首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
Activation of the type-1 metabotropic glutamate receptor (mGluR1) signaling pathway in the cerebellum involves activation of phospholipase C (PLC) and protein kinase C (PKC) for the induction of cerebellar long term depression (LTD). The PLC and PKC isoforms that are involved in LTD remain unclear, however. One previous study found no change in LTD in PKCgamma-deficient mice, thus, in the present study, we examined cerebellar LTD in PLCbeta4-deficient mice. Immunohistochemical and Western blot analyses of cerebellum from wild-type mice revealed that PLCbeta1 was expressed weakly and uniformly, PLCbeta2 was not detected, PLCbeta3 was expressed predominantly in caudal cerebellum (lobes 7-10), and PLCbeta4 was expressed uniformly throughout. In PLCbeta4-deficient mice, expression of total PLCbeta, the mGluR1-mediated Ca(2+) response, and LTD induction were greatly reduced in rostral cerebellum (lobes 1-6). Furthermore, we used immunohistochemistry to localize PKCalpha, -betaI, -betaII, and -gamma in mouse cerebellar Purkinje cells during LTD induction. Both PKCalpha and PKCbetaI were found to be translocated to the plasmamembrane under these conditions. Taken together, these results suggest that mGluR1-mediated activation of PLCbeta4 in rostral cerebellar Purkinje cells induced LTD via PKCalpha and/or PKCbetaI.  相似文献   

2.
Jin Y  Kim SJ  Kim J  Worley PF  Linden DJ 《Neuron》2007,55(2):277-287
Glutamate produces both fast excitation through activation of ionotropic receptors and slower actions through metabotropic receptors (mGluRs). To date, ionotropic but not metabotropic neurotransmission has been shown to undergo long-term synaptic potentiation and depression. Burst stimulation of parallel fibers releases glutamate, which activates perisynaptic mGluR1 in the dendritic spines of cerebellar Purkinje cells. Here, we show that the mGluR1-dependent slow EPSC and its coincident Ca transient were selectively and persistently depressed by repeated climbing fiber-evoked depolarization of Purkinje cells in brain slices. LTD(mGluR1) was also observed when slow synaptic current was evoked by exogenous application of a group I mGluR agonist, implying a postsynaptic expression mechanism. Ca imaging further revealed that LTD(mGluR1) was expressed as coincident attenuation of both limbs of mGluR1 signaling: the slow EPSC and PLC/IP3-mediated dendritic Ca mobilization. Thus, different patterns of neural activity can evoke LTD of either fast ionotropic or slow mGluR1-mediated synaptic signaling.  相似文献   

3.
Safo PK  Regehr WG 《Neuron》2005,48(4):647-659
The long-term depression (LTD) of parallel fiber (PF) synapses onto Purkinje cells plays a central role in motor learning. Endocannabinoid release and LTD induction both depend upon activation of the metabotropic glutamate receptor mGluR1, require postsynaptic calcium increases, are synapse specific, and have a similar dependence on the associative activation of PF and climbing fiber synapses. These similarities suggest that endocannabinoid release could account for many features of cerebellar LTD. Here we show that LTD induction is blocked by a cannabinoid receptor (CB1R) antagonist, by inhibiting the synthesis of the endocannabinoid 2-arachidonyl glycerol (2-AG), and is absent in mice lacking the CB1R. Although CB1Rs are prominently expressed presynaptically at PF synapses, LTD is expressed postsynaptically. In contrast, a previously described transient form of inhibition mediated by endocannabinoids is expressed presynaptically. This indicates that Purkinje cells release 2-AG that activates CB1Rs to both transiently inhibit release and induce a postsynaptic form of LTD.  相似文献   

4.
Leitges M  Kovac J  Plomann M  Linden DJ 《Neuron》2004,44(4):585-594
Induction of cerebellar long-term depression (LTD) requires a postsynaptic cascade involving activation of mGluR1 and protein kinase C (PKC). Our understanding of this process has been limited by the fact that PKC is a large family of molecules, many isoforms of which are expressed in the relevant postsynaptic compartment, the cerebellar Purkinje cell. Here, we report that LTD is absent in Purkinje cells in which the alpha isoform of PKC has been reduced by targeted RNA interference or in cells derived from PKCalpha null mice. In both of these cases, LTD could be rescued by expression of PKCalpha but not other PKC isoforms. The special role of PKCalpha in cerebellar LTD is likely to derive from its unique PDZ ligand (QSAV). When this motif is mutated, PKCalpha no longer supports LTD. Conversely, when this PDZ ligand is inserted in a nonpermissive isoform, PKCgamma, it confers the capacity for LTD induction.  相似文献   

5.
Okubo Y  Kakizawa S  Hirose K  Iino M 《Neuron》2001,32(1):113-122
IP(3) signaling in Purkinje cells is involved in the regulation of cell functions including LTD. We have used a GFP-tagged pleckstrin homology domain to visualize IP(3) dynamics in Purkinje cells. Surprisingly, IP(3) production was observed in response not only to mGluR activation, but also to AMPA receptor activation in Purkinje cells in culture. AMPA-induced IP(3) production was mediated by depolarization-induced Ca(2+) influx because it was mimicked by depolarization and was blocked by inhibition of the P-type Ca(2+) channel. Furthermore, trains of complex spikes, elicited by climbing fiber stimulation (1 Hz), induced IP(3) production in Purkinje cells in cerebellar slices. These results revealed a novel IP(3) signaling pathway in Purkinje cells that can be elicited by synaptic inputs from climbing fibers.  相似文献   

6.
Signal processing in cerebellar Purkinje cells   总被引:4,自引:0,他引:4  
Mechanisms and functional implications of signal processing in cerebellar Purkinje cells have been the subject of recent extensive investigations. Complex patterns of their planar dendritic arbor are analysed with computer-aided reconstructions and also topological analyses. Local computation may occur in Purkinje cell dendrites, but its extent is not clear at present. Synaptic transmission and electrical and ionic activity of Purkinje cell membrane have been revealed in detail, and related biochemical processes are being uncovered. A special type of synaptic plasticity is present in Purkinje cell dendrites; long-term depression (LTD) occurs in parallel fiber-Purkinje cell transmission when the parallel fibers are activated with a climbing fiber innervating that Purkinje cell. Evidence indicates that synaptic plasticity in Purkinje cells is due to sustained desensitization of Purkinje dendritic receptors to glutamate, which is a putative neurotransmitter of parallel fibers, and that conjunctive activation of a climbing fiber and parallel fibers leads to desensitization through enhanced intradendritic calcium concentration. A microzone of the cerebellar cortex is connected to an extracerebellar neural system through the inhibitory projection of Purkinje cells to a cerebellar or vestibular nuclear cell group. Climbing fiber afferents convey signals representing control errors in the performance of a neural system, and evoke complex spikes in Purkinje cells of the microzone connected to the neural system. Complex spikes would modify the performance of the microzone by producing LTD in parallel fiber-Purkinje cell synapses, and consequently would improve the overall performance of the neural system. The primary function of the cerebellum thus appears to be endowing adaptability to numerous neural control systems in the brain and spinal cord through error-triggered reorganization of the cerebellar cortical circuitry.  相似文献   

7.
Voltage-dependent Ca(2+) channels play important roles in cerebellar functions including motor coordination and learning. Since abundant expression of Ca(V)2.3 Ca(2+) channel gene in the cerebellum was detected, we searched for possible deficits in the cerebellar functions in the Ca(V)2.3 mutant mice. Behavioral analysis detected in delayed motor learning in rotarod tests in mice heterozygous and homozygous for the Ca(V)2.3 gene disruption (Ca(V)2.3+/- and Ca(V)2.3-/-, respectively). Electrophysiological analysis of mutant mice revealed perplexing results: deficit in long-term depression (LTD) at the parallel fiber Purkinje cell synapse in Ca(V)2.3+/- mice but apparently normal LTD in Ca(V)2.3-/- mice. On the other hand, the number of spikes evoked by current injection in Purkinje cells under the current-clamp mode decreased in Ca(V)2.3 mutant mice in a gene dosage-dependent manner, suggesting that Ca(V)2.3 channel contributed to spike generation in Purkinje cells. Thus, Ca(V)2.3 channel seems to play some roles in cerebellar functions.  相似文献   

8.
The beta isoforms of phospholipase C (PLCbetas) are thought to mediate signals from metabotropic glutamate receptor subtype 1 (mGluR1) that is crucial for the modulation of synaptic transmission and plasticity. Among four PLCbeta isoforms, PLCbeta4 is one of the two major isoforms expressed in cerebellar Purkinje cells. The authors have studied the roles of PLCbeta4 by analyzing PLCbeta4 knockout mice, which are viable, but exhibit locomotor ataxia. Their cerebellar histology, parallel fiber synapse formation, and basic electrophysiology appear normal. However, developmental elimination of multiple climbing fiber innervation is clearly impaired in the rostral portion of the cerebellar vermis, where PLCbeta4 mRNA is predominantly expressed in the wild-type mice. In the adult, long-term depression is deficient at parallel fiber to Purkinje cell synapses in the rostral cerebellum of the PLCbeta4 knockout mice. The impairment of climbing fiber synapse elimination and the loss of long-term depression are similar to those seen in mice defective in mGluR1, Galphaq, or protein kinase C. Thus, the authors' results strongly suggest that PLCbeta4 is part of a signaling pathway, including the mGluR1, Galphaq and protein kinase C, which is crucial for both climbing fiber synapse elimination in the developing cerebellum and long-term depression induction in the mature cerebellum.  相似文献   

9.
Several metabotropic glutamate receptor (mGluR) subtypes have been identified in the cerebellar cortex that are targeted to different compartments in cerebellar cells. In this study, preembedding immunocytochemical methods for electron microscopy were used to investigate the subcellular distribution of the mGluR1b splice variant in the rat cerebellar cortex. Dendritic spines of Purkinje cells receiving parallel fiber synaptic terminals were immunoreactive for mGluR1b. With a preembedding immunogold method, approximately 25% of the mGluR1b immunolabeling was observed perisynaptically within 60 nm from the edge of the postsynaptic densities. Values of extrasynaptic gold particles beyond the first 60 nm were maintained at between 10 and 18% along the whole intracellular surface of the dendritic spine membranes of Purkinje cells. For comparison, the distribution of mGluR1a was studied. A predominant (approximately 37%) perisynaptic localization of mGluR1a was seen in dendritic spines of Purkinje cells, dropping the extrasynaptic labeling to 15% in the 60-120-nm bin from the edge of the postsynaptic specialization. Our results reveal that mGluR1b and mGluR1a are localized to the same subcellular compartments in Purkinje cells but that the densities of the perisynaptic and extrasynaptic pools were different for both isoforms. The compartmentalization of mGluR1b and mGluR1a might serve distinct requirements in cerebellar neurotransmission.  相似文献   

10.
Canonical transient receptor potential (TRPC) channels are widely expressed in the brain and play several roles in development and normal neuronal function. In the cerebellum, Purkinje cell TRPC3 channels underlie the slow excitatory postsynaptic potential observed after parallel fiber stimulation. In these cells TRPC3 channel opening requires stimulation of metabotropic glutamate receptor 1, activation of which can also lead to the induction of long term depression (LTD), which underlies cerebellar motor learning. LTD induction requires protein kinase C (PKC) and protein kinase G (PKG) activation, and although PKC phosphorylation targets are well established, virtually nothing is known about PKG targets in LTD. Because TRPC3 channels are inhibited after phosphorylation by PKC and PKG in expression systems, we examined whether native TRPC3 channels in Purkinje cells are a target for PKG or PKC, thereby contributing to cerebellar LTD. We find that in Purkinje cells, activation of TRPC3-dependent currents is not inhibited by conventional PKC or PKG to any significant extent and that inhibition of these kinases does not significantly impact on TRPC3-mediated currents either. Based on these and previous findings, we propose that TRPC3-dependent currents may differ significantly in their regulation from those overexpressed in expression systems.  相似文献   

11.
Hong S  Optican LM 《PloS one》2008,3(7):e2770
We develop a new model that explains how the cerebellum may generate the timing in classical delay eyeblink conditioning. Recent studies show that both Purkinje cells (PCs) and inhibitory interneurons (INs) have parallel signal processing streams with two time scales: an AMPA receptor-mediated fast process and a metabotropic glutamate receptor (mGluR)-mediated slow process. Moreover, one consistent finding is an increased excitability of PC dendrites (in Larsell's lobule HVI) in animals when they acquire the classical delay eyeblink conditioning naturally, in contrast to in vitro studies, where learning involves long-term depression (LTD). Our model proposes that the delayed response comes from the slow dynamics of mGluR-mediated IP3 activation, and the ensuing calcium concentration change, and not from LTP/LTD. The conditioned stimulus (tone), arriving on the parallel fibers, triggers this slow activation in INs and PC spines. These excitatory (from PC spines) and inhibitory (from INs) signals then interact at the PC dendrites to generate variable waveforms of PC activation. When the unconditioned stimulus (puff), arriving on the climbing fibers, is coupled frequently with this slow activation the waveform is amplified (due to an increased excitability) and leads to a timed pause in the PC population. The disinhibition of deep cerebellar nuclei by this timed pause causes the delayed conditioned response. This suggested PC-IN interaction emphasizes a richer role of the INs in learning and also conforms to the recent evidence that mGluR in the cerebellar cortex may participate in slow motor execution. We show that the suggested mechanism can endow the cerebellar cortex with the versatility to learn almost any temporal pattern, in addition to those that arise in classical conditioning.  相似文献   

12.
Functional crosstalk between cell-surface and intracellular ion channels plays important roles in excitable cells and is structurally supported by junctophilins (JPs) in muscle cells. Here, we report a novel form of channel crosstalk in cerebellar Purkinje cells (PCs). The generation of slow afterhyperpolarization (sAHP) following complex spikes in PCs required ryanodine receptor (RyR)-mediated Ca(2+)-induced Ca(2+) release and the subsequent opening of small-conductance Ca(2+)-activated K(+) (SK) channels in somatodendritic regions. Despite the normal expression levels of these channels, sAHP was abolished in PCs from mutant mice lacking neural JP subtypes (JP-DKO), and this defect was restored by exogenously expressing JPs or enhancing SK channel activation. The stimulation paradigm for inducing long-term depression (LTD) at parallel fiber-PC synapses adversely established long-term potentiation in the JP-DKO cerebellum, primarily due to the sAHP deficiency. Furthermore, JP-DKO mice exhibited impairments of motor coordination and learning, although normal cerebellar histology was retained. Therefore, JPs support the Ca(2+)-mediated communication between voltage-gated Ca(2+) channels, RyRs and SK channels, which modulates the excitability of PCs and is fundamental to cerebellar LTD and motor functions.  相似文献   

13.
Development and evolution of cerebellar neural circuits   总被引:1,自引:0,他引:1  
The cerebellum controls smooth and skillful movements and it is also involved in higher cognitive and emotional functions. The cerebellum is derived from the dorsal part of the anterior hindbrain and contains two groups of cerebellar neurons: glutamatergic and gamma-aminobutyric acid (GABA)ergic neurons. Purkinje cells are GABAergic and granule cells are glutamatergic. Granule and Purkinje cells receive input from outside of the cerebellum from mossy and climbing fibers. Genetic analysis of mice and zebrafish has revealed genetic cascades that control the development of the cerebellum and cerebellar neural circuits. During early neurogenesis, rostrocaudal patterning by intrinsic and extrinsic factors, such as Otx2, Gbx2 and Fgf8, plays an important role in the positioning and formation of the cerebellar primordium. The cerebellar glutamatergic neurons are derived from progenitors in the cerebellar rhombic lip, which express the proneural gene Atoh1. The GABAergic neurons are derived from progenitors in the ventricular zone, which express the proneural gene Ptf1a. The mossy and climbing fiber neurons originate from progenitors in the hindbrain rhombic lip that express Atoh1 or Ptf1a. Purkinje cells exhibit mediolateral compartmentalization determined on the birthdate of Purkinje cells, and linked to the precise neural circuitry formation. Recent studies have shown that anatomy and development of the cerebellum is conserved between mammals and bony fish (teleost species). In this review, we describe the development of cerebellar neurons and neural circuitry, and discuss their evolution by comparing developmental processes of mammalian and teleost cerebellum.  相似文献   

14.
Metabotropic glutamate receptors (mGluR) play a role in synaptic transmission, neuronal modulation and plasticity but their action in epileptic activity is still controversial. On the other hand adenosine acts as a neuromodulator with endogenous anticonvulsive properties. Since cerebellum from epileptic patients has shown neuronal damage, sometimes associated with Purkinje cells loss, we have explored the effect of repetitive seizures on two types of mGluR in the cerebellum. Seizures were induced by the convulsant drug 3-mercaptopropionic acid (MP) and the effect of the adenosine analogue cyclopentyladenosine (CPA) alone or before MP administration (CPA+MP) were also evaluated. The expression of the receptors subtypes 2/3 (mGluR2/3) and 4a (mGluR4a) was assessed by immunocitochemistry. Granular cell layer was labeled with mGluR2/3 antibody and increased immunoreactivity was observed after MP (60%), CPA (53%) and CPA + MP (85%) treatments. Control cerebellum slices showed mGluR4a reactivity around Purkinje cells, while MP, CPA and CPA+MP treatment decreased this immunostaining. Repetitive administration of MP and CPA induces an increased cerebellar mGluR2/3 and a decreased mGluR4a immunostaining, suggesting a distinct participation of both receptors that may be related to the type of cell involved. A protective action and /or an apoptotic effect may not be discarded. CPA repetitive administration although increase seizure latency, cannot prevent seizure activity.  相似文献   

15.
Maejima T  Hashimoto K  Yoshida T  Aiba A  Kano M 《Neuron》2001,31(3):463-475
We report a type of synaptic modulation that involves retrograde signaling from postsynaptic metabotropic glutamate receptors (mGluRs) to presynaptic cannabinoid receptors. Activation of mGluR subtype 1 (mGluR1) expressed in cerebellar Purkinje cells (PCs) reduced neurotransmitter release from excitatory climbing fibers. This required activation of G proteins but not Ca2+ elevation in postsynaptic PCs. This effect was occluded by a cannabinoid agonist and totally abolished by cannabinoid antagonists. Depolarization-induced Ca2+ transients in PCs also caused cannabinoid receptor-mediated presynaptic inhibition. Thus, endocannabinoid production in PCs can be initiated by two distinct stimuli. Activation of mGluR1 by repetitive stimulation of parallel fibers, the other excitatory input to PCs, caused transient cannabinoid receptor-mediated depression of climbing fiber input. Our data highlight a signaling mechanism whereby activation of postsynaptic mGluR retrogradely influences presynaptic functions via endocannabinoid system.  相似文献   

16.
In cerebellar slices, the lowering of oxygen availability, obtained by bubbling N(2) in the medium, reduced the incorporation of radioactive serine into phosphatidylserine (PtdSer). CPCCOEt, an antagonist of metabotropic glutamate receptors type 1 (mGluR1) counteracted the effect, whereas antagonists of NMDA or AMPA receptors were ineffective. In oxygenated slices, agonists of Group I mGluRs, which include mGluR1, inhibited PtdSer synthesis. This effect was also counteracted by CPCCOEt. These findings indicate that glutamate inhibits PtdSer synthesis by acting on mGluR1. This could be important in relation to the known release of glutamate in hypoxia-ischaemia conditions. In cerebellar Purkinje cells, mGluR1 are involved in the generation of mGluR-EPSP evoked by parallel fibre stimulation. The administration of l-serine to cerebellar slices reduced in a dose-dependent manner the mGluR-EPSP evoked by parallel fibre stimulation. The effect was mostly due to the increased synthesis of PtdSer. Thus inhibition of PtdSer synthesis, mediated by mGluR1, may participate in the generation of mGluR-EPSP.  相似文献   

17.
The expression of follicle-stimulating hormone (FSH) and its receptor in extrapituitary and non-HPG axis tissues has been demonstrated and their non-reproductive functions in these tissues have been found. However, there have been no reports concerning the expression and function of FSH and its receptor in the cerebellum. In our study, immunofluorescence staining and in situ hybridization were used to detect the expression of FSH, double-labeled immunofluorescence staining was used to detect co-localization of FSH and its receptor and co-localization of FSH and gonadotropin-releasing hormone (GnRH) receptor in the rat cerebellar cortex. Results showed that some cells of the Purkinje cell layer, granular layer, and molecular layer of the cerebellar cortex showed both FSH immunoreactivity and FSH mRNA positive signals; not only for FSH and FSH receptor, but also for FSH and GnRH receptor co-localized in some cells throughout the Purkinje cell layer, granular layer, and molecular layer of the cerebellar cortex. These suggested that rat cerebellum could express FSH; cerebellum is a target tissue of FSH; FSH may exert certain functions through FSH receptor in a paracrine or autocrine manner; GnRH may regulate FSH positive cells through GnRH receptor in the cerebellum. Our study provides morphological evidence for further functional research on FSH and related hormones in the cerebellum.  相似文献   

18.
The eight pre- or/and post-synaptic metabotropic glutamatergic receptors (mGluRs) modulate rapid excitatory transmission sustained by ionotropic receptors. They are classified in three families according to their percentage of sequence identity and their pharmacological properties. mGluR4 belongs to group III and is mainly localized presynaptically. Activation of group III mGluRs leads to depression of excitatory transmission, a process that is exclusively provided by mGluR4 at parallel fiber-Purkinje cell synapse in rodent cerebellum. This function relies at least partly on an inhibition of presynaptic calcium influx, which controls glutamate release. To improve the understanding of molecular mechanisms of the mGluR4 depressant effect, we decided to identify the proteins interacting with this receptor. Immunoprecipitations using anti-mGluR4 antibodies were performed with cerebellar extracts. 183 putative partners that co-immunoprecipitated with anti-mGluR4 antibodies were identified and classified according to their cellular functions. It appears that native mGluR4 interacts with several exocytosis proteins such as Munc18-1, synapsins, and syntaxin. In addition, native mGluR4 was retained on a Sepharose column covalently grafted with recombinant Munc18-1, and immunohistochemistry experiments showed that Munc18-1 and mGluR4 colocalized at plasma membrane in HEK293 cells, observations in favor of an interaction between the two proteins. Finally, affinity chromatography experiments using peptides corresponding to the cytoplasmic domains of mGluR4 confirmed the interaction observed between mGluR4 and a selection of exocytosis proteins, including Munc18-1. These results could give indications to explain how mGluR4 can modulate glutamate release at parallel fiber-Purkinje cell synapses in the cerebellum in addition to the inhibition of presynaptic calcium influx.  相似文献   

19.
The model of simultaneous interrelated modification in the efficacy of synaptic inputs to different neurons of the olivary-cerebellar network is developed. The model is based on the following features of the network: simultaneous activation of the input layer (granule) cells and the output layer (deep cerebellar nuclei) cells by mossy fibers; simultaneous activation of Purkinje cells and cerebellar cells of the input and output layers by climbing fibers and their collaterals; the existence of local feedback excitatory, inhibitory, and disinhibitory circuits. The rise (decrease) of posttetanic Ca2+ concentration in reference to the level produced by previous stimulation causes the decrease (increase) in cGMP-dependent protein kinase G activity, and increase (decrease) inprotein phosphatase 1 activity. Subsequent dephosphorylation (phosphorylation) of ionotropic receptors results in simultaneous LTD (LTP) of the excitatory input together with the LTP (LTD) of the inhibitory input to the same neuron. The character of interrelated modifications of synapses at different cerebellar levels strongly depends on the olivary cell activity. In the presence (absence) of the signal from the inferior olive LTD (LTP) of the output cerebellar signal can be induced.  相似文献   

20.
Activation of postsynaptic alpha-calcium/calmodulin-dependent protein kinase II (alphaCaMKII) by calcium influx is a prerequisite for the induction of long-term potentiation (LTP) at most excitatory synapses in the hippocampus and cortex. Here we show that postsynaptic LTP is unaffected at parallel fiber-Purkinje cell synapses in the cerebellum of alphaCaMKII(-/-) mice. In contrast, a long-term depression (LTD) protocol resulted in only transient depression in juvenile alphaCaMKII(-/-) mutants and in robust potentiation in adult mutants. This suggests that the function of alphaCaMKII in parallel fiber-Purkinje cell plasticity is opposite to its function at excitatory hippocampal and cortical synapses. Furthermore, alphaCaMKII(-/-) mice showed impaired gain-increase adaptation of both the vestibular ocular reflex and optokinetic reflex. Since Purkinje cells are the only cells in the cerebellum that express alphaCaMKII, our data suggest that an impairment of parallel fiber LTD, while leaving LTP intact, is sufficient to disrupt this form of cerebellar learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号