首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoinhibition, defined as the inhibition of photosynthesis caused by excessive radiance, affects field production to a great extent. This phenomenon is particularly relevant in reforestation practices, when one deals with forests of rapid growth such asEucalyptus. The imposition of additional stress factors during exposure to high radiance increases the potential for photoinhibitory effects, so the inhibition of photosynthesis indicates that the plant is submitted to stressful conditions. Photoinhibition can be reversible, playing a protective role for the photosynthetic systems, but it can also reflect damage that has already occurred in the photosynthetic apparatus, being irreversible in this case. In this review, we present the physiological and molecular mechanisms of photoinhibition and discuss the interaction between light and other stress factors and its effects on plants destined for reforestation. In addition, the present work analyzes some of the features and strategies that help plants avoid or restrict the occurrence of photoinhibition. For instance, pigments and enzymes which naturally occur in plants can prevent photoinhibition, while preadaptation to nonideal conditions can enhance tolerance to a certain stress factor. Most of these morphological, metabolic, and biochemical mechanisms of defense are related to the dissipation of excessive energy such as heat. Understanding these mechanisms can help improve cultivation procedures, avoid the plants’ death, and increase productivity in the field.  相似文献   

2.
王国莉  郭振飞 《广西植物》2005,25(4):375-379,361
综述了近年来有关植物低温光抑制和光保护机制的研究进展。与以往对光抑制的定义不同,现在认为光抑制既包括光对光合作用反应中心的损伤,也包括植物为避免光破坏而形成的生理生化保护机制。该文主要从三个方面展开论述:低温下光抑制发生的原因及光抑制的位点;低温光抑制时可能的光保护机制;低温光抑制下过剩光能的耗散机制。  相似文献   

3.
Photoinhibition in plants depends on the extent of light energy being absorbed in excess of what can be used in photochemistry and is expected to increase as environmental constraints limit CO2 assimilation. Water stress induces the closure of stomata, limiting carbon availability at the carboxylation sites in the chloroplasts and, therefore, resulting in an excessive excitation of the photosynthetic apparatus, particularly photosystem II (PSII). Mechanisms have evolved in plants in order to protect against photoinhibition, such as non-photochemical energy dissipation, chlorophyll concentration changes, chloroplast movements, increases in the capacity for scavenging the active oxygen species, and leaf movement or paraheliotropism, avoiding direct exposure to sun. In beans (Phaseolus vulgaris L.), paraheliotropism seems to be an important feature of the plant to avoid photoinhibition. The extent of the leaf movement is increased as the water potential drops, reducing light interception and maintaining a high proportion of open PSII reaction centres. Photoinhibition in water-stressed beans, measured as the capacity to recover F(v)/F(m), is not higher than in well-watered plants and leaf temperature is maintained below the ambient, despite the closure of stomata. Bean leaves restrained from moving, increase leaf temperature and reduce qP, the content of D1 protein and the capacity to recover F(v)/F(m) after dark adaptation, the extent of such changes being higher in water-stressed plants. Data are presented suggesting that even though protective under water stress, paraheliotropism, by reducing light interception, affects the capacity to maintain high CO2 assimilation rates throughout the day in well-watered plants.  相似文献   

4.
喜光榕树和耐荫榕树光适应机制的差异   总被引:11,自引:0,他引:11  
100%和36%光强下生长的喜光的斜叶榕的光合能力高于耐荫的假斜叶榕,而热耗散能力与之相似,说明强光下斜叶榕主要通过光合作用利用光能和热耗散、假斜叶榕主要通过热耗散防御光破坏.100%光强下生长的两种榕树的日间光抑制程度相似,但叶表光强相同情况下各光强下生长的假斜叶榕的光抑制均比斜叶榕严重.100%光强下假斜叶榕叶片悬挂角大于斜叶榕,导致日间叶表光强低于斜叶榕,这可能是两种榕树日间光抑制程度相似的原因,表明叶片悬挂角的适应变化对假斜叶榕有重要的意义.  相似文献   

5.
This review confronts the classical view of plant immune defence and light acclimation with recently published data. Earlier findings have linked plant immune defences to nucleotide‐binding site leucine‐rich repeat (NBS‐LRR)‐dependent recognition of pathogen effectors and to the role of plasma membrane‐localized NADPH‐dependent oxidoreductase (AtRbohD), reactive oxygen species (ROS) and salicylic acid (SA). However, recent results suggest that plant immune defence also depends on the absorption of excessive light energy and photorespiration. Rapid changes in light intensity and quality often cause the absorption of energy, which is in excess of that required for photosynthesis. Such excessive light energy is considered to be a factor triggering photoinhibition and disturbance in ROS/hormonal homeostasis, which leads to cell death in foliar tissues. We highlight here the tight crosstalk between ROS‐ and SA‐dependent pathways leading to light acclimation, and defence responses leading to pathogen resistance. We also show that LESION SIMULATING DISEASE 1 (LSD1) regulates and integrates these processes. Moreover, we discuss the role of plastid–nucleus signal transduction, photorespiration, photoelectrochemical signalling and ‘light memory’ in the regulation of acclimation and immune defence responses. All of these results suggest that plants have evolved a genetic system that simultaneously regulates systemic acquired resistance (SAR), cell death and systemic acquired acclimation (SAA).  相似文献   

6.
Although light is the driving force of photosynthesis, excessive light can be harmful. One of the main processes that limits photosynthesis is photoinhibition, the process of light-induced photodamage. When the absorbed light exceeds the amount that is dissipated by photosynthetic electron flow and other processes, damaging radicals are formed that mostly inactivate photosystem II (PSII). Damaged PSII must be replaced by a newly repaired complex in order to preserve full photosynthetic activity. Chlorella ohadii is a green microalga, isolated from biological desert soil crusts, that thrives under extreme high light and is highly resistant to photoinhibition. Therefore, C. ohadii is an ideal model for studying the molecular mechanisms underlying protection against photoinhibition. Comparison of the thylakoids of C. ohadii cells that were grown under low light versus extreme high light intensities found that the alga employs all three known photoinhibition protection mechanisms: (i) massive reduction of the PSII antenna size; (ii) accumulation of protective carotenoids; and (iii) very rapid repair of photodamaged reaction center proteins. This work elucidated the molecular mechanisms of photoinhibition resistance in one of the most light-tolerant photosynthetic organisms, and shows how photoinhibition protection mechanisms evolved to marginal conditions, enabling photosynthesis-dependent life in severe habitats.  相似文献   

7.
8.
Plants are able to acclimate to their growth light environments by utilizing a number of short- and long-term mechanisms. One strategy is to prevent accumulation of excess reactive oxygen species that can lead to photoinhibition of photosynthesis. Ureides, generated from purine degradation, have been proposed as antioxidants and involved in certain abiotic stress responses. Eutrema salsugineum (Thellungiella salsuginea) is an extremophilic plant known to exhibit a high degree of tolerance to a variety of abiotic stresses that invariably generate reactive oxygen species. In the present study we have investigated the possible role of the ureide metabolic pathway during acclimation to growth irradiance and its conference of tolerance to photoinhibition in Eutrema. Ureide accumulation was greater under high light growth which also conferred tolerance to photoinhibition at low temperature as measured by the maximal quantum yield of PSII photochemistry. This may represent an adaptive plastic response contributing to the extreme tolerance exhibited by this plant. Our results would provide evidence that ureide accumulation may be involved in abiotic stress as another defence mechanism in response to oxidative stress.  相似文献   

9.
《Acta Oecologica》1999,20(1):15-23
The adaptive strategies to high radiation and water stress of the drought tolerant evergreen sclerophylls Quercus coccifera and Arbutus unedo are compared to those of the semi-deciduous Cistus spp. (C. albidus and C. monspeliensis). Cistus spp. partially avoided drought by a marked reduction of their transpirational surface through leaf abscission during summer, when predawn water potential declined below -5.5 MPa. Chlorophyll fluorescence measurements revealed a reversible diurnal decrease of maximum photochemical efficiency of PSII (Fv/Fm), which became more accentuated during summer drought in all species. An important strategy to avoid damage by excessive radiation levels in Cistus spp. was the structural regulation of light interception through leaf angle changes, from a more horizontal orientation in spring (< 35°) to a more vertical orientation in summer (> 70°). Horizontal orientated leaves were highly susceptible to photoinhibition, and excessive radiation often resulted in irreversible photodamage followed by leaf abscission during summer, whereas vertical leaf orientation appeared to protect the leaf from severe photoinhibition. Still, these mechanisms were not fully successful in avoiding chronic photoinhibition, and predawn Fv/Fm values remained low in Cistus spp. during summer (only exhibiting a partial overnight recovery). Evergreen sclerophylls were less susceptible to photoinhibition, and the diurnal decline in Fv/Fm remained fully reversible during drought. Structural regulation of light interception was not found to be an important strategy in these species, and only small, though significant changes in leaf angle occurred. The ecological importance of the adaptive strategies of each functional group is discussed.  相似文献   

10.
The response of the heat-sensitive dgd1-2 and dgd1-3 Arabidopsis mutants depleted in the galactolipid DGDG to photoinhibition of chloroplasts photosystem II was studied to verify if there is a relationship between heat stress vulnerability due to depletion in DGDG and the susceptibility to photoinhibitory damage. Non-photochemical quenching (NPQ) is known to dissipate excessive absorbed light energy as heat to protect plants against photodamage. The main component of NPQ is dependent of the transthylakoid pH gradient and is modulated by zeaxanthin (Zx) synthesis. These processes together with chlorophyll fluorescence induction were used to characterize the response of the genotypes. The mutants were more sensitive to photoinhibition to a small extent but this was more severe for dgd1-3 especially at high light intensity. It was deduced that DGDG was not a main factor to influence photoinhibition but other lipid components could affect PSII sensitivity towards photoinhibition in relation to the physical properties of the thylakoid membrane. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

11.
Photoprotection in plants: a new light on photosystem II damage   总被引:4,自引:0,他引:4  
Sunlight damages photosynthetic machinery, primarily photosystem II (PSII), and causes photoinhibition that can limit plant photosynthetic activity, growth and productivity. The extent of photoinhibition is associated with a balance between the rate of photodamage and its repair. Recent studies have shown that light absorption by the manganese cluster in the oxygen-evolving complex of PSII causes primary photodamage, whereas excess light absorbed by light-harvesting complexes acts to cause inhibition of the PSII repair process chiefly through the generation of reactive oxygen species. As we review here, PSII photodamage and the inhibition of repair are therefore alleviated by photoprotection mechanisms associated with avoiding light absorption by the manganese cluster and successfully consuming or dissipating the light energy absorbed by photosynthetic pigments, respectively.  相似文献   

12.
Multiple functions of photosystem II   总被引:3,自引:0,他引:3  
The most important function of photosystem II (PSII) is its action as a water-plastoquinone oxido-reductase. At the expense of light energy, water is split, and oxygen and plastoquinol are formed. In addition to this most important activity, PSII has additional functions, especially in the regulation of (light) energy distribution. The downregulation of PSII during photoinhibition is a protection measure. PSII is an anthropogenic target for many herbicides. There is a unique action of bicarbonate on PSII. Decrease in the activity of PSII is the first effect in a plant under stress; this decreased activity can be most easily measured with fluorescence. PSII is a sensor for stress, and induces regulatory processes with different time scales: photochemical quenching, formation of a proton gradient, state transitions, downregulation by photoinhibition and gene expression.  相似文献   

13.
《Acta Oecologica》2001,22(2):129-138
The functional variability in leaf angle distribution within the canopy was analysed with respect to regulation of light interception and photoprotection. Leaf orientation strongly determined the maximum photochemical efficiency of PSII (Fv/Fm) during summer: horizontal leaves were highly photoinhibited whereas vertical leaf orientation protected the leaves from severe photoinhibition. The importance of leaf orientation within the canopy was analysed in two Mediterranean macchia species with distinct strategies for drought and photoinhibition avoidance during summer. The semi-deciduous species (Cistus monspeliensis) exhibited strong seasonal but minimal spatial variability in leaf orientation. Reversible structural regulation of light interception by vertical leaf orientation during summer protected the leaves from severe photoinhibition. The evergreen sclerophyll (Quercus coccifera) exhibited high spatial variability in leaf angle distribution throughout the year and was less susceptible to photoinhibition. The importance of both strategies for plant primary production was analysed with a three-dimensional canopy photoinhibition model (CANO-PI). Simulations indicated that high variability in leaf angle orientation in Q. coccifera resulted in whole-plant carbon gain during the summer, which was 94 % of the maximum rate achieved by theoretical homogeneous leaf orientations. The high spatial variability in leaf angle orientation may be an effective compromise between efficient light harvesting and avoidance of excessive radiation in evergreen plants and may optimize annual primary production. Whole plant photosynthesis was strongly reduced by water stress and photoinhibition in C. monspeliensis; however, the simulations indicated that growth-related structural regulation of light interception served as an important protection against photoinhibitory reduction in whole-plant carbon gain.  相似文献   

14.
缺磷强光下脐橙的过剩能量耗散机制   总被引:10,自引:4,他引:10  
采用营养液培养的方法,对缺磷强光下脐橙的过剩能量耗散机制进行了研究.结果表明,在强光下,用缺磷营养液处理脐橙后,光合色素含量、净光合速率Pn、光呼吸速率Pr、最大荧光Fm、光化学效率Fv/Fm和电子传递速率ETR下降,初始荧光Fo和光呼吸/光合比Pr/Pn升高.叶绿素荧光的非光化学猝灭的快相qNf下降,中间相qNm和慢相qNs升高.用DTT处理后Fo升高,qNmqNs下降,qNf无明显变化.缺磷强光胁迫加剧了脐橙光合作用的光抑制,进而启动了多种能量耗散机制.  相似文献   

15.
The effects of salinity on the primary processes of photosynthesis were studied in the red alga Porphyra perforata. The results show that there are at least three sites in the photosynthetic apparatus of this alga that were affected by increased salinity. The first site, photoactivation and dark-inactivation of electron flow on the reducing side of photosystem I, was completely inhibited at high salinity. The second site, electron flow on the oxidizing side (water side) of photosystem II, was inhibited as was the re-oxidation of Q in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. The third site affected by high salinity was the transfer of light energy probably from pigment system II to I. High salinity reduced the amount of light energy that reached the reaction centers of photosystem II.

These effects are discussed in relation to the mechanisms available to this plant to avoid photoinhibition when it is exposed to stresses such as high light and high salinity which are conditions that are commonly found in the intertidal habitat.

  相似文献   

16.
Too much of a good thing: light can be bad for photosynthesis.   总被引:35,自引:0,他引:35  
Even though light is the ultimate substrate for photosynthetic energy conversion, it can also harm plants. This toxicity is targeted to the water-splitting photosystem II and leads to damage and degradation of the reaction centre D1-polypeptide. The degradation of this very important protein appears to be a direct consequence of photosystem II chemistry involving highly oxidizing radicals and toxic oxygen species. The frequency of this damage is relatively low under normal conditions but becomes a significant problem for the plant with increasing light intensity, especially when combined with other environmental stress factors. However, the plant survives this photoinhibition through an efficient repair system which involves an autoproteolytic activity of the photosystem II complex, D1-polypeptide synthesis and reassembly of active complexes.  相似文献   

17.
Mesembryanthemum crystallinum L. (Aizoaceae) is a facultative annual halophyte and a C(3)-photosynthesis/crassulacean acid metabolism intermediate species currently used as a model plant in stress physiology. Both salinity and high light irradiance stress are known to induce CAM in this species. The present study was performed to provide a diagnosis of alterations at the photosystem II level during salinity and irradiance stress. Plants were subjected for up to 13 days to either 0.4M NaCl salinity or high irradiance of 1000 micromol m(-2)s(-1), as well as to both stress factors combined (LLSA=low light plus salt; HLCO=high light of 1000 micromol m(-2)s(-1), no salt; HLSA=high light plus salt). A control of LLCO=low light of 200 micromol m(-2)s(-1), no salt was used. Parameters of chlorophyll a fluorescence of photosystem II (PSII) were measured with a pulse amplitude modulated fluorometer. HLCO and LLSA conditions induced a weak degree of CAM with day/night changes of malate levels (Deltamalate) of approximately 12mM in the course of the experiment, while HLSA induced stronger CAM of Deltamalate approximately 20 mM. Effective quantum yield of PSII, DeltaF/F'(m), was only slightly affected by LLSA, somewhat reduced during the course of the experiment by HLCO and clearly reduced by HLSA. Potential quantum efficiency of PSII, F(v)/F(m), at predawn times was not affected by any of the conditions, always remaining at 0.8, showing that there was no acute photoinhibition. During the course of the days HL alone (HLCO) also did not elicit photoinhibition; salt alone (LLSA) caused acute photoinhibition which was amplified by the combination of the two stresses (HLSA). Non-photochemical, NPQ, quenching remained low (<0.5) under LLCO, LLSA and HLCO and increased during the course of the experiment under HLSA to 1-2. Maximum apparent photosynthetic electron transport rates, ETR(max), declined during the daily courses and were reduced by LLSA and to a similar extent by HLSA. It is concluded that M. crystallinum expresses effective stress tolerance mechanisms but photosynthetic capacity is reduced by the synergistic effects of salinity and light irradiance stress combined.  相似文献   

18.
Photoinhibition of photosystem II (PSII) occurs when the rate of light-induced inactivation (photodamage) of PSII exceeds the rate of repair of the photodamaged PSII. For the quantitative analysis of the mechanism of photoinhibition of PSII, it is essential to monitor the rate of photodamage and the rate of repair separately and, also, to examine the respective effects of various perturbations on the two processes. This strategy has allowed the re-evaluation of the results of previous studies of photoinhibition and has provided insight into the roles of factors and mechanisms that protect PSII from photoinhibition, such as catalases and peroxidases, which are efficient scavengers of H(2)O(2); α-tocopherol, which is an efficient scavenger of singlet oxygen; non-photochemical quenching, which dissipates excess light energy that has been absorbed by PSII; and the cyclic and non-cyclic transport of electrons. Early studies of photoinhibition suggested that all of these factors and mechanisms protect PSII against photodamage. However, re-evaluation by the strategy mentioned above has indicated that, rather than protecting PSII from photodamage, they stimulate protein synthesis, with resultant repair of PSII and mitigation of photoinhibition. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

19.
叶黄素循环及其在光保护中的分子机理研究   总被引:9,自引:0,他引:9  
植物的生命活动离不开充足的光照 ,但是当光照过强时 ,叶片吸收的光能超过了光合电子传递所需 ,过剩的光能便会对光合器官产生潜在的危害 ,引起光合作用的光抑制或光破坏。依赖于叶黄素循环的热耗散被认为是光保护的主要途径。本文着重介绍近年来有关植物叶黄素循环在酶学方面的分子调控、它的主要功能以及依赖于叶黄素循环的热耗散在光保护中的分子机理等 ,并对需进一步研究的问题作了探讨  相似文献   

20.
紫茎泽兰光合特性对生长环境光强的适应   总被引:46,自引:6,他引:46  
测定了不同光强下生长的紫茎泽兰叶片最大净光合速率(Pmax)、叶绿素荧光参数、光合色素含量和比叶重(SLW),探讨了其光适应能力及生理生态学机制.强光下(100%相对光强)紫茎泽兰发生了轻度光抑制,Pmax、SLW、类胡萝卜素含量和日间热耗散升高,但热耗散能力没有提高.强光下紫茎泽兰通过:1)加强日间热耗散和活性氧清除能力以及光系统Ⅱ反应中心可逆失活来耗散过剩光能;2)增大P~以增加光能利用;3)提高SLW,降低单位干重叶绿素含量以减少光能吸收3个途径避免了光合机构光破坏.弱光下(36%、12.5%和4.5%相对光强)紫茎泽兰日间热耗散很小,SLW降低,但P~较高,这有利于其增加光能吸收和利用效率.紫茎泽兰能在很大的光强范围内有效地维持光合系统正常运转,这可能是其表现较强入侵性的原因之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号