首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interpreting the impact of environmental change on food webs requires a clear understanding of predator–prey interactions. Such knowledge is often lacking in the marine environment where the foraging behaviour and prey requirements of some of the major top-predators remains mysterious. For example, very little is known about the underwater foraging behaviour of the little auk, the most numerous seabird in the North Atlantic. In 2004, we used time–depth-recorders at two breeding colonies in East Greenland to examine the diving behaviour of this small, planktivorous seabird during the chick-rearing period. Due to technical difficulties data were only collected for four individuals, but recordings showed that birds dive up to 240 times a day to maximum depths of 27 m (average 10 m), with maximum dive durations of 90 s (average 52 s). In addition, we collected the chick meals from 35 individuals, which were dominated by Calanus copepods (95%), and also determined the field metabolic rates (FMR) of 14 individuals using the doubly labelled water technique, which averaged 609.9 kJ day−1. We integrated information on diving duration with chick diet and FMR to estimate the prey requirements and underwater capture rates of little auks using a Monte Carlo simulation. Chick-rearing little auks needed to catch about 59,800 copepods day−1, which is equivalent to about six copepods caught per second spent underwater. These astonishing results strongly suggest that little auks are, at least partly, filter-feeding, and underline the importance of highly productive, cool marine areas that harbour dense patches of large, energy-rich copepods.  相似文献   

2.
Species associations and affinity to sea ice among arctic marine birds were studied during ship transects in the northern Greenland and Barents Seas in the period 1980–1984. Associations were investigated at the scale of visual contact, and the sampling units were 10-min periods, corresponding to a transect length of 1.5–3 km. In the Greenland Sea, three or four of the most abundant species, fulmar (Fulmarus glacialis), little auk (Alle alle), Brünnich's guillemot (Uria lomvia) and kittiwake Rissa tridactyla, composed a recurrent group in all years. In the Barents Sea, fulmars, Brünnich's guillemots and kittiwakes were most often clustered. A positive association with sea ice was found in more than one cruise in three seabird species: black guillemots, ivory gulls and little auks, whereas seven other species showed negative association with ice in more than one cruise. The observed species associations and affinities to sea ice reflect similarities in diet among the species involved. Received: 23 February 1994 / Accepted: 12 January 1997  相似文献   

3.
4.
Marine environments are greatly affected by climate change, and understanding how this perturbation affects marine vertebrates is a major issue. In this context, it is essential to identify the environmental drivers of animal distribution. Here, we focused on the little auk (Alle alle), one of the world's most numerous seabirds and a major component in Arctic food webs. Using a multidisciplinary approach, we show how little auks adopt specific migratory strategies and balance environmental constraints to optimize their energy budgets. Miniature electronic loggers indicate that after breeding, birds from East Greenland migrate >2000 km to overwinter in a restricted area off Newfoundland. Synoptic data available from the Continuous Plankton Recorder (CPR) indicate that this region harbours some of the highest densities of the copepod Calanus finmarchicus found in the North Atlantic during winter. Examination of large-scale climatic and oceanographic data suggests that little auks favour patches of high copepod abundance in areas where air temperature ranges from 0°C to 5°C. These results greatly advance our understanding of animal responses to extreme environmental constraints, and highlight that information on habitat preference is key to identifying critical areas for marine conservation.  相似文献   

5.
Among the most numerous seabird and pinniped species of the Fram Strait and the Greenland Sea, little auks Alle alle and harp seals Pagophila (Phoca) groenlandica are very abundant in the mixed Polar/Arctic Waters at the front between the two water masses. This must reflect the presence of very high concentrations of their food, Arctic zooplankton and nekton, massively attracting their predators. Such a high biological production seems to be depending on new primary production based on upwelling and high nutrient concentration. This usually takes place at the ice edge (e.g. July 2005), but hydrological conditions such as eddies can modify its position, east of the front in open water as caused by a subsurface eddy (August 2005), or in ice-covered areas if westerly winds push the pack ice to the east, eventually covering an eddy and causing very high concentrations of little auks and harp seals (July 2008). On the other hand, a dramatic decrease of pack ice coverage can move this water mass farther north and west, making it inaccessible to little auks during their breeding season, and apparently causing breeding failure in Jan Mayen in July 2005. In future years, if a much stronger diminution in sea ice coverage will take place, similar to the retreat in 2005 and 2007, the failure might affect the whole Spitsbergen population, as well as other seabird species feeding mainly at the ice edge.  相似文献   

6.
Copepods are essential components of marine food webs worldwide. In the North Atlantic, they are thought to perform vertical migration and to remain at depths more than 500 m during winter. We challenge this concept through a study of the winter feeding ecology of little auks (Alle alle), a highly abundant planktivorous seabird from the North Atlantic. By combining stable isotope and behavioural analyses, we strongly suggest that swarms of copepods are still available to their predators in water surface layers (less than 50 m) during winter, even during short daylight periods. Using a new bioenergetic model, we estimate that the huge number (20–40 million birds) of little auks wintering off southwest Greenland consume 3600–7200 tonnes of copepods daily, strongly suggesting substantial zooplankton stocks in surface waters of the North Atlantic in the middle of the boreal winter.  相似文献   

7.
During the chick-rearing period, little auks Alle alle adopt a bimodal foraging strategy, alternating long trips with several short ones. It has been postulated that they reach more remote areas during long feeding trips than during short ones. However, the range of their foraging flights has never actually been measured. The aims of this study were to find the exact location of the little auk feeding grounds and to investigate whether they reach remote areas during long foraging trips using miniature GPS and temperature loggers. The study was conducted in 2009 in Magdalenefjorden (79°34′N, 11°04′E), one of the main breeding grounds of little auks on Spitsbergen. The temperature logger records indicated that during short trips, little auks visit warmer waters (situated close to the colony) than during long ones. The tracks of two GPS-equipped birds indicated that during long trips little auks foraged in the distant, food-abundant marginal sea ice zone, at least 100 km away from the colony. During long trips, birds make several stops at sea, perhaps sampling the foraging area with respect to prey distribution. Since food conditions near the studied colony are usually suboptimal, little auks may be exploiting distant feeding areas to compensate for the poorer-quality food available at nearby foraging grounds. The extended duration of long foraging trips may enable birds to collect food for chicks on food-abundant, remote foraging grounds as well as acquire, process and excrete food needed for self-maintenance, reducing the costs of flight to the colony.  相似文献   

8.
During the breeding season seabirds are constrained to coastal areas and are restricted in their movements, spending much of their time in near-shore waters either loafing or foraging. However, in using these areas they may be threatened by anthropogenic activities such as fishing, watersports and coastal developments including marine renewable energy installations. Although many studies describe large scale interactions between seabirds and the environment, the drivers behind near-shore, fine-scale distributions are not well understood. For example, Alderney is an important breeding ground for many species of seabird and has a diversity of human uses of the marine environment, thus providing an ideal location to investigate the near-shore fine-scale interactions between seabirds and the environment. We used vantage point observations of seabird distribution, collected during the 2013 breeding season in order to identify and quantify some of the environmental variables affecting the near-shore, fine-scale distribution of seabirds in Alderney’s coastal waters. We validate the models with observation data collected in 2014 and show that water depth, distance to the intertidal zone, and distance to the nearest seabird nest are key predictors in the distribution of Alderney’s seabirds. AUC values for each species suggest that these models perform well, although the model for shags performed better than those for auks and gulls. While further unexplained underlying localised variation in the environmental conditions will undoubtedly effect the fine-scale distribution of seabirds in near-shore waters we demonstrate the potential of this approach in marine planning and decision making.  相似文献   

9.
Energy and time allocation differs between incubation and chick‐rearing periods, which may lead to an adjustment in the foraging behaviour of parent birds. Here, we investigated the foraging behaviour of a small alcid, the little auk Alle alle during incubation and compared it with the chick‐rearing period in West Spitsbergen, using the miniature GPS (in Hornsund) and temperature loggers (in Magdalenefjorden). GPS‐tracking of 11 individuals revealed that during incubation little auks foraged 8–55 (median 46) km from the colony covering 19–239 (median 120) km during one foraging trip. Distance from the colony to foraging areas was similar during incubation and chick‐rearing period. During incubation 89% of foraging positions were located in the zone over shallower parts of the shelf (isobaths up to 200–300 m) with sea surface temperature below 2.5°C. Those environmental conditions are preferred by Arctic zooplankton community. Thus, little auks in the Hornsund area restrict their foraging (both during the incubation and chick‐rearing period) to the area under influence of cold, Arctic‐origin water masses where its most preferred prey, copepod Calanus glacialis is most abundant. The temperature logger data (from 4 individuals) indicate that in contrast to the chick‐rearing period, when parent birds alternated short and long trips, during the incubation they performed only long trips. Adopting such a flexible foraging strategy allows little auks to alter their foraging strategy to meet different energy and time demands during the two main stages of the breeding.  相似文献   

10.
During the last decade, increasing information on little auk (Alle alle) biology, ecology and behaviour has been reported. However, only a few of these studies have focused on the breeding population in the Avanersuaq (Thule) district of Northwest Greenland, where 80 % of the global little auk population is estimated to breed. This study reports on the chick diet composition from one of the largest colonies, the Paakitsoq colony, located on the south-eastern margin of the North Water (NOW) Polynya. Results revealed the highest proportion of Calanus hyperboreus, a large lipid-rich copepod, in chick diet reported for any little auk colony. Results confirmed that the cold, highly productive waters of the NOW Polynya are favourable foraging grounds for the little auks during the breeding season. Species diversity within and between the chick meals was low, which probably reflects a high availability of a few preferred prey species. Individual chick meals were generally low in number of prey items and total energy content compared with other published results. This may be explained by a higher feeding frequency or by the samples being collected late in the breeding period (during late chick rearing), when chicks have a reduced growth rate and may require less energy than at earlier developmental stages.  相似文献   

11.
The purpose of this study was to characterize for the first time seabird diving behavior during bimodal foraging. Little auks Alle alle, small zooplanktivorous Alcids of the High Arctic, have recently been shown to make foraging trips of short and long duration. Because short (ST) and long trips (LT) are thought to occur in different locations and serve different purposes (chick‐ and self‐feeding, respectively) we hypothesized that foraging differences would be apparent, both in terms of water temperature and diving characteristics. Using Time Depth Recorders (TDRs), we tested this hypothesis at three colonies along the Greenland Sea with contrasting oceanographic conditions. We found that diving behavior generally differed between ST and LT. However, the magnitude of the disparity in diving characteristics depended on local foraging conditions. At the study site where conditions were favorable, diving behavior differed only to a small degree between LT and ST. Together with a lack of difference in diving depth and ocean temperature, this indicates that these birds did not increase their foraging effort during ST nor did they travel long distances to seek out more profitable prey. In contrast, where local foraging conditions were poor, birds increased their diving effort substantially to collect a chick meal during ST as indicated by longer, more U‐shaped dives with slower ascent rates and shorter resting times (post‐dive intervals and extended surface pauses). In addition, large differences in diving depth and ocean temperature indicate that birds forage on different prey species and utilize different foraging areas during LT, which may be up to 200 km away from the colony. Continued warming and deteriorating near‐colony foraging conditions may have energetic consequences for little auks breeding in the eastern Greenland Sea.  相似文献   

12.
The little auk (Alle alle) is one of the most numerous seabirds in the world, but their winter prey selection has never been thoroughly studied. In the present study, we analyzed the proventricular contents of 205 little auks caught in coastal areas off southwest Greenland during December–February and off Newfoundland in March. Large Calanoid copepods are known to be the main prey during summer. We found krill to become the crucial winter prey in both areas, followed by Themisto spp. and young capelin (Mallotus villosus). No difference was found between the diet of juvenile and adult birds. Copepods constituted around 1 % of the diet and close to all copepods were in birds caught near Cape Farwell in December. These findings provide new and important insight into the forage ecology of the little auk, and they support other studies showing that large Calanoid copepods in the Arctic decent for winter hibernation at depths that are below the diving range of the little auks. More studies to determine offshore diet and annual variation are, however, needed in order to get a more complete picture.  相似文献   

13.
Endogenous reserves influence both survival and reproduction of many waterfowl species, but little is known about reserve levels of most species during the nonbreeding season, particularly those wintering at high latitudes. We investigated whether age, sex, and season were related to carcass composition of northern common eiders (Somateria mollissima borealis) wintering in southwest Greenland during 1999–2002. Adults carried more lipid and protein than juveniles during all winters. Among both age classes, males and females had similar fat levels but males carried slightly more protein. There was no dramatic seasonal variation in lipid or protein content. This suggests that during the period of this study, these eiders did not experience large-scale nutritional shortfalls. As predicted, Greenlandic eiders carried more lipid reserves than eider populations wintering in more temperate environments. Contrary to prediction, there was little relation between reserve levels and photoperiod, ambient temperature, or hunting disturbance intensity. Our results suggest that both sexes are equally capable of dealing with nutritional deficits, and that juvenile birds are more prone to nutritional stress as evidenced by their consistently poorer body condition.  相似文献   

14.
The effects of climate change on marine ecosystems and in particular on marine top predators are difficult to assess due to, among other things, spatial variability, and lack of clear delineation of marine habitats. The banks of West Greenland are located in a climate sensitive area and are likely to elicit pronounced responses to oceanographic changes in the North Atlantic. The recent increase in sea temperatures on the banks of West Greenland has had cascading effects on sea ice coverage, residency of top predators, and abundance of important prey species like Atlantic cod (Gadus morhua). Here, we report on the response of one of the top predators in West Greenland; the harbour porpoise (Phocoena phocoena). The porpoises depend on locating high densities of prey species with high nutritive value and they have apparently responded to the general warming on the banks of West Greenland by longer residence times, increased consumption of Atlantic cod resulting in improved body condition in the form of larger fat deposits in blubber, compared to the situation during a cold period in the 1990s. This is one of the few examples of a measurable effect of climate change on a marine mammal population.  相似文献   

15.
Arctic climate change has profound impacts on the cryosphere, notably via shrinking sea‐ice cover and retreating glaciers, and it is essential to evaluate and forecast the ecological consequences of such changes. We studied zooplankton‐feeding little auks (Alle alle), a key sentinel species of the Arctic, at their northernmost breeding site in Franz‐Josef Land (80°N), Russian Arctic. We tested the hypothesis that little auks still benefit from pristine arctic environmental conditions in this remote area. To this end, we analysed remote sensing data on sea‐ice and coastal glacier dynamics collected in our study area across 1979–2013. Further, we recorded little auk foraging behaviour using miniature electronic tags attached to the birds in the summer of 2013, and compared it with similar data collected at three localities across the Atlantic Arctic. We also compared current and historical data on Franz‐Josef Land little auk diet, morphometrics and chick growth curves. Our analyses reveal that summer sea‐ice retreated markedly during the last decade, leaving the Franz‐Josef Land archipelago virtually sea‐ice free each summer since 2005. This had a profound impact on little auk foraging, which lost their sea‐ice‐associated prey. Concomitantly, large coastal glaciers retreated rapidly, releasing large volumes of melt water. Zooplankton is stunned by cold and osmotic shock at the boundary between glacier melt and coastal waters, creating new foraging hotspots for little auks. Birds therefore switched from foraging at distant ice‐edge localities, to highly profitable feeding at glacier melt‐water fronts within <5 km of their breeding site. Through this behavioural plasticity, little auks maintained their chick growth rates, but showed a 4% decrease in adult body mass. Our study demonstrates that arctic cryosphere changes may have antagonistic ecological consequences on coastal trophic flow. Such nonlinear responses complicate modelling exercises of current and future polar ecosystem dynamics.  相似文献   

16.
Rising ocean temperatures are causing marine fish species to shift spatial distributions and ranges, and are altering predator‐prey dynamics in food webs. Most documented cases of species shifts so far involve relatively small species at lower trophic levels, and consider individual species in ecological isolation from others. Here, we show that a large highly migratory top predator fish species has entered a high latitude subpolar area beyond its usual range. Bluefin tuna, Thunnus thynnus Linnaeus 1758, were captured in waters east of Greenland (65°N) in August 2012 during exploratory fishing for Atlantic mackerel, Scomber scombrus Linnaeus 1758. The bluefin tuna were captured in a single net‐haul in 9–11 °C water together with 6 tonnes of mackerel, which is a preferred prey species and itself a new immigrant to the area. Regional temperatures in August 2012 were historically high and contributed to a warming trend since 1985, when temperatures began to rise. The presence of bluefin tuna in this region is likely due to a combination of warm temperatures that are physiologically more tolerable and immigration of an important prey species to the region. We conclude that a cascade of climate change impacts is restructuring the food web in east Greenland waters.  相似文献   

17.
18.
Determining the year‐round distribution and behaviour of birds is necessary for a better understanding of their ecology and foraging strategies. Petrels form an important component of the high‐latitude seabird assemblages in terms of species and individuals. The distribution and foraging ecology of three sympatric fulmarine petrels (Southern Fulmar Fulmarus glacialoides, Cape Petrel Daption capense and Snow Petrel Pagodroma nivea) were studied at Adélie Land, East Antarctica, by combining information from miniaturized saltwater immersion geolocators and stable isotopes from feathers. During the breeding season at a large spatial scale (c. 200 km), the three species overlapped in their foraging areas located in the vicinity of the colonies but were segregated by their diet and trophic level, as indicated by the different chick δ15N values that increased in the order Cape Petrel < Southern Fulmar < Snow Petrel. During the non‐breeding season, the three fulmarines showed species‐specific migration strategies along a wide latitudinal gradient. Snow Petrels largely remained in ice‐associated Antarctic waters, Southern Fulmars targeted primarily the sub‐Antarctic zone and Cape Petrels migrated further north. Overall, birds spent less time in flight during the non‐breeding period than during the breeding season, with the highest percentage of time spent sitting on the water occurring during the breeding season and at the beginning of the non‐breeding period before migration. This activity pattern, together with the δ13C values of most feathers, strongly suggests that moult of the three fulmarine petrels occurred at that time in the very productive high Antarctic waters, where birds fed on a combination of crustaceans and fish. The study highlights different segregating mechanisms that allow the coexistence of closely related species, specifically, prey partitioning during the breeding season and spatial segregation at sea during the non‐breeding season.  相似文献   

19.
The distribution at sea of upper trophic levels—seabirds and marine mammals—is depending on their food availability: high concentrations reflect high prey abundance and thus high biological production. Polar marine ecosystems are characterized by low biodiversity and high biological patchiness. The distribution of predators, as a consequence, shows a similar patchiness. During two expeditions of icebreaking RV Polarstern in June–July 2011, biodiversity in the arctic marine zone north of 70°N was very low, with low numbers of species: 20 seabirds, eight cetaceans, five pinnipeds and polar bear. Moreover, a few species accounted for the majority in numbers: four bird species for 95 % of the total of 23,000 seabirds recorded during 700 transect counts: fulmar Fulmarus glacialis, kittiwake Rissa tridactyla, Brünnich’s guillemot Uria lomvia and little auk Alle alle. Among the marine mammals, 250 fin whales Balaenoptera physalus accounted for 80 % of the identified large cetaceans, 270 white-beaked dolphin Lagenorhynchus albirostris for 100 % of the small cetaceans and 180 harp seals Pagophilus groenlandica for 80 % of the identified pinnipeds. Their quantitative distribution was depending on water masses and oceanic fronts, large cetaceans—mainly fin whales—showing an important aggregation on the shelf slope off western Spitsbergen, as well as little auks and Brünnich’s guillemots. So that this zone, shelf slope and front of mixed Arctic/Atlantic Waters, showed unusually high seabird and cetacean concentrations. Seasonal factors possibly influencing their distribution are addressed.  相似文献   

20.
Many marine organisms spend the early life history stages in neuston domain. Although the importance of ichthyoneuston, few studies were developed in the Southwest Atlantic Ocean. Therefore, this study aimed to improve the knowledge on ichthyoneuston of the Brazilian coast analyzing the vertical stratification and horizontal distribution of these organisms. Neuston samples were collected in daylight between 20°S and 23°S from February to April 2009 (late summer/early autumn; rainy season) and from August to September 2009 (late winter/early spring; dry season). Eggs of six taxa were identified: Anguilliformes, Engraulidae, Clupeidae, Synodontidae, Trichiuridae, and Maurolicus stehmanni (Sternoptychidae). The neustonic larval fish assemblage was composed by 40 families and 63 species. Mullidae and Myctophidae larvae were the most abundant in the rainy period while Mullidae and Mugilidae dominated in the dry season. Seasonal and spatial variation of larval fish assemblages in the neuston were structured by oceanographic features. The larval fish abundance on the outer slope stations may have been favored by the advection of an anticyclone that encompassed most of the study region during the cruise periods. In the rainy season, salinity and local depth structured the larval fish assemblage in a cross‐shelf gradient, while in the dry season the larval assemblage was structured around temperature and north‐south gradient. In the dry season, the cross‐shelf gradient was less pronounced mainly because of the low abundance and frequency of mesopelagic larvae. The low frequency and abundance of some species are probably related to the net avoidance of fish larvae during the day or dial vertical migration, as many species migrate to deeper layers during the day and ascend to neuston only at night. Nevertheless, the present study presented baseline information about the seasonal and spatial variation of the neustonic larval fish assemblage influenced by the oceanographic conditions in the Campos Basin. We recommend to additionally collect night samples to decrease larval escapement rates and to compare night versus day catches to further investigate the influence of daily migration in the neustonic larval fish in the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号