:aspartate- = 1.1:1:0.7:0.4: less than 0.02: less than 0.02. 5. The openings of the channels were observed more frequently in inside-out membrane patches than in cell-attached ones, and were independent of intracellular free Ca concentrations. 6. The density of this channel was estimated to be 1.3/micron2. 7. Physiological roles of the channel were discussed.  相似文献   

20.
The effect of porcine endothelial-cell-conditioned medium on proteoglycan synthesis by pig aorta smooth muscle cells was studied under serum-free conditions. Maximal stimulation of [35S]-sulfate incorporation (50%) into medium-secreted and cell layer proteoglycans was observed after 20 min and 4 h incubation, respectively. This stimulation can be explained neither by increased secretion nor by oversulfation of medium-secreted [35S]-labeled proteoglycans. Those [35S]-proteoglycans secreted (for 24 h) in the presence of endothelial cell-conditioned medium were characterized by a higher hydrodynamic size than those secreted in the presence of control medium, without modification of glycosaminoglycan chain length. Agreement between the stimulation of incorporation of [35S]-sulfate into glycanic chains (50.1%) and [14C]-serine residues associated with glycosaminoglycans (49.9%) involved an increase in the number of glycanic chains linked to protein cores. The lesser stimulation of [14C]-serine incorporation into secreted proteins (18%) suggested that stimulation of glycosaminoglycan synthesis was not the direct consequence of enhanced protein synthesis. Proteoglycan synthesis was studied in the presence of para-nitrophenyl-beta-D-xyloside. Fractionation of medium-secreted [35S]-proteoglycans and xyloside-initiated glycosaminoglycans revealed that stimulation of [35S]-glycosaminoglycan protein core acceptor for glycanic chain initiation. Our results suggest that the factor(s) secreted by endothelial cells are able to modify smooth muscle cell proteoglycan synthesis by stimulating the first step of protein core glycosylation. This stimulation was accompanied by an increase in proteoglycan hydrodynamic size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号