首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present article describes an l-amino acid oxidase from Bothrops atrox snake venom as with antiprotozoal activities in Trypanosoma cruzi and in different species of Leishmania (Leishmania braziliensis, Leishmania donovani and Leishmania major). Leishmanicidal effects were inhibited by catalase, suggesting that they are mediated by H2O2 production. Leishmania spp. cause a spectrum of diseases, ranging from self-healing ulcers to disseminated and often fatal infections, depending on the species involved and the host’s immune response. BatroxLAAO also displays bactericidal activity against both Gram-positive and Gram-negative bacteria. The apoptosis induced by BatroxLAAO on HL-60 cell lines and PBMC cells was determined by morphological cell evaluation using a mix of fluorescent dyes. As revealed by flow cytometry analysis, suppression of cell proliferation with BatroxLAAO was accompanied by the significant accumulation of cells in the G0/G1 phase boundary in HL-60 cells. BatroxLAAO at 25 μg/mL and 50 μg/mL blocked G0-G1 transition, resulting in G0/G1 phase cell cycle arrest, thereby delaying the progression of cells through S and G2/M phase in HL-60 cells. This was shown by an accentuated decrease in the proportion of cells in S phase, and the almost absence of G2/M phase cell population. BatroxLAAO is an interesting enzyme that provides a better understanding of the ophidian envenomation mechanism, and has biotechnological potential as a model for therapeutic agents.  相似文献   

2.
L-amino acid oxidase (L-AAO) from snake venom Crotalus adamanteus was successfully tested as a catalyst in supercritical CO2 (SC-CO2). The enzyme activity was measured before and after exposure to supercritical conditions (40°C, 110 bar). It was found that L-AAO activity slightly increased after SC-CO2 exposure by up to 15%. L-AAO was more stable in supercritical CO2 than in phosphate buffer under atmospheric pressure, as well as in the enzyme membrane reactor (EMR) experiment. 3,4-Dihydroxyphenyl-L-alanine (L-DOPA) oxidation was performed in a batch reactor made of stainless steel that could withstand the pressures of SC-CO2, in which L-amino acid oxidase from C. adamanteus was able to catalyze the reaction of oxidative deamination of L-DOPA in SC-CO2. For the comparison L-DOPA oxidation was performed in the EMR at 40°C and pressure of 2.5 bar. Productivity expressed as mmol-s of converted L-DOPA after 3?h per change of enzyme activity after 3?h was the highest in SC-CO2 (1.474?mmol?U?1), where catalase was present, and the lowest in the EMR (0.457?mmol?U?1).  相似文献   

3.
l-Amino acid oxidase from Rhodococcus opacus (roLAAO) is classified as a member of the GR(2)-family of flavin-dependent oxidoreductases according to a highly conserved sequence motif for the cofactor binding. The monomer of the homodimeric enzyme consists of three well-defined domains: the FAD-binding domain corresponding to a general topology throughout the whole GR(2)-family; a substrate-binding domain with almost the same topology as the snake venom LAAO and a helical domain exclusively responsible for the unusual dimerisation mode of the enzyme and not found in other members of the family so far. We describe here high-resolution structures of the binary complex of protein and cofactor as well as the ternary complexes of protein, cofactor and ligands. This structures in addition to the structural knowledge of snake venom LAAO and DAAO from yeast and pig kidney permit more insight into different steps in the reaction mechanism of this class of enzymes. There is strong evidence for hydride transfer as the mechanism of dehydrogenation. This mechanism appears to be uncommon in a sense that the chemical transformation can proceed efficiently without the involvement of amino acid functional groups. Most groups present at the active site are involved in substrate recognition, binding and fixation, i.e. they direct the trajectory of the interacting orbitals. In this mode of catalysis orbital steering/interactions are the predominant factors for the chemical step(s). A mirror-symmetrical relationship between the two substrate-binding sites of d and l-amino acid oxidases is observed which facilitates enantiomeric selectivity while preserving a common arrangement of the residues in the active site. These results are of general relevance for the mechanism of flavoproteins and lead to the proposal of a common dehydrogenation step in the mechanism for l and d-amino acid oxidases.  相似文献   

4.
D-Amino acid oxidase (DAAO) has been proposed to be involved in the oxidation of D-serine, an allosteric activator of the NMDA-type glutamate receptor in the brain, and to be associated with the onset of schizophrenia. The recombinant human DAAO was expressed in Escherichia coli and was isolated as an active homodimeric flavoenzyme. It shows the properties of the dehydrogenase-oxidase class of flavoproteins, possesses a low kinetic efficiency, and follows a ternary complex (sequential) kinetic mechanism. In contrast to the other known DAAOs, the human enzyme is a stable homodimer even in the apoprotein form and weakly binds the cofactor in the free form.  相似文献   

5.
Achacin, which belongs to the L-amino acid oxidase group, oxidizes free amino acids and produces hydrogen peroxide in cell culture systems. Morphological changes in cells incubated with achacin were similar to those of cells incubated with H(2)O(2). In both cases, the end result was cell death. To examine the mechanism of achacin-associated cytotoxicity, the H(2)O(2) scavenger catalase was added to culture media. Features typical of apoptosis, including morphological changes, DNA fragmentation, and PARP cleavage, were observed when cells were incubated with achacin in the presence of catalase. Moreover, apoptosis was inhibited by Z-VAD-fmk, a broad-spectrum caspase inhibitor. Herein, we present evidence that two pathways are involved in achacin-induced cell death. One is direct generation of H(2)O(2) through the L-amino acid oxidase activity of achacin. The other is the caspase-mediated apoptotic pathway that is induced by depletion of L-amino acids by achacin.  相似文献   

6.
As a primary antioxidant, ascorbic acid (AA) provides beneficial effects for vascular health mitigating oxidative stress and endothelial dysfunction. However, the association of intracellular AA with NO production occurring inside the endothelial cells remains unclear. In the present study, we addressed this issue by increasing intracellular AA directly through de novo synthesis. To restore AA synthesis pathway, bovine aortic endothelial cells were transfected with the plasmid vector encoding L-gulono-1,4-lactone oxidase (GULO, EC 1.1.3.8), the missing enzyme converting L-gulono-1,4-lactone (GUL) to AA. Functional expression of GULO was verified by Western blotting and in vitro enzyme activity assay. GULO expression alone did not lead to AA synthesis but the supply of GUL resulted in a marked increase of intracellular AA. When the cells were stimulated with calcium ionophore, A23187, NO production was more active in the GULO-expressing cells supplied with GUL, in comparison with the cells without GULO expression or without GUL supply, indicating that intracellular AA regulated NO production. Enhancement of NO production by intracellular AA was further verified in aortic endothelial cells obtained from eNOS knockout mice that were cotransfected with eNOS and GULO constructs. GULO-dependent AA synthesis also elevated intracellular tetrahydrobiopterin content, implicating that this essential cofactor of endothelial nitric oxide synthase (eNOS) might mediate the AA effect. The present study strongly suggests that intracellular AA plays critical roles in vascular physiology through enhancing endothelial NO production.  相似文献   

7.
In order to ascertain whether and how mitochondria can produce hydrogen peroxide (H2O2) as a result of l-lactate addition, we monitored H2O2 generation in rat liver mitochondria and in submitochondrial fractions free of peroxisomal and cytosolic contamination. We found that H2O2 is produced independently on the respiratory chain with 1:1 stoichiometry with pyruvate, due to a putative flavine-dependent l-lactate oxidase restricted to the intermembrane space. The l-lactate oxidase reaction shows a hyperbolic dependence on l-lactate concentration and is inhibited by NAD+ in a competitive manner, being the enzyme different from the l-lactate dehydrogenase isoenzymes as shown by their pH profiles.  相似文献   

8.
Autoimmune polyendocrine syndrome type I (APS I) is a rare hereditary condition considered a model disease for organ specific autoimmunity. A wide range of autoantibodies targeting antigens present in the affected organs have been identified. Autoantibodies against aromatic L-amino acid decarboxylase (AADC) are present in about 50% of APS I patients. In order to increase our understanding of autoantibody specificity in APS I, the aim of the present study was to localize target regions on AADC recognized by sera from APS I patients. Using several complementing strategies, we have shown that autoantibodies against AADC mainly recognize conformational epitopes. The major antigenic determinants were detected N-terminally to amino acid residue 237. Replacement of amino acids 227-230 (ERDK) with alanine residues reduced the reactivity towards AADC by >80% in all patient sera tested, suggesting that amino acids 227-230 are an important part of an immunodominant epitope.  相似文献   

9.
ABSTRACT

An N-lauroyl-l-phenylalanine-producing bacterium, identified as Burkholderia sp. strain LP5_18B, was isolated from a soil sample. The enzyme was purified from the cell-free extract of the strain and shown to catalyze degradation and synthesis activities toward various N-acyl-amino acids. N-lauroyl-l-phenylalanine and N-lauroyl-l-arginine were obtained with especially high yields (51% and 89%, respectively) from lauric acid and l-phenylalanine or l-arginine by the purified enzyme in an aqueous system. The gene encoding the novel aminoacylase was cloned from Burkholderia sp. strain LP5_18B and expressed in Escherichia coli. The gene contains an open reading frame of 1,323 nucleotides. The deduced protein sequence encoded by the gene has approximately 80% amino acid identity to several hydratase of Burkholderia. The addition of zinc sulfate increased the aminoacylase activity of the recombinant E. coli strain.  相似文献   

10.
Higher plants, protists and fungi possess cyanide-resistant respiratory pathway, which is mediated by alternative oxidase (AOX). The activity of AOX has been found to be dependent on several regulatory mechanisms including gene expression and posttranslational regulation. In the present study, we report that the presence of cyanide in culture medium remarkably retarded the growth of alo1/alo1 mutant of Candida albicans, which lacks d-arabinono-1,4-lactone oxidase (ALO) that catalyzes the final step of d-erythroascorbic acid (EASC) biosynthesis. Measurement of respiratory activity and Western blot analysis revealed that increase in the intracellular EASC level induces the expression of AOX in C. albicans. AOX could still be induced by antimycin A, a respiratory inhibitor, in the absence of EASC, suggesting that several factors may act in parallel pathways to induce the expression of AOX. Taken together, our results suggest that EASC plays important roles in activation of cyanide-resistant respiration in C. albicans.  相似文献   

11.
Despite its utility, dipeptides have not been widely used due to the absence of an efficient manufacturing method. Recently, a novel method for effective production of dipeptides using l-amino acid α-ligase (Lal) is presented. Lal, which is only identified in Bacillus subtilis, catalyzes dipeptide synthesis from unprotected amino acids in an ATP-dependent manner. However, not all the dipeptide can be synthesized by Lal from B. subtilis (BsLal) due to its substrate specificity. Here, we attempted to find a novel Lal exhibiting different substrate specificity from BsLal. By in silico screening based on the amino acid sequence of BsLal, RSp1486a an unknown protein from Ralstonia solanacearum was found to show the Lal activity. RSp1486a exhibited different substrate specificity from BsLal, and preferably synthesized hetero-dipeptides where more bulky amino acid was placed at N terminus and less bulky amino acid was placed at C terminus in opposition to those synthesized by BsLal.  相似文献   

12.
A full-length cDNA encoding D-amino acid oxidase (DAO, EC 1.4.3.3) was cloned and sequenced from the hepatopancreas of carp fed a diet supplemented with D-alanine. This clone contained an open reading frame encoding 347 amino acid residues. The deduced amino acid sequence exhibited about 60 and 19-29% identity to mammalian and microbial DAOs, respectively. The expression of full-length carp DAO cDNA in Escherichia coli resulted in a significant level of protein with DAO activity. In carp fed the diet with D-alanine for 14 days, DAO mRNA was strongly expressed in intestine followed by hepatopancreas and kidney, but not in muscle. During D-alanine administration, DAO gene was expressed quickly in hepatopancreas with the increase of DAO activity. The inducible nature of carp DAO indicates that it plays an important physiological role in metabolizing exogenous D-alanine that is abundant in their prey invertebrates, crustaceans, and mollusks.  相似文献   

13.
D-glucosaminic acid (2-amino-2-deoxy-D-gluconic acid), a component of bacterial lipopolysaccharides and a chiral synthon, is easily prepared on a multigram scale by air oxidation of D-glucosamine (2-amino-2-deoxy-D-glucose) catalysed by glucose oxidase.  相似文献   

14.
A new l-amino acid oxidase (LAAO) was isolated from the Central Asian cobra Naja naja oxiana venom by size exclusion, ion exchange and hydrophobic chromatography. The N-terminal sequence and the internal peptide sequences share high similarity with other snake venom l-amino acid oxidases, especially with those isolated from elapid venoms. The enzyme is stable at low temperatures (− 20 °C, − 70 °C) and loses its activity by heating at 70 °C. Specific substrates for the isolated protein are l-phenylalanine, l-tryptophan, l-methionine and l-leucine. The enzyme has antibacterial activity inhibiting the growth of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. N. naja oxiana LAAO dose-dependently inhibited ADP- or collagen-induced platelet aggregation with IC50 of 0.094 μM and 0.036 μM, respectively. The antibacterial and anti-aggregating activity was abolished by catalase.  相似文献   

15.
Achacin is an antibacterial glycoprotein purified from the mucus of the giant snail, Achatina fulica Férussac, as a humoral defense factor. We showed that achacin has L-amino acid oxidase activity and can generate cytotoxic H(2)O(2); however, the concentration of H(2)O(2) was not sufficient to kill bacteria. The antibacterial activity of achacin was inhibited by various H(2)O(2) scavengers. Immunochemical analysis revealed that achacin was preferentially bound to growth-phase bacteria, accounting for the important role in growth-phase-dependent antibacterial activity of achacin. Achacin may act as an important defense molecule against invading bacteria.  相似文献   

16.
A brownish yellow pigmented bacterial strain, designated antisso-27, was recently isolated from a water area of saltpan in Southern Taiwan. Phylogenetic analyses based on 16S rRNA gene sequences indicate that strain antisso-27 belongs the genus Aquimarina in the family Flavobacteriacea and its only closest neighbor is Aquimarina spongiae (96.6%). Based on screening for algicidal activity, strain antisso-27 exhibits potent activity against the toxic cyanobacterium Microcystis aeruginosa. Both the strain antisso-27 bacterial culture and its culture filtrate show algicidal activity against the toxic cyanobacterium, indicating that an algicidal substance is released from strain antisso-27. The algicidal activity of strain antisso-27 occurs during the late stationary phase of bacterial growth. Strain antisso-27 can synthesize an algicidal protein with a molecular mass of 190 kDa, and its isoelectric point is approximately 9.4. This study explores the nature of this algicidal protein such as l-amino acid oxidase with broad substrate specificity. The enzyme is most active with l-leucine, l-isoleucine, l-methionine and l-valine and the hydrogen peroxide generated by its catalysis mediates algicidal activity. This is the first report on an Aquimarina strain algicidal to the toxic M. aeruginosa and the algicidal activity is generated through its enzymatic activity of l-amino acid oxidase.  相似文献   

17.
Liew HC  Khoo HE  Moore PK  Bhatia M  Lu J  Moochhala SM 《Life sciences》2007,80(18):1664-1668
Stonustoxin (SNTX) is a 148 kDa, dimeric, hypotensive and lethal protein factor isolated from the venom of the stonefish Synanceja horrida. SNTX (10-320 ng/ml) progressively causes relaxation of endothelium-intact, phenylephrine (PE)-precontracted rat thoracic aortic rings. The SNTX-induced vasorelaxation was inhibited by L-N(G)-nitro arginine methyl ester (L-NAME), suggesting that nitric oxide (NO) contributes to the SNTX-induced response. Interestingly, D, L-proparglyglycine (PAG) and beta-cyano-L-alanine (BCA), irreversible and competitive inhibitors of cystathionine-gamma-lyase (CSE) respectively, also inhibited SNTX-induced vasorelaxation, indicating that H(2)S may also play a part in the effect of SNTX. The combined use of L-NAME with PAG or BCA showed that H(2)S and NO act synergistically in effecting SNTX-induced vasorelaxation.  相似文献   

18.
The 3D structure of the flavoprotein D-amino acid oxidase (DAAO) from the yeast Rhodotorula gracilis (RgDAAO) in complex with the competitive inhibitor anthranilate was solved (resolution 1.9A) and structural features relevant for the overall conformation and for catalytic activity are described. The FAD is bound in an elongated conformation in the core of the enzyme. Two anthranilate molecules are found within the active site cavity; one is located in a funnel forming the entrance, and the second is in contact with the flavin. The anchoring of the ligand carboxylate with Arg285 and Tyr223 is found for all complexes studied. However, while the active site group Tyr238-OH interacts with the carboxylate in the case of the substrate D-alanine, of D-CF(3)-alanine, or of L-lactate, in the anthranilate complex the phenol group rotates around the C2-C3 bond thus opening the entrance of the active site, and interacts there with the second bound anthranilate. This movement serves in channeling substrate to the bottom of the active site, the locus of chemical catalysis. The absence in RgDAAO of the "lid" covering the active site, as found in mammalian DAAO, is interpreted as being at the origin of the differences in kinetic mechanism between the two enzymes. This lid has been proposed to regulate product dissociation in the latter, while the side-chain of Tyr238 might exert a similar role in RgDAAO. The more open active site architecture of RgDAAO is the origin of its much broader substrate specificity. The RgDAAO enzyme forms a homodimer with C2 symmetry that is different from that reported for mammalian D-amino acid oxidase. This different mode of aggregation probably causes the differences in stability and tightness of FAD cofactor binding between the DAAOs from different sources.  相似文献   

19.
D-amino acid oxidase (DAO) degrades the gliotransmitter D-serine, a potent endogenous ligand of N-methyl-D-aspartate type glutamate receptors. It also has been suggested that D-DOPA, the stereoisomer of L-DOPA, is oxidized by DAO and then converted to dopamine via an alternative biosynthetic pathway. Here, we provide direct crystallographic evidence that D-DOPA is readily fitted into the active site of human DAO, where it is oxidized by the enzyme. Moreover, our kinetic data show that the maximal velocity for oxidation of D-DOPA is much greater than for D-serine, which strongly supports the proposed alternative pathway for dopamine biosynthesis in the treatment of Parkinson's disease. In addition, determination of the structures of human DAO in various states revealed that the conformation of the hydrophobic VAAGL stretch (residues 47-51) to be uniquely stable in the human enzyme, which provides a structural basis for the unique kinetic features of human DAO.  相似文献   

20.
N-methyl-D-aspartate receptors (NMDARs) play critical roles in excitatory synaptic transmission in the vertebrate central nervous system. NMDARs need D-serine for their channel activities in various brain regions. In mammalian brains, D-serine is produced from L-serine by serine racemase and degraded by D-amino acid oxidase (DAO) to 3-hydroxypyruvate. In avian organs, such as the kidney, in addition to DAO, D-serine is also degraded to pyruvate by D-serine dehydratase (DSD). To examine the roles of these two enzymes in avian brains, we developed a method to simultaneously measure DAO and DSD activities. First, the keto acids produced from D-serine were derivatized with 3-methyl-2-benzothiazolinone hydrazone to stable azines. Second, the azine derivatives were quantified by means of reverse-phase high-performance liquid chromatography using 2-oxoglutarate as an internal standard. This method allowed the simultaneous detection of DAO and DSD activities as low as 100 pmol/min/mg protein. Chicken brain showed only DSD activities (0.4+/-0.2 nmol/min/mg protein) whereas rat brain exhibited only DAO activities (0.7+/-0.1 nmol/min/mg protein). This result strongly suggests that DSD plays the same role in avian brains, as DAO plays in mammalian brains. The present method is applicable to other keto acids producing enzymes with minor modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号