首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 756 毫秒
1.
2.
3.
We cloned and characterized Neurospora NcSSK22 and NcPBS2 genes, similar to yeast SSK22 mitogen-activated protein (MAP) kinase kinase kinase and the PBS2 MAP kinase kinase genes, respectively. Disruptants of the NcSSK22 gene were sensitive to osmotic stress and resistant to iprodione and fludioxonil. Their phenotypes were similar to those of osmotic-sensitive (os) mutants os-1, os-2, os-4, and os-5. The os-4 mutant strain transformed with the wild-type NcSSK22 gene grew on a medium containing 4% NaCl and was sensitive to iprodione and fludioxonil. In contrast, the NcPBS2 gene complemented the osmotic sensitivity and fungicide resistance of the os-5 mutant strain. We sequenced the NcPBS2 gene of the os-5 mutant strain (NM216o) and found five nucleotides deleted within the kinase domain. This result suggests that the gene products of os-4 and os-5 are components of the MAP kinase cascade, which is probably regulated upstream by two-component histidine kinase encoded by the os-1/nik1 gene.  相似文献   

4.
5.
Neurospora crassa osmosensitive (os) mutants are sensitive to high osmolarity and therefore are unable to grow on medium containing 4% NaCl. We found that os-2 and os-5 mutants were resistant to the phenylpyrrole fungicides fludioxonil and fenpiclonil. To understand the relationship between osmoregulation and fungicide resistance, we cloned the os-2 gene by using sib selection. os-2 encodes a putative mitogen-activated protein (MAP) kinase homologous to HOG1 and can complement the osmosensitive phenotype of a Saccharomyces cerevisiae hog1 mutant. We sequenced three os-2 alleles and found that all of them were null with either frameshift or nonsense point mutations. An os-2 gene replacement mutant also was generated and was sensitive to high osmolarity and resistant to phenylpyrrole fungicides. Conversely, os-2 mutants transformed with the wild-type os-2 gene could grow on media containing 4% NaCl and were sensitive to phenylpyrrole fungicides. Fludioxonil stimulated intracellular glycerol accumulation in wild-type strains but not in os-2 mutants. Fludioxonil also caused wild-type conidia and hyphal cells to swell and burst. These results suggest that the hyperosmotic stress response pathway of N. crassa is the target of phenylpyrrole fungicides and that fungicidal effects may result from a hyperactive os-2 MAP kinase pathway.  相似文献   

6.
Two-component systems, consisting of proteins with histidine kinase and/or response regulator domains, regulate environmental responses in bacteria, Archaea, fungi, slime molds, and plants. Here, we characterize RRG-1, a response regulator protein from the filamentous fungus Neurospora crassa. The cell lysis phenotype of Δrrg-1 mutants is reminiscent of osmotic-sensitive (os) mutants, including nik-1/os-1 (a histidine kinase) and strains defective in components of a mitogen-activated protein kinase (MAPK) pathway: os-4 (MAPK kinase kinase), os-5 (MAPK kinase), and os-2 (MAPK). Similar to os mutants, Δrrg-1 strains are sensitive to hyperosmotic conditions, and they are resistant to the fungicides fludioxonil and iprodione. Like os-5, os-4, and os-2 mutants, but in contrast to nik-1/os-1 strains, Δrrg-1 mutants do not produce female reproductive structures (protoperithecia) when nitrogen starved. OS-2-phosphate levels are elevated in wild-type cells exposed to NaCl or fludioxonil, but they are nearly undetectable in Δrrg-1 strains. OS-2-phosphate levels are also low in Δrrg-1, os-2, and os-4 mutants under nitrogen starvation. Analysis of the rrg-1D921N allele, mutated in the predicted phosphorylation site, provides support for phosphorylation-dependent and -independent functions for RRG-1. The data indicate that RRG-1 controls vegetative cell integrity, hyperosmotic sensitivity, fungicide resistance, and protoperithecial development through regulation of the OS-4/OS-5/OS-2 MAPK pathway.  相似文献   

7.
OS-2 MAP kinase is involved in osmoadaptation in Neurospora crassa. Clock-controlled genes ccg-1, bli-3, and con-10 were induced by osmotic stress in an OS-2 dependent manner. In contrast, osmotic stress did not affect the expression of clock genes frq, wc-1, and wc-2 or of clock-controlled genes ccg-2 and bli-4. These results suggest that OS-2 participates in the regulation of certain circadian-clock output genes.  相似文献   

8.
Neurospora crassa osmosensitive (os) mutants are sensitive to high osmolarity and therefore are unable to grow on medium containing 4% NaCl. We found that os-2 and os-5 mutants were resistant to the phenylpyrrole fungicides fludioxonil and fenpiclonil. To understand the relationship between osmoregulation and fungicide resistance, we cloned the os-2 gene by using sib selection. os-2 encodes a putative mitogen-activated protein (MAP) kinase homologous to HOG1 and can complement the osmosensitive phenotype of a Saccharomyces cerevisiae hog1 mutant. We sequenced three os-2 alleles and found that all of them were null with either frameshift or nonsense point mutations. An os-2 gene replacement mutant also was generated and was sensitive to high osmolarity and resistant to phenylpyrrole fungicides. Conversely, os-2 mutants transformed with the wild-type os-2 gene could grow on media containing 4% NaCl and were sensitive to phenylpyrrole fungicides. Fludioxonil stimulated intracellular glycerol accumulation in wild-type strains but not in os-2 mutants. Fludioxonil also caused wild-type conidia and hyphal cells to swell and burst. These results suggest that the hyperosmotic stress response pathway of N. crassa is the target of phenylpyrrole fungicides and that fungicidal effects may result from a hyperactive os-2 MAP kinase pathway.  相似文献   

9.
10.
11.
The Arabidopsis thaliana ARAKIN (ATMEKK1) gene shows strong homology to members of the (MAP) mitogen-activated protein kinase family, and was previously shown to functionally complement a mating defect in Saccharomyces cerevisiae at the level of the MEKK kinase ste11. The yeast STE11 is an integral component of two MAP kinase cascades: the mating pheromone pathway and the HOG (high osmolarity glycerol response) pathway. The HOG signal transduction pathway is activated by osmotic stress and causes increased glycerol synthesis. Here, we first demonstrate that ATMEKK1 encodes a protein with kinase activity, examine its properties in yeast MAP kinase cascades, then examine its expression under stress in A. thaliana. Yeast cells expressing the A. thaliana ATMEKK1 survive and grow under high salt (NaCl) stress, conditions that kill wild-type cells. Enhanced glycerol production, observed in non-stressed cells expressing ATMEKK1 is the probable cause of yeast survival. Downstream components of the HOG response pathway, HOG1 and PBS2, are required for ATMEKK1-mediated yeast survival. Because ATMEKK1 functionally complements the sho1/ssk2/ssk22 triple mutant, it appears to function at the level of the MEKK kinase step of the HOG response pathway. In A. thaliana, ATMEKK1 expression is rapidly (within 5 min) induced by osmotic (NaCl) stress. This is the same time frame for osmoticum-induced effects on the electrical properties of A. thaliana cells, both an immediate response and adaptation. Therefore, we propose that the A. thaliana ATMEKK1 may be a part of the signal transduction pathway involved in osmotic stress.  相似文献   

12.
We previously reported that the group III histidine kinase Dic1p in the maize pathogen Cochliobolus heterostrophus is involved in resistance to dicarboximide and phenylpyrrole fungicides and in osmotic adaptation. In addition, exposure to the phenylpyrrole fungicide fludioxonil led to improper activation of Hog1-type mitogen-activated protein kinases (MAPKs) in some phytopathogenic fungi, including C. heterostrophus. Here we report, for the first time, the relationship between the group III histidine kinase and Hog1-related MAPK: group III histidine kinase is a positive regulator of Hog1-related MAPK in filamentous fungi. The phosphorylation pattern of C. heterostrophus BmHog1p (Hog1-type MAPK) was analyzed in wild-type and dic1-deficient strains by Western blotting. In the wild-type strain, phosphorylated BmHog1p was detected after exposure to both iprodione and fludioxonil at a concentration of 1 microg/ml. In the dic1-deficient strains, phosphorylated BmHog1p was not detected after exposure to 10 microg/ml of the fungicides. In response to osmotic stress (0.4 M KCl), a trace of phosphorylated BmHog1p was found in the dic1-deficient strains, whereas the band representing active BmHog1p was clearly detected in the wild-type strain. Similar results were obtained for Neurospora crassa Os-2p MAPK phosphorylation in the mutant of the group III histidine kinase gene os-1. These results indicate that group III histidine kinase positively regulates the activation of Hog1-type MAPKs in filamentous fungi. Notably, the Hog1-type MAPKs were activated at high fungicide (100 microg/ml) and osmotic stress (0.8 M KCl) levels in the histidine kinase mutants of both fungi, suggesting that another signaling pathway activates Hog1-type MAPKs in these conditions.  相似文献   

13.
OS-2 MAP kinase is involved in osmoadaptation in Neurospora crassa. Clock-controlled genes ccg-1, bli-3, and con-10 were induced by osmotic stress in an OS-2 dependent manner. In contrast, osmotic stress did not affect the expression of clock genes frq, wc-1, and wc-2 or of clock-controlled genes ccg-2 and bli-4. These results suggest that OS-2 participates in the regulation of certain circadian-clock output genes.  相似文献   

14.
15.
We investigated the effects of iprodione and fludioxonil on the pathogenic yeast Candida albicans. Growth of the wild-type IFO1385 strain of C. albicans was inhibited by both fungicides, while Saccharomyces cerevisiae was basically unaffected by them even at a concentration of 25 microg/ml. Both fungicides stimulated glycerol synthesis in C. albicans but not in S. cerevisiae. The antioxidant alpha-tocopherol acetate and the cytochrome P-450 inhibitor piperonyl butoxide antagonized the fungitoxicity of iprodione and fludioxonil in C. albicans. It is known that mutations within the histidine kinase NIK1/OS-1 gene confer resistance to iprodione and fludioxonil in Neurospora crassa, while the fungicide-insensitive S. cerevisiae has only one histidine kinase SLN1 gene in its genome. In contrast, C. albicans has three histidine kinase genes, namely CaSLN1, CaNIK1/COS1, and CaHK1, the null mutants of which were found to impair the hyphal formation. Iprodione and fludioxonil were found to suppress filamentation when the IFO1385 strain was incubated on a solid medium containing fetal bovine serum. These observations suggest that iprodione and fludioxonil interfere with the CaNIK1/COS1 signal transduction pathway, resulting in glycerol synthesis stimulation and the inhibition of hyphal formation.  相似文献   

16.
Wheeler JM  Thomas JH 《Genetics》2006,174(3):1327-1336
Organisms exposed to the damaging effects of high osmolarity accumulate solutes to increase cytoplasmic osmolarity. Yeast accumulates glycerol in response to osmotic stress, activated primarily by MAP kinase Hog1 signaling. A pathway regulated by protein kinase C (PKC1) also responds to changes in osmolarity and cell wall integrity. C. elegans accumulates glycerol when exposed to high osmolarity, but the molecular pathways responsible for this are not well understood. We report the identification of two genes, osm-7 and osm-11, which are related members of a novel gene family. Mutations in either gene lead to high internal levels of glycerol and cause an osmotic resistance phenotype (Osr). These mutants also have an altered defecation rhythm (Dec). Mutations in cuticle collagen genes dpy-2, dpy-7, and dpy-10 cause a similar Osr Dec phenotype. osm-7 is expressed in the hypodermis and may be secreted. We hypothesize that osm-7 and osm-11 interact with the cuticle, and disruption of the cuticle causes activation of signaling pathways that increase glycerol production. The phenotypes of osm-7 are not suppressed by mutations in MAP kinase or PKC pathways, suggesting that C. elegans uses signaling pathways different from yeast to mount a response to osmotic stress.  相似文献   

17.
ASR1, a stress-induced tomato protein, protects yeast from osmotic stress   总被引:1,自引:0,他引:1  
Asr1 , a tomato gene induced by abiotic stress, belongs to a family, composed by at least three members, involved in adaptation to dry climates. To understand the mechanism by which proteins of this family seem to protect cells from water loss in plants, we expressed Asr1 in the heterologous expression system Saccharomyces cerevisiae under the control of a galactose-inducible promoter. In a mutant yeast strain deficient in one component of the stress-responsive high-osmolarity glycerol (HOG) pathway, namely the MAP kinase Hog 1, the synthesis of ASR1 protein restores growth under osmotic stress conditions such as 0.5  M NaCl and 1.2  M sorbitol. In contrast, the rescuing of this phenotype was less evident using a wild-type strain or the upstream MAP kinase kinase (Pbs2)-deficient strain. In both knock-out strains impaired in glycerol synthesis because of a dysfunctional HOG pathway, but not in wild-type, ASR1 led to the accumulation of endogenous glycerol in an osmotic stress-independent and unrestrained manner. These data suggest that ASR1 complements yeast HOG-deficient phenotypes by inducing downstream components of the HOG pathway. The results are discussed in terms of the function of ASR proteins in planta at the molecular and cellular level.  相似文献   

18.
Glutaredoxins are small heat-stable proteins that are active as glutathione-dependent oxidoreductases and are encoded by two genes, designated GRX1 and GRX2, in the yeast Saccharomyces cerevisiae. We report here that the expression of both genes is induced in response to various stress conditions including oxidative, osmotic, and heat stress and in response to stationary phase growth and growth on non-fermentable carbon sources. Furthermore, both genes are activated by the high-osmolarity glycerol pathway and negatively regulated by the Ras-protein kinase A pathway via stress-responsive STRE elements. GRX1 contains a single STRE element and is induced to significantly higher levels compared to GRX2 following heat and osmotic shock. GRX2 contains two STRE elements, and is rapidly induced in response to reactive oxygen species and upon entry into stationary phase growth. Thus, these data support the idea that the two glutaredoxin isoforms in yeast play distinct roles during normal cellular growth and in response to stress conditions.  相似文献   

19.
The yeast Saccharomyces cerevisiae responds to osmotic stress, i.e., an increase in osmolarity of the growth medium, by enhanced production and intracellular accumulation of glycerol as a compatible solute. We have cloned a gene encoding the key enzyme of glycerol synthesis, the NADH-dependent cytosolic glycerol-3-phosphate dehydrogenase, and we named it GPD1. gpd1 delta mutants produced very little glycerol, and they were sensitive to osmotic stress. Thus, glycerol production is indeed essential for the growth of yeast cells during reduced water availability. hog1 delta mutants lacking a protein kinase involved in osmostress-induced signal transduction (the high-osmolarity glycerol response [HOG] pathway) failed to increase glycerol-3-phosphate dehydrogenase activity and mRNA levels when osmotic stress was imposed. Thus, expression of GPD1 is regulated through the HOG pathway. However, there may be Hog1-independent mechanisms mediating osmostress-induced glycerol accumulation, since a hog1 delta strain could still enhance its glycerol content, although less than the wild type. hog1 delta mutants are more sensitive to osmotic stress than isogenic gpd1 delta strains, and gpd1 delta hog1 delta double mutants are even more sensitive than either single mutant. Thus, the HOG pathway most probably has additional targets in the mechanism of adaptation to hypertonic medium.  相似文献   

20.
The internal hydrostatic pressure (turgor) of the filamentous fungus Neurospora crassa is regulated at about 400–500 kiloPascals, primarily by an osmotic MAP kinase cascade which activates ion uptake from the extracellular medium and glycerol synthesis. In the absence of hyperosmotic stress, the phenylpyrrole fungicide fludioxonil activates the osmotic MAP kinase cascade, resulting in cell death. Turgor, the electrical potential and net ion fluxes were measured after treatment with fludioxonil. In wildtype, fludioxonil causes a hyperpolarization of the plasma membrane and net H+ efflux from the cell, consistent with activation of the H+-ATPase. At the same time, net K+ uptake occurs, and turgor increases (about 2-fold above normal levels). None of these changes are observed in the os–2 mutant (which lacks a functional MAP kinase, the last of the three kinases in the osmotic MAP kinase cascade). Tip growth ceases as hyperpolarization, net ion flux changes, and turgor increases begin. The inappropriate turgor increase is the probable cause of eventual lysis and death. The results corroborate a multi-pathway response to hyperosmotic stress that includes activation of plasma membrane transport. The relation to cell expansion (tip growth) is not direct. Increases in turgor due to ion transport might be expected to increase growth rate, but this does not occur. Instead, there must be a complex regulatory interplay between the growth and the turgor driving force, possibly mediated by regulation of cell wall extensibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号