首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type I signal peptidase (SPase I) catalyzes the hydrolytic cleavage of the N-terminal signal peptide from translocated preproteins. SPase I belongs to a novel class of Ser proteases that utilize a Ser/Lys dyad catalytic mechanism instead of the classical Ser/His/Asp triad found in most Ser proteases. Recent X-ray crystallographic studies indicate that the backbone amide nitrogen of the catalytic Ser 90 and the hydroxyl side chain of Ser 88 might participate as H-bond donors in the transition-state oxyanion hole. In this work, contribution of the side-chain Ser 88 in Escherichia coli SPase I to the stabilization of the transition state was investigated through in vivo and in vitro characterizations of Ala-, Cys-, and Thr-substituted mutants. The S88T mutant maintains near-wild-type activity with the substrate pro-OmpA nuclease A. In contrast, substitution with Cys at position 88 results in more than a 740-fold reduction in activity (k(cat)) whereas S88A retains much less activity (>2440-fold decrease). Measurements of the kinetic constants of the individual mutant enzymes indicate that these decreases in activity are attributed mainly to decreases in k(cat) while effects on K(m) are minimal. Thermal inactivation and CD spectroscopic analyses indicate no global conformational perturbations of the Ser 88 mutants relative to the wild-type E. coli SPase I enzyme. These results provide strong evidence for the stabilization by Ser 88 of the oxyanion intermediate during catalysis by E. coli SPase I.  相似文献   

2.
Most receptor-like, transmembrane protein tyrosine phosphatases (PTPases), such as CD45 and the leukocyte common antigen-related (LAR) molecule, have two tandemly repeated PTPase domains in the cytoplasmic segment. The role of each PTPase domain in mediating PTPase activity remains unclear; however, it has been proposed that PTPase activity is associated with only the first of the two domains, PTPase domain 1, and the membrane-distal PTPase domain 2, which has no catalytic activity, would regulate substrate specificity. In this paper, we examine the function of each PTPase domain of LAR in vivo using a potential physiological substrate, namely insulin receptor, and LAR mutant proteins in which the conserved cysteine residue was changed to a serine residue in the active site of either or both PTPase domains. LAR associated with and preferentially dephosphorylated the insulin receptor that was tyrosine phosphorylated by insulin stimulation. Its association was mediated by PTPase domain 2, because the mutation of Cys-1813 to Ser in domain 2 resulted in weakening of the association. The Cys-1522 to Ser mutant protein, which is defective in the LAR PTPase domain 1 catalytic site, was tightly associated with tyrosine-phosphorylated insulin receptor, but failed to dephosphorylate it, indicating that LAR PTPase domain 1 is critical for dephosphorylation of tyrosine-phosphorylated insulin receptor. This hypothesis was further confirmed by using LAR mutants in which either PTPase domain 1 or domain 2 was deleted. Moreover, the association of the extracellular domains of both LAR and insulin receptor was supported by using the LAR mutant protein without the two PTPase domains. LAR was phosphorylated by insulin receptor tyrosine kinase and autodephosphorylated by the catalytic activity of the PTPase domain 1. These results indicate that each domain of LAR plays distinct functional roles through phosphorylation and dephosphorylation in vivo.  相似文献   

3.
Analysis of the genome sequence of Caulobacter crescentus predicts 67 TonB-dependent outer membrane proteins. To demonstrate that among them are proteins that transport nutrients other than chelated Fe(3+) and vitamin B(12)-the substrates hitherto known to be transported by TonB-dependent transporters-the outer membrane protein profile of cells grown on different substrates was determined by two-dimensional electrophoresis. Maltose induced the synthesis of a hitherto unknown 99.5-kDa protein, designated here as MalA, encoded by the cc2287 genomic locus. MalA mediated growth on maltodextrins and transported [(14)C]maltodextrins from [(14)C]maltose to [(14)C]maltopentaose. [(14)C]maltose transport showed biphasic kinetics, with a fast initial rate and a slower second rate. The initial transport had a K(d) of 0.2 microM, while the second transport had a K(d) of 5 microM. It is proposed that the fast rate reflects binding to MalA and the second rate reflects transport into the cells. Energy depletion of cells by 100 microM carbonyl cyanide 3-chlorophenylhydrazone abolished maltose binding and transport. Deletion of the malA gene diminished maltose transport to 1% of the wild-type malA strain and impaired transport of the larger maltodextrins. The malA mutant was unable to grow on maltodextrins larger than maltotetraose. Deletion of two C. crescentus genes homologous to the exbB exbD genes of Escherichia coli abolished [(14)C]maltodextrin binding and transport and growth on maltodextrins larger than maltotetraose. These mutants also showed impaired growth on Fe(3+)-rhodotorulate as the sole iron source, which provided evidence of energy-coupled transport. Unexpectedly, a deletion mutant of a tonB homolog transported maltose at the wild-type rate and grew on all maltodextrins tested. Since Fe(3+)-rhodotorulate served as an iron source for the tonB mutant, an additional gene encoding a protein with a TonB function is postulated. Permeation of maltose and maltotriose through the outer membrane of the C. crescentus malA mutant was slower than permeation through the outer membrane of an E. coli lamB mutant, which suggests a low porin activity in C. crescentus. The pores of the C. crescentus porins are slightly larger than those of E. coli K-12, since maltotetraose supported growth of the C. crescentus malA mutant but failed to support growth of the E. coli lamB mutant. The data are consistent with the proposal that binding of maltodextrins to MalA requires energy and MalA actively transports maltodextrins with K(d) values 1,000-fold smaller than those for the LamB porin and 100-fold larger than those for the vitamin B(12) and ferric siderophore outer membrane transporters. MalA is the first example of an outer membrane protein for which an ExbB/ExbD-dependent transport of a nutrient other than iron and vitamin B(12) has been demonstrated.  相似文献   

4.
S L Chen  T Z Tsai  C P Han    Y P Tsao 《Journal of virology》1996,70(6):3502-3508
In this study, we investigated the structural basis of human papillomavirus type 11 (HPV-11) E5a transforming activity at the amino acid level. The effects of insertion, deletion , and substitution mutations on teh E5a transforming activity were determined by the assay of anchorage-independent growth. In the conserved Cys-X-Cys structure, substitution of Ser for Cys-73 resulted in indistinguishable transforming activity, whereas substitution of Ser for Cys-75 or Ser for both Cys-73 and Cys-75 retained 50 and 42% transformation, respectively. This suggests that Cys at position 75 may be important for transformation. Charge and structural changes at teh COOH termini of several mutants impaired transformation significantly, but those at the middle region did so only mildly. In addition, the 16,000-molecular-weight pore-forming protein (16K protein) is known to associate with BPV-1, HPV-6, and HPV-16 E5 proteins. In this study, we investigated the correlation between E5a-16K binding affinity and the transforming activity of E5a by the use of 11 E5a mutants. Results show that E5a and these 11 E5a mutants could bind to the 16K protein when these proteins were coexpressed in COS cells, suggesting that simple binding of the 16K protein by E5a may not be sufficient for cell transformation.  相似文献   

5.
This report describes the cloning and characterization of rat leukocyte common antigen-related protein (rLAR), a receptor-like protein tyrosine phosphatase (PTPase). The recombinant cytoplasmic PTPase domain was expressed at high levels in bacteria and purified to homogeneity. Kinetic properties of the PTPase were examined along with potential modulators of PTPase activity. Several sulfhydryl-directed reagents were effective inhibitors, and a surprising distinction between iodoacetate and iodoacetamide was observed. The latter compound was an extremely poor inhibitor when compared to iodoacetate, suggesting that iodoacetate may interact selectively with a positive charge at or near the active site of the enzyme. Site-directed mutants were made at 4 highly conserved cysteine residues found at positions 1434, 1522, 1723, and 1813 within the protein. The Cys-1522/Ser mutation resulted in a 99% loss of enzymatic activity of the pure protein. This observation is consistent with greater than 99% of the PTPase activity being found in the first domain of the PTPase and demonstrates the critical importance of this cysteine residue in catalysis. The recombinant C1522S mutant phosphatase could also be phosphorylated in vitro by protein kinase C and p43v-abl tyrosine kinase. When pure recombinant PTPase was mixed with 32P-labeled tyrosine substrate and then rapidly denatured, a 32P-labeled enzyme intermediate could be trapped and visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The catalytically inactive C1522S mutant did not form the phosphoenzyme intermediate.  相似文献   

6.
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-beta (TGF-beta) superfamily of multifunctional cytokines. BMP induces its signal to regulate growth, differentiation, and apoptosis of various cells upon trimeric complex formation with two distinct type I and type II receptors on the cell surface: both are single-transmembrane serine/threonine kinase receptors. To identify the amino acid residues on BMP type I receptor responsible for its ligand binding, the structure-activity relationship of the extracellular ligand-binding domain of the BMP type IA receptor (sBMPR-IA) was investigated by alanine-scanning mutagenesis. The mutant receptors, as well as sBMPR-IA, were expressed as fusion proteins with thioredoxin in Escherichia coli, and purified using reverse phase high performance liquid chromatography (RP-HPLC) after digestion with enterokinase. Structural analysis of the parent protein and representative mutants in solution by CD showed no detectable differences in their folding structures. The binding affinity of the mutants to BMP-4 was determined by surface plasmon resonance biosensor. All the mutant receptors examined, with the exception of Y70A, displayed reduced affinities to BMP-4 with the rank order of decreases: I52A (17-fold) approximately F75A (15-fold) > T64A (4-fold) = T62A (4-fold) approximately E54A (3-fold). The decreases in binding affinity observed for the latter three mutants are mainly due to decreased association rate constants while alterations in rate constants both, for association and dissociation, result in the drastically reduced affinities for the former two mutants. These results allow us to conclude that sBMPR-IA recognizes the ligand using the concave face of the molecule. The major ligand-binding site of the BMP type IA receptor consists of Phe75 in loop 2 and Ile52, Glu54, Thr62 and Thr64 on the three-stranded beta-sheet. These findings should provide a general basis for the ligand/type I receptor recognition in the TGF-beta superfamily.  相似文献   

7.
Human gamma-glutamyl hydrolase (hGH) is a central enzyme in folyl and antifolylpoly-gamma-glutamate metabolism, which functions by catalyzing the cleavage of the gamma-glutamyl chain of substrates. We previously reported that Cys-110 is essential for activity. Using the sequence of hGH as a query, alignment searches of protein data bases were made using the SSearch and TPROBE programs. Significant similarity was found between hGH and the glutamine amidotransferase type I domain of Escherichia coli carbamoyl phosphate synthetase. The resulting hypothesis is that the catalytic fold of hGH is similar to the folding of this domain in carbamoyl phosphate synthetase. This model predicts that Cys-110 of hGH is the active site nucleophile and forms a catalytic triad with residues His-220 and Glu-222. The hGH mutants C110A, H220A, and E222A were prepared. Consistent with the model, mutants C110A and H220A were inactive. However, the V(max) of the E222A hGH mutant was reduced only 6-fold relative to the wild-type enzyme. The model also predicted that His-171 in hGH may be involved in substrate binding. The H171N hGH mutant was found to have a 250-fold reduced V(max). These studies to determine the catalytic mechanism begin to define the three dimensional interactions of hGH with poly-gamma-glutamate substrates.  相似文献   

8.
The L49 single-chain Fv fused to beta-lactamase (L49-sFv-bL) combined with the prodrug C-Mel is an effective anticancer agent against tumor cells expressing the p97 antigen. However, large-scale production of L49-sFv-bL from refolded E. coli inclusion bodies has been problematic due to inefficient refolding and instability of the fusion protein. Sequence analysis of the L49-sFv framework regions revealed three residues in the framework regions at positions L2, H82B, and H91, which are not conserved for their position, occurring in <1% of sequences in Fv sequence databases. One further unusual residue, found in <3% of variable sequences, was observed at position H39. Each unusual residue was mutated to a conserved residue for its position and tested for refolding yield from inclusion bodies following expression in E. coli. The three V(H) single mutants showed improvement in the yield of active protein and were combined to form double and triple mutants resulting in a 7-8-fold increased yield compared to the parental protein. In an attempt to further improve yield, the orientation of the triple mutant was reversed to create a bL-L49-sFv fusion protein resulting in a 3-fold increase in expressed inclusion body protein and producing a 20-fold increase in the yield of purified protein compared to the parental protein. The triple mutants in both orientations displayed increased stability in murine plasma and binding affinity was not affected by the introduced mutations. Both triple mutants also displayed potent in vitro cytotoxicity and in vivo antitumor activity against p97 expressing melanoma cells and tumor xenografts, respectively. These results show that a rational protein-engineering approach improved the yield, stability, and refolding characteristics of L49-sFv-bL while maintaining binding affinity and therapeutic efficacy.  相似文献   

9.
The functional importance of a conserved region in a novel chitosanase from Bacillus sp. CK4 was investigated. Each of the three carboxylic amino acid residues (Glu-50, Glu-62, and Asp-66) was changed to Asp and Gln or Asn and Glu by site-directed mutagenesis, respectively. The Asp-66-->Asn and Asp-66-->Glu mutation remarkably decreased kinetic parameters such as Vmax and kcat to approximately 1/1,000 those of the wild-type enzyme, indicating that the Asp-66 residue was essential for catalysis. The thermostable chitosanase contains three Cys residues at positions 49, 72, and 211. The Cys-49-->Ser/Tyr and Cys-72-->Ser/Tyr mutant enzymes were as stable to thermal inactivation and denaturating agents as the wild-type enzyme. However, the half-life of the Cys-211-->Ser/Tyr mutant enzyme was less than 10 min at 80 degrees C, while that of the wild-type enzyme was about 90 min. Moreover, the residual activity of Cys-211-->Ser/Tyr enzyme was substantially decreased by 8 M urea; and it lost all catalytic activity in 40% ethanol. These results show that the substitution of Cys with any amino acid residues at position 211 seems to affect the conformational stability of the chitosanase.  相似文献   

10.
Directed mutagenesis of the gor gene from Escherichia coli encoding the flavoprotein glutathione reductase was used to convert the two cysteine residues that comprise its redox-active disulphide bridge to alanine (C42A) and serine (C47S) residues. A double mutant (C42AH439A) was also created in which His-439, the proton donor/acceptor in the glutathione-binding site, was additionally converted into an alanine residue. The C42A and C47S mutants were both unable to catalyse the reduction of glutathione by NADPH. The C42A mutant retained the transhydrogenase activity of the wild-type enzyme, whereas the C47S mutant was also inhibited in this reaction. These results support the view that in the catalytic mechanism of E. coli glutathione reductase, the thiolate form of Cys-42 acts as a nucleophile to initiate disulphide exchange with enzyme-bound glutathione and that the thiolate form of Cys-47 generates an essential charge-transfer complex with enzyme-bound FAD. Titration of the C42A and C42AH439A mutants indicated that the imidazole side-chain of His-439 lowered the pKa of the charge-transfer thiol (Cys-47) from 7.7 to 5.7, enhancing its ability to act as an anion at neutral pH. Several important differences between these mutants of E. coli glutathione reductase and similar mutants (or chemically modified forms) of other members of the flavoprotein disulphide oxidoreductase family were noted, but these could be explained in terms of the different redox chemistries of the enzymes concerned.  相似文献   

11.
Xie L  Zhang YL  Zhang ZY 《Biochemistry》2002,41(12):4032-4039
Although members of the protein tyrosine phosphatase (PTPase) family share a common mechanism of action (hydrolysis of phosphotyrosine), the cellular processes in which they are involved can be both highly specialized and fundamentally important. Identification of cellular PTPase substrates will help elucidate the biological functions of individual PTPases. Two types of substrate-trapping mutants are being used to isolate PTPase substrates. In the first, the active site Cys residue is replaced by a Ser (e.g., PTP1B/C215S) while in the second, the general acid Asp residue is substituted by an Ala (e.g., PTP1B/D181A). Unfortunately, only a limited number of PTPase substrates have been identified with these two mutants, which are usually relatively abundant cellular proteins. Based on mechanistic considerations, we seek to create novel PTPase mutants with improved substrate-trapping properties. Kinetic and thermodynamic characterization of the newly designed PTP1B mutants indicates that PTP1B/D181A/Q262A displays lower catalytic activity than that of D181A. In addition, D181A/Q262A also possesses 6- and 28-fold higher substrate-binding affinity than those of D181A and C215S, respectively. In vivo substrate-trapping experiments indicate that D181A/Q262A exhibits much higher affinity than both D181A and C215S for a bona fide PTP1B substrate, the epidermal growth factor receptor. Moreover, D181A/Q262A can also identify novel, less abundant substrates, that are missed by D181A. Thus, this newly developed and improved substrate-trapping mutant can serve as a powerful affinity reagent to isolate and purify both high- and low-abundant protein substrates. Given that both Asp181 and Gln262 are invariant among the PTPase family, it is predicted that this improved substrate-trapping mutant would be applicable to all members of PTPases for substrate identification.  相似文献   

12.
Human beta1-2N-acetylglucosaminyltransferase (hGnT1) lacking the first 103 amino acids was expressed as a maltose binding protein (MBP) fusion protein in inclusion bodies (IBs) in Escherichia coli and refolded using an oxido-shuffling method. GnT1 mutants were prepared by replacing a predicted unpaired cysteine (C121) with alanine (C121A), serine (C121S), threonine (C121T) or aspartic acid (C121D). A double mutant R120A/C121H, was generated to mimic Gly14, the Caenorhabditis elegans GnT1 counterpart to hGNT1. Each mutant hGnT1 was constructed as an MBP fusion protein and resultant IBs were isolated and refolded. Wild type hGnT1 and mutants C121A, C121S and R120A/C121H transferred UDP-GlcNAc to the glycoprotein acceptor Man(5)-RNAse B, whereas mutants C121T and C121D were inactive. These findings indicated that cysteine 121 has a structural role in maintaining active site geometry of hGnT1, rather than a catalytic role, and illustrates for the first time the potential utility of E. coli as an expression system for hGnT1.  相似文献   

13.
Phosphotyrosyl protein phosphatase (PTPase) 1B was purified from human placenta. Immunoprecipitation analysis revealed that the isolated PTPase 1B appears as a complex with the receptor for protein kinase C (RACK1) and protein kinase C (PKC)delta. The abilities of PTPase 1B and PKCdelta to associate with RACK1 were reconfirmed by an in vitro reconstitution experiment. The E. coli expressed and biotinylated mice-RACK1-encoded fusion protein was capable of recruiting PTPase 1B and PKCdelta in the antibiotin immunoprecipitate as a complex of PTPase 1B/RACK1/PKCdelta. Thus PTPase 1B enzyme preparation was subjected to further purification by selective binding of PTPase 1B onto PEP(Taxol) affinity column in the absence of ATP. The purified PTPase 1B enzyme exihibited dose-dependent phosphatase activity towards [gamma-(32)P]-ATP labeled mice beta-tubulin-encoded fusion protein. The dephosphorylation reaction with PTPase 1B was enhanced with geranylgeranyl pyrophosphate, but not with farnesyl pyrophosphate. Interestingly, additional incubation of the purified PTPase 1B enzyme preparation with RACK1, geranylgeranyl pyrophosphate failed to modulate the dephosphorylation activity of PTPase 1B. In contrast, the enhancement effect of farnesyl pyrophosphate on the kinase activity of PKCdelta was sustained in the presence of RACK1. That is, farnesyl pyrophosphate may function as a signal to induce the kinase activity of PKCdelta in PTPase 1B/RACK1/PKCdelta complex but geranylgeranyl pyrophosphate may not for PTPase 1B. J. Exp. Zool. 301A:307-316, 2004.  相似文献   

14.
The 42-1 lamB-lacZ gene fusion confers a conditionally lethal, export-dependent phenotype known as maltose sensitivity. A maltose-resistant mutant showing decreased beta-galactosidase activity of the hybrid protein, designated prlF1 (protein localization), was unlinked to the lamB-lacZ fusion. This mutation mapped at 70 min on the Escherichia coli linkage map and conferred maltose resistance, a 30-fold reduction in beta-galactosidase activity, and a 30% decrease in cellular growth rate at 30 degrees C that was independent of the presence of a gene fusion. prlF1 also decreased the beta-galactosidase activity and relieved the maltose sensitivity conferred by fusions of lacZ to the gene specifying the periplasmic maltose-binding protein, malE. The decrease in beta-galactosidase activity, however, was specific for exported hybrid proteins. When export of the hybrid protein was blocked by a signal sequence mutation, prlF1 decreased the beta-galactosidase activity only 2.5-fold. Similarly, prlF1 did not affect the beta-galactosidase activity of fusions of lacZ to a gene specifying a nonexported protein, malK.  相似文献   

15.
Cysteine-to-serine mutants of a maltose binding protein fusion with the human copper chaperone for superoxide dismutase (hCCS) were studied with respect to (i) their ability to transfer Cu to E,Zn superoxide dismutase (SOD) and (ii) their Zn and Cu binding and X-ray absorption spectroscopic (XAS) properties. Previous work has established that Cu(I) binds to four cysteine residues, two of which, C22 and C25, reside within an Atox1-like N-terminal domain (DI) and two of which, C244 and C246, reside in a short unstructured polypeptide chain at the C-terminus (DIII). The wild-type (WT) protein shows an extended X-ray absorption fine structure (EXAFS) spectrum characteristic of cluster formation, but it is not known how such a cluster is formed. Cys to Ser mutagenesis was used to investigate the Cu binding in more detail. Single Cys to Ser mutations, as represented by C22S and C244S, did little to affect the metal binding ratios of hCCS. Both mutants still showed approximately 2 Cu(I) ions and 1 Zn ion per protein. The double mutants C22/24S and C244/246S, on the other hand, showed Cu binding stoichiometries close to 1:1. The Zn-EXAFS of WT CCS showed a 3-4 histidine ligand environment that is consistent with Zn binding in the SOD-like domain II of CCS. The Zn environment remained unchanged between wild type and all of the mutant CCS proteins. Single Cys to Ser mutations displayed lower activity than WT protein, although close to full activity could be rescued by increasing the CCS:SOD ratios to 8:1 in the assay mixture. The structure of the Cu centers of the single mutants as revealed by EXAFS was also similar to that of WT protein, with clear indications of a Cu cluster. On the other hand, the double mutants showed a greater degree of perturbation. The DI C22/25S mutant was 70% active and formed a cluster with a more intense Cu-Cu interaction. The DIII C244/246S mutant retained only a fraction (16%) of activity and did not form a cluster. The results suggest the formation of a DIII-DIII cluster within a dimeric or tetrameric protein and further suggest that this cluster may be an important element of the copper transfer machinery.  相似文献   

16.
Escherichia coli citrate synthase is strongly and specifically inhibited by NADH, but this inhibition can be prevented by reacting the enzyme with Ellman's reagent. We have now labeled the single reactive cysteine covalently with monobromobimane and isolated and sequenced the bimane-containing cyanogen bromide peptide and identified the cysteine as Cys-206. Modeling studies suggest that this residue is on the subunit surface, 25-30 A from the active site. Mutation of Cys-206 to serine (C206S), or of Gly-207 to alanine (E207A), weakened NADH binding and inhibition; when these mutations were present together, NADH binding was weaker by 18-fold and inhibition by 250-fold. The mutations also had small effects on substrate binding at the active site. Cys-206 of wild type enzyme and of the mutant E207A was alkylated with 1,1,1-trifluorobromoacetone and the environment of the fluorine nuclei studied by 19F NMR. With wild type enzyme, the NMR spectrum consisted of two peaks of about equal intensity but different line widths, at -8.65 ppm (line width 11.2 +/- 0.5 Hz) and -7.6 ppm (line width 57 +/- 4 Hz). As the labeled wild type citrate synthase was titrated with KCl, the narrow peak converted to the broad one. The same range of KCl concentrations was needed for this conversion as for the allosteric activation of E. coli citrate synthase. The E207A mutant gave the broader NMR peak almost exclusively. We propose that the fluorine label in wild type citrate synthase exists in two conformational states with different mobilities, exchanging slowly on the NMR time scale, and that treatment with KCl, or truncation of the Glu-207 side chain by mutagenesis, stabilizes one of these states. Consistent with this explanation is the finding that Cys-206 reacts more quickly with Ellman's reagent in the presence of KCl, and that this rate is faster yet in the E207A mutant.  相似文献   

17.
In this study we examine for the first time the roles of the various domains of human RNase H1 by site-directed mutagenesis. The carboxyl terminus of human RNase H1 is highly conserved with Escherichia coli RNase H1 and contains the amino acid residues of the putative catalytic site and basic substrate-binding domain of the E. coli RNase enzyme. The amino terminus of human RNase H1 contains a structure consistent with a double-strand RNA (dsRNA) binding motif that is separated from the conserved E. coli RNase H1 region by a 62-amino acid sequence. These studies showed that although the conserved amino acid residues of the putative catalytic site and basic substrate-binding domain are required for RNase H activity, deletion of either the catalytic site or the basic substrate-binding domain did not ablate binding to the heteroduplex substrate. Deletion of the region between the dsRNA-binding domain and the conserved E. coli RNase H1 domain resulted in a significant loss in the RNase H activity. Furthermore, the binding affinity of this deletion mutant for the heteroduplex substrate was approximately 2-fold tighter than the wild-type enzyme suggesting that this central 62-amino acid region does not contribute to the binding affinity of the enzyme for the substrate. The dsRNA-binding domain was not required for RNase H activity, as the dsRNA-deletion mutants exhibited catalytic rates approximately 2-fold faster than the rate observed for wild-type enzyme. Comparison of the dissociation constant of human RNase H1 and the dsRNA-deletion mutant for the heteroduplex substrate indicates that the deletion of this region resulted in a 5-fold loss in binding affinity. Finally, comparison of the cleavage patterns exhibited by the mutant proteins with the cleavage pattern for the wild-type enzyme indicates that the dsRNA-binding domain is responsible for the observed strong positional preference for cleavage exhibited by human RNase H1.  相似文献   

18.
A highly specific energy-dependent glutamate transport system was demonstrated in membrane vesicles of glutamate-utilizing Escherichia coli K-12 mutants. The glutamate transport activity of membranes from the parent strain, unable to grow on glutamate, was very low. With ascorbate-phenazine methosulfate as the electron donor, mutant preparations displayed 17 to 20 times higher activity than did the wild type. However, the affinity of the mutant carrier for L-glutamate remained the same as in the parent strain. Comparative inhibition analysis of glutamate transport in whole cells and membrane vesicles and of in vitro binding of glutamate to a specific periplasmic-binding protein suggests that under certain conditions the latter may be a component of the E. coli K-12 glutamate transport system.  相似文献   

19.
In plants, the first step in betaine synthesis was shown to be catalyzed by a novel Rieske-type iron-sulfur enzyme, choline monooxygenase (CMO). Although CMO so far has been found only in Chenopodiaceae and Amaranthaceae, the recent genome sequence suggests the presence of a CMO-like gene in Arabidopsis, a betaine non-accumulating plant. Here, we examined the functional properties of CMO expressed in Escherichia coli, cyanobacterium, and Arabidopsis thaliana. We found that E. coli cells in which choline dehydrogenase (CDH) was replaced with spinach CMO accumulate betaine and complement the salt-sensitive phenotype of the CDH-deleted E. coli mutant. Changes of Cys-181 in spinach CMO to Ser, Thr, and Ala and His-287 to Gly, Val, and Ala abolished the accumulation of betaine. The Arabidopsis CMO-like gene was transcribed in Arabidopsis, but its protein was not detected. When the Arabidopsis CMO-like gene was expressed in E. coli, the protein was detected but was found not to promote betaine sysnthesis. Overexpression of spinach CMO in E. coli, Synechococcus sp. PCC7942, and Arabidopsis conferred resistance to abiotic stress. These facts clearly indicate that CMO, but not the CMO-like protein, could oxidize choline and that Cys-181 and His-287 are involved in the binding of Fe-S cluster and Fe, respectively.  相似文献   

20.
The protein encoded by v-sis, the oncogene of simian sarcoma virus, is homologous to the B chain of platelet-derived growth factor (PDGF). There are eight conserved Cys residues between PDGF-B and the v-sis protein. Both native PDGF and the v-sis protein occur as disulfide-bonded dimers, probably containing both intramolecular and intermolecular disulfide bonds. Oligonucleotide-directed mutagenesis was used to change the Cys codons to Ser codons in the v-sis gene. Four single mutants lacked detectable biological activity, indicating that Cys-127, Cys-160, Cys-171, and Cys-208 are required for formation of a biologically active v-sis protein. The other four single mutants retained biological activity as determined in transformation assays, indicating that Cys-154, Cys-163, Cys-164, and Cys-210 are dispensable for biological activity. Double and triple mutants containing three of these altered sites were constructed, some of which were transforming as well. The v-sis proteins encoded by biologically active mutants displayed significantly reduced levels of dimeric protein compared with the wild-type v-sis protein, which dimerized very efficiently. Furthermore, a mutant with a termination codon at residue 209 exhibited partial transforming activity. This study thus suggests that the minimal region required for transformation consists of residues 127 to 208. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that the v-sis proteins encoded by some of the biologically active mutants exhibited an altered conformation when compared with the wild-type v-sis protein, and suggested that Cys-154 and Cys-163 participate in a nonessential disulfide bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号