首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phlebotomine sand flies are the vectors of medically important Leishmania. The Leishmania protozoa reside in the sand fly gut, but the nature of the immune response to the presence of Leishmania is unknown. Reactive oxygen species (ROS) are a major component of insect innate immune pathways regulating gut-microbe homeostasis. Here we show that the concentration of ROS increased in sand fly midguts after they fed on the insect pathogen Serratia marcescens but not after feeding on the Leishmania that uses the sand fly as a vector. Moreover, the Leishmania is sensitive to ROS either by oral administration of ROS to the infected fly or by silencing a gene that expresses a sand fly ROS-scavenging enzyme. Finally, the treatment of sand flies with an exogenous ROS scavenger (uric acid) altered the gut microbial homeostasis, led to an increased commensal gut microbiota, and reduced insect survival after oral infection with S. marcescens. Our study demonstrates a differential response of the sand fly ROS system to gut microbiota, an insect pathogen, and the Leishmania that utilize the sand fly as a vehicle for transmission between mammalian hosts.  相似文献   

2.
Female sand flies can acquire protozoan parasites in the genus Leishmania when feeding on an infected vertebrate host. The parasites complete a complex growth cycle in the sand fly gut until they are transmitted by bite to another host. Recently, a myoinhibitory peptide was isolated from Leishmania major promastigotes. This peptide caused significant gut distension and reversible, dose-dependent inhibition of spontaneous hindgut contractions in the enzootic sand fly vector, Phlebotomus papatasi. The current study further characterizes myoinhibitory activity in L. major and other kinetoplastid parasites, using the P. papatasi hindgut and other insect organ preparations. Myoinhibitory activity was greatest in cultured promastigotes and in culture medium in late log-phase and early stationary-phase, coinciding with development of infective Leishmania morphotypes in the sand fly midgut. L. major promastigote lysates inhibited spontaneous contractions of visceral muscle preparations from hemimetabolous (Blattaria and Hemiptera) and holometabolous (Diptera) insects. Inhibition of visceral muscle contractions in three insect orders indicates a conserved mode of action. Myoinhibitory activity was detected also in Leishmania braziliensis braziliensis, a Sudanese strain of Leishmania donovani, and the kinetoplastid parasite Leptomonas seymouri. Protozoan-induced myoinhibition mimics the effect of insect myotropins. Inhibiting host gut contractions protects Leishmania parasites from being excreted after blood meal and peritrophic matrix digestion, allowing development and transmission of infective forms.  相似文献   

3.
To identify parameters of Leishmania infection within a population of infected sand flies that reliably predict subsequent transmission to the mammalian host, we sampled groups of infected flies and compared infection intensity and degree of metacyclogenesis with the frequency of transmission. The percentage of parasites within the midgut that were metacyclic promastigotes had the highest correlation with the frequency of transmission. Meta-analysis of multiple transmission experiments allowed us to establish a percent-metacyclic "cutoff" value that predicted transmission competence. Sand fly infections initiated with variable doses of parasites resulted in correspondingly altered percentages of metacyclic promastigotes, resulting in altered transmission frequency and disease severity. Lastly, alteration of sand fly oviposition status and environmental conditions at the time of transmission also influenced transmission frequency. These observations have implications for transmission of Leishmania by the sand fly vector in both the laboratory and in nature, including how the number of organisms acquired by the sand fly from an infection reservoir may influence the clinical outcome of infection following transmission by bite.  相似文献   

4.
5.
Female phlebotomine sand flies Lutzomyia longipalpis naturally harbor populations of the medically important Leishmania infantum (syn. Leishmania chagasi) parasite in the gut, but the extent to which the parasite interacts with the immune system of the insect vector is unknown. To investigate the sand fly immune response and its interaction with the Leishmania parasite, we identified a homologue for caspar, a negative regulator of immune deficiency signaling pathway. We found that feeding antibiotics to adult female L. longipalpis resulted in an up-regulation of caspar expression relative to controls. caspar was differentially expressed when females were fed on gram-negative and gram-positive bacterial species. caspar expression was significantly down-regulated in females between 3 and 6 days after a blood feed containing Leishmania mexicana amastigotes. RNA interference was used to deplete caspar expression in female L. longipalpis, which were subsequently fed with Leishmania in a blood meal. Sand fly gut populations of both L. mexicana and L. infantum were significantly reduced in caspar-depleted females. The prevalence of L. infantum infection in the females fell from 85 to 45%. Our results provide the first insight into the operation of immune homeostasis in phlebotomine sand flies during the growth of bacterial and Leishmania populations in the digestive tract. We have demonstrated that the activation of the sand fly immune system, via depletion of a single gene, can lead to the abortion of Leishmania development and the disruption of transmission by the phlebotomine sand fly.  相似文献   

6.
Immunity to a sand fly salivary protein protects against visceral leishmaniasis (VL) in hamsters. This protection was associated with the development of cellular immunity in the form of a delayed-type hypersensitivity response and the presence of IFN-γ at the site of sand fly bites. To date, there are no data available regarding the cellular immune response to sand fly saliva in dogs, the main reservoirs of VL in Latin America, and its role in protection from this fatal disease. Two of 35 salivary proteins from the vector sand fly Lutzomyia longipalpis, identified using a novel approach termed reverse antigen screening, elicited strong cellular immunity in dogs. Immunization with either molecule induced high IgG2 antibody levels and significant IFN-γ production following in vitro stimulation of PBMC with salivary gland homogenate (SGH). Upon challenge with uninfected or infected flies, immunized dogs developed a cellular response at the bite site characterized by lymphocytic infiltration and IFN-γ and IL-12 expression. Additionally, SGH-stimulated lymphocytes from immunized dogs efficiently killed Leishmania infantum chagasi within autologous macrophages. Certain sand fly salivary proteins are potent immunogens obligatorily co-deposited with Leishmania parasites during transmission. Their inclusion in an anti-Leishmania vaccine would exploit anti-saliva immunity following an infective sand fly bite and set the stage for a protective anti-Leishmania immune response.  相似文献   

7.
A thorough understanding of the transmission mechanism of any infectious agent is crucial to implementing an effective intervention strategy. Here, our current understanding of the mechanisms that Leishmania parasites use to ensure their transmission from sand fly vectors by bite is reviewed. The most important mechanism is the creation of a "blocked fly" resulting from the secretion of promastigote secretory gel (PSG) by the parasites in the anterior midgut. This forces the sand fly to regurgitate PSG before it can bloodfeed, thereby depositing both PSG and infective metacyclic promastigotes in the skin of a mammalian host. Other possible factors in transmission are considered: damage to the stomodeal valve; occurrence of parasites in the salivary glands; and excretion of parasites from the anus of infected sand flies. Differences in the transmission mechanisms employed by parasites in the three subgenera, Leishmania, Viannia and Sauroleishmania are also addressed.  相似文献   

8.
Phlebotomine sand flies are vectors of Leishmania that are acquired by the female sand fly during blood feeding on an infected mammal. Leishmania parasites develop exclusively in the gut lumen during their residence in the insect before transmission to a suitable host during the next blood feed. Female phlebotomine sand flies are blood feeding insects but their life style of visiting plants as well as animals, and the propensity for larvae to feed on detritus including animal faeces means that the insect host and parasite are exposed to a range of microorganisms. Thus, the sand fly microbiota may interact with the developing Leishmania population in the gut. The aim of the study was to investigate and identify the bacterial diversity associated with wild adult female Lutzomyia sand flies from different geographical locations in the New World. The bacterial phylotypes recovered from 16S rRNA gene clone libraries obtained from wild caught adult female Lutzomyia sand flies were estimated from direct band sequencing after denaturing gradient gel electrophoresis of bacterial 16 rRNA gene fragments. These results confirm that the Lutzomyia sand flies contain a limited array of bacterial phylotypes across several divisions. Several potential plant-related bacterial sequences were detected including Erwinia sp. and putative Ralstonia sp. from two sand fly species sampled from 3 geographically separated regions in Brazil. Identification of putative human pathogens also demonstrated the potential for sand flies to act as vectors of bacterial pathogens of medical importance in addition to their role in Leishmania transmission.  相似文献   

9.
Leishmaniases are serious parasitic diseases the etiological organisms of which are transmitted by insect vectors, phlebotominae sand flies. Two sand fly species, Phlebotomus papatasi and P. sergenti, display remarkable specificity for Leishmania parasites they transmit in nature, but many others are broadly permissive to the development of different Leishmania species. Previous studies have suggested that in 'specific' vectors the successful parasite development is mediated by parasite surface glycoconjugates and sand fly lectins, however we show here that interactions involving 'permissive' sand flies utilize another molecules. We did find that the abundant surface glycoconjugate lipophosphoglycan, essential for attachment of Leishmania major in the specific vector P. papatasi, was not required for parasite adherence or survival in the permissive vectors P. arabicus and Lutzomyia longipalpis. Attachment in several permissive sand fly species instead correlated with the presence of midgut glycoproteins bearing terminal N-acetyl-galactosamine and with the occurrence of a lectin-like activity on Leishmania surface. This new binding modality has important implications for parasite transmission and evolution. It may contribute to the successful spreading of Leishmania due to their adaptation into new vectors, namely transmission of L. infantum by Lutzomyia longipalpis; this event led to the establishment of L. infantum/chagasi in Latin America.  相似文献   

10.
The ability of the sand fly Phlebotomus (Adlerius) arabicus to transmit Leishmania tropica was studied experimentally using hyraxes (Procavia capensis), natural reservoir hosts of the parasite. Sand flies became infected with L. tropica after feeding on a lesion of needle-inoculated hyrax. Moreover, P. arabicus fed with L. tropica promastigotes transmitted the parasite to hyraxes by bite during a second bloodmeal. Although the animals remained asymptomatic after infective sand fly bite, they were PCR positive and infectious for naive sand flies. We have thus demonstrated cyclical transmission of L. tropica by P. arabicus in hyraxes. This confirms experimentally the vectorial competence of P. (Adlerius) arabicus, and demonstrates that asymptomatic reservoir hosts are infectious to appropriate vectors.  相似文献   

11.
The use of PCR (polymerase chain reaction) was evaluated for its effectiveness as a tool in the detection of transmission of Leishmania chagasi to a hamster host, Mesocricetus auratus, by insect vector bite. Two pairs of uninfected and anesthetized hamsters were introduced into cages containing infected females of the typical phlebotomine sand fly vector, Lutzomyia longipalpis. The flies were experimentally infected with Leishmania chagasi and the infection was verified by dissection of subsamples. At 37 and 51 days after exposure to the infected flies, biopsies of each hamster's liver and spleen were subjected to direct histopathological and PCR examination. DNA was extracted with Chelex 100; for PCR amplification, primers specific to Leishmania minicircle DNA were used. PCR product was separated on agarose gels and visualized with UV. A band of approximately 120 base pairs was observed in 3 of the 4 biopsies, corresponding to the expected minicircle size. PCR was the only method that detected presence of the parasite. The results demonstrated that the sensitivity of PCR greatly expedites the confirmation process of a particular phlebotomine species as a vector of leishmaniasis.  相似文献   

12.
13.
A seminested PCR assay was developed in order to amplify the kinetoplast minicircle of Leishmania species from individual sand flies. The kinetoplast minicircle is an ideal target because it is present in 10,000 copies per cell and its sequence is known for most Leishmania species. The two-step PCR is carried out in a single tube using three primers, which were designed within the conserved area of the minicircle and contain conserved sequence blocks. The assay was able to detect as few as 3 parasites per individual sand fly and to amplify minicircle DNA from at least eight Leishmania species. This technique permits the processing of a large number of samples synchronously, as required for epidemiological studies, in order to study infection rates in sand fly populations and to identify potential insect vectors. Comparison of the sequences obtained from sand flies and mammal hosts will be crucial for developing hypotheses about the transmission cycles of Leishmania spp. in areas of endemicity.  相似文献   

14.
Beverley SM  Dobson DE 《Cell》2004,119(3):311-312
In this issue, Kamhawi et al. (2004) describe the identification of an insect galectin as the receptor for the stage-specific Leishmania adhesin lipophosphoglycan (LPG). This interaction is critical for parasite survival in the midgut of its sand fly vector. The results open new avenues for studies of insect immunity, transmission binding vaccines, and host-parasite coevolution.  相似文献   

15.
Numerous experimental vaccines have been developed to protect against the cutaneous and visceral forms of leishmaniasis caused by infection with the obligate intracellular protozoan Leishmania, but a human vaccine still does not exist. Remarkably, the efficacy of anti-Leishmania vaccines has never been fully evaluated under experimental conditions following natural vector transmission by infected sand fly bite. The only immunization strategy known to protect humans against natural exposure is “leishmanization,” in which viable L. major parasites are intentionally inoculated into a selected site in the skin. We employed mice with healed L. major infections to mimic leishmanization, and found tissue-seeking, cytokine-producing CD4+ T cells specific for Leishmania at the site of challenge by infected sand fly bite within 24 hours, and these mice were highly resistant to sand fly transmitted infection. In contrast, mice vaccinated with a killed vaccine comprised of autoclaved L. major antigen (ALM)+CpG oligodeoxynucleotides that protected against needle inoculation of parasites, showed delayed expression of protective immunity and failed to protect against infected sand fly challenge. Two-photon intra-vital microscopy and flow cytometric analysis revealed that sand fly, but not needle challenge, resulted in the maintenance of a localized neutrophilic response at the inoculation site, and removal of neutrophils following vector transmission led to increased parasite-specific immune responses and promoted the efficacy of the killed vaccine. These observations identify the critical immunological factors influencing vaccine efficacy following natural transmission of Leishmania.  相似文献   

16.
During development within the midgut of the sand fly vector, Leishmania parasites after undergoing differentiation and multiplication must escape the peritrophic matrix (PM). Although Leishmania chitinase is believed to take part in promoting the escape of the parasite from the PM by inducing degradation of chitin fibers, it is conceivable that a sand fly-derived chitinase can also have a role in such an event. Here we describe the molecular cloning and partial characterization of a complete cDNA from a putative gut-specific, blood-induced chitinase from the sand fly vector Lutzomyia longipalpis. Llchit1 has an ORF of 1425 bp that encodes a predicted 51.6 kDa mature protein showing high similarity with chitinases from several different organisms. Messenger RNA expression studies indicate that Llchit1 is detected only in the blood fed midgut and it seems to reach a peak at approximately 72 h post blood meal (PBM). To date, only one midgut-specific chitinase from an insect disease vector, AgChi-1 from Anopheles gambiae, has been characterized. As with its mosquito counterpart, Llchit1 can be a target for development of a transmission blocking vaccine.  相似文献   

17.
Morphology, development and behaviour of Leishmania gymnodactyli in the sand fly Sergentomyia arpaklensis at different stages of blood digestion have been studied. It has been shown that leishmaniae reproduce readily and develop normally inside the food ball of sandflies. The dense peritrophic membrane is not destroyed at the end of digestion and is an insuperable obstacle for leishmaniae. Promastigotes of leishmaniae, being involved in the peritrophic membrane, are excreted together with undigested food that excludes their transmission through the bite of S. arpaklensis.  相似文献   

18.

Background

Visceral Leishmaniasis is a serious human disease transmitted, in the New World, by Lutzomyia longipalpis sand flies. Natural resistance to Leishmania transmission in residents of endemic areas has been attributed to the acquisition of immunity to sand fly salivary proteins. One theoretical way to accelerate the acquisition of this immunity is to increase the density of antigen-presenting cells at the sand fly bite site. Here we describe a novel tissue platform that can be used for this purpose.

Methodology/Principal Findings

BluePort is a well-vascularized and macrophage-rich compartment induced in the subcutaneous tissue of mice via injection of agarose beads covered with Cibacron blue. We describe the sequence of inflammatory events leading to its formation and how it can be used to study the dermal response to the bite of L. longipalpis sand flies. Results presented indicate that a shift in the inflammatory response, from neutrophilic to eosinophilic, is the main histopathological feature associated with the immunity acquired through repeated exposure to the bite of sand flies, and that the BluePort tissue compartment could be used to accelerate this process. In addition, changes observed inside the BluePort parenchyma indicate that it could be used to study complex immunobiological processes, and to develop ectopic secondary lymphoid structures.

Conclusions/Significance

Understanding the characteristics of the dermal response to the bite of sand flies is a critical element of strategies to control leishmaniasis using vaccines that target salivary proteins. Finding that dermal eosinophilia is such a prominent component of the anti-salivary immunity induced by repeated exposure to sand fly bites raises one important consideration: how to avoid the immunological conflict derived from a protective Th2-driven immunity directed to sand fly saliva with a protective Th1-driven immunity directed to the parasite. The BluePort platform is an ideal tool to address experimentally this conundrum.  相似文献   

19.
The life cycle of Leishmania alternates between two main morphological forms: intracellular amastigotes in the mammalian host and motile promastigotes in the sand fly vector. Several different forms of promastigote have been described in sandfly infections, the best known of these being metacyclic promastigotes, the mammal-infective stages. Here we provide evidence that for Leishmania (Leishmania) mexicana and Leishmania (Leishmania) infantum (syn. chagasi) there are two separate, consecutive growth cycles during development in Lutzomyia longipalpis sand flies involving four distinct life cycle stages. The first growth cycle is initiated by procyclic promastigotes, which divide in the bloodmeal in the abdominal midgut and subsequently give rise to non-dividing nectomonad promastigotes. Nectomonad forms are responsible for anterior migration of the infection and in turn transform into leptomonad promastigotes that initiate a second growth cycle in the anterior midgut. Subsequently, leptomonad promastigotes differentiate into non-dividing metacyclic promastigotes in preparation for transmission to a mammalian host. Differences in timing, prevalence and persistence of the four promastigote stages were observed between L. mexicana and L. infantum in vivo, which were reproduced in cultures initiated with lesion amastigotes, indicating that development is to some extent governed by a programmed series of events. A new scheme for the life cycle in the subgenus Leishmania (Leishmania) is proposed that incorporates these findings.  相似文献   

20.
Chitinases of trypanosomatid parasites have been proposed to fulfil various roles in their blood-feeding arthropod vectors but so far none have been directly tested using a molecular approach. We characterized the ability of Leishmania mexicana episomally transfected with LmexCht1 (the L. mexicana chitinase gene) to survive and grow within the permissive sand fly vector, Lutzomyia longipalpis. Compared with control plasmid transfectants, the overexpression of chitinase was found to increase the average number of parasites per sand fly and accelerate the escape of parasites from the peritrophic matrix-enclosed blood meal as revealed by earlier arrival at the stomodeal valve. Such flies also exhibited increased damage to the structure of the stomodeal valve, which may facilitate transmission by regurgitation. When exposed individually to BALB/c mice, those flies with chitinase-overexpressing parasites spent on average 2.4-2.5 times longer in contact with their host during feeding, compared with flies with control infections. Furthermore, the lesions that resulted from these single fly bite infections were both significantly larger and with higher final parasite burdens than controls. These data show that chitinase is a multifunctional virulence factor for L. mexicana which assists its survival in Lu. longipalpis. Specifically, this enzyme enables the parasites to colonize the anterior midgut of the sand fly more quickly, modify the sand fly stomodeal valve and affect its blood feeding, all of which combine to enhance transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号