首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tsvetkov E  Shin RM  Bolshakov VY 《Neuron》2004,41(1):139-151
Long-term synaptic modifications in afferent inputs to the amygdala underlie fear conditioning in animals. Fear conditioning to a single sensory modality does not generalize to other cues, implying that synaptic modifications in fear conditioning pathways are input specific. The mechanisms of pathway specificity of long-term potentiation (LTP) are poorly understood. Here we show that inhibition of glutamate transporters leads to the loss of input specificity of LTP in the amygdala slices, as assessed by monitoring synaptic responses at two independent inputs converging on a single postsynaptic neuron. Diffusion of glutamate ("spillover") from stimulated synapses, paired with postsynaptic depolarization, is sufficient to induce LTP in the heterosynaptic pathway, whereas an enzymatic glutamate scavenger abolishes this effect. These results establish active glutamate uptake as a crucial mechanism maintaining the pathway specificity of LTP in the neural circuitry of fear conditioning.  相似文献   

2.
Little is known about the molecular mechanisms of learned and innate fear. We have identified stathmin, an inhibitor of microtubule formation, as highly expressed in the lateral nucleus (LA) of the amygdala as well as in the thalamic and cortical structures that send information to the LA about the conditioned (learned fear) and unconditioned stimuli (innate fear). Whole-cell recordings from amygdala slices that are isolated from stathmin knockout mice show deficits in spike-timing-dependent long-term potentiation (LTP). The knockout mice also exhibit decreased memory in amygdala-dependent fear conditioning and fail to recognize danger in innately aversive environments. By contrast, these mice do not show deficits in the water maze, a spatial task dependent on the hippocampus, where stathmin is not normally expressed. We therefore conclude that stathmin is required for the induction of LTP in afferent inputs to the amygdala and is essential in regulating both innate and learned fear.  相似文献   

3.
Polleux F 《Neuron》2005,46(3):395-400
Great neuroanatomists of the twentieth century recognized that the cerebral cortex of mammals is the single most complex structure of the central nervous system both in terms of neuronal diversity and connectivity. Understanding the cellular and molecular mechanisms specifying the afferent and efferent connectivity in the neocortex may seem like a daunting task. However, recent technical advances have greatly improved our ability to (1) profile gene expression of neuronal populations isolated based on their connectional properties, (2) manipulate gene expression in specific neuronal populations, and (3) visualize their axonal projections in vivo. These new tools are revolutionizing our ability to identify the molecular mechanisms patterning afferent and efferent cortical projections.  相似文献   

4.
Johansen JP  Cain CK  Ostroff LE  LeDoux JE 《Cell》2011,147(3):509-524
Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias.  相似文献   

5.
Shin RM  Tsvetkov E  Bolshakov VY 《Neuron》2006,52(5):883-896
Input-specific long-term potentiation (LTP) in afferent inputs to the amygdala serves an essential function in the acquisition of fear memory. Factors underlying input specificity of synaptic modifications implicated in information transfer in fear conditioning pathways remain unclear. Here we show that the strength of naive synapses in two auditory inputs converging on a single neuron in the lateral nucleus of the amygdala (LA) is only modified when a postsynaptic action potential closely follows a synaptic response. The stronger inhibitory drive in thalamic pathway, as compared with cortical input, hampers the induction of LTP at thalamo-amygdala synapses, contributing to the spatial specificity of LTP in convergent inputs. These results indicate that spike timing-dependent synaptic plasticity in afferent projections to the LA is both temporarily and spatially asymmetric, thus providing a mechanism for the conditioned stimulus discrimination during fear behavior.  相似文献   

6.
Estrogens exert important actions on fear and anxiety-like behavior both in humans and non-human animals. Currently, the mechanisms underlying estrogenic modulation of fear are not known. However, evidence suggests that estrogens may exert their influence on fear within the amygdala. The purpose of the present study was to examine effects of estrogen on fear conditioning. Specifically, the present study examined whether long-term estrogen treatment in ovariectomized female mice via Silastic capsule implantation would facilitate both contextual and cued fear conditioning. In a separate set of experiments, we then examined whether estrogen treatment in ovariectomized female mice would modulate corticotropin-releasing hormone (CRH) gene expression within the amygdala. Long-term estrogen treatment facilitated both contextual and cued fear. Ovariectomized mice treated with estrogen froze significantly more to a context as well as to a discrete auditory cue. In addition, estrogen treatment significantly increased CRH mRNA expression within the central nucleus of the amygdala as measured by in situ hybridization and quantitative PCR. These data raise the possibility that estrogens could influence fear responses in females through their actions in the amygdala.  相似文献   

7.
Current placebo research postulates that conditioning processes are one of the major mechanisms of the placebo response. Behaviourally conditioned changes in peripheral immune functions have been demonstrated in experimental animals, healthy subjects and patients. The physiological mechanisms responsible for this 'learned immune response' are not yet fully understood, but some relevant afferent and efferent pathways in the communication between the brain and the peripheral immune system have been identified. In addition, possible benefits and applicability in clinical settings have been demonstrated where behaviourally conditioned immunosuppression attenuated the exacerbation of autoimmune diseases, prolonged allograft survival and affected allergic responses. Here, we summarize data describing the mechanisms and the potential clinical benefit of behaviourally conditioned immune functions, with particular focus on learned placebo effects on allergic reactions.  相似文献   

8.
In the paper an analogy is drawn between functions of consciousness and scheme of reflex. Consciousness includes afferent part perception of external world, central one--thinking, and efferent one--decision about action and motor command presentation. The basis of higher psychic functions is the junction of reflexes in complicated complexes, singling out in their composition key structures realizing synthesis of qualitatively different information. The centers of integration at realization of afferent functions of consciousness are situated in posterior, and at efferent ones--in anterior brain areas. In the process of thinking predominantly afferent and efferent stages may also be singled out with corresponding localization of foci of interaction. Communicative function of consciousness is provided mainly by centers of the left hemisphere. Breakage between afferent and efferent functions of consciousness may be the basis of some forms of psychic pathology as depression.  相似文献   

9.
Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms underlying cued and contextual fear. A critical question is how personality dimensions such as trait anxiety act through these mechanisms to confer vulnerability to anxiety disorders, and whether humans' ability to overcome acquired fears depends on regulatory skills not characterized in animal models. In a neuroimaging study of fear conditioning in humans, we found evidence for two independent dimensions of neurocognitive function associated with trait vulnerability to anxiety. The first entailed increased amygdala responsivity to phasic fear cues. The second involved impoverished ventral prefrontal cortical (vPFC) recruitment to downregulate both cued and contextual fear prior to omission (extinction) of the aversive unconditioned stimulus. These two dimensions may contribute to symptomatology differences across anxiety disorders; the amygdala mechanism affecting the development of phobic fear and the frontal mechanism influencing the maintenance of both specific fears and generalized anxiety.  相似文献   

10.
Fear conditioning is a valuable behavioral paradigm for studying the neural basis of emotional learning and memory. The lateral nucleus of the amygdala (LA) is a crucial site of neural changes that occur during fear conditioning. Pharmacological manipulations of the LA, strategically timed with respect to training and testing, have shed light on the molecular events that mediate the acquisition of fear associations and the formation and maintenance of long-term memories of those associations. Similar mechanisms have been found to underlie long-term potentiation (LTP) in LA, an artificial means of inducing synaptic plasticity and a physiological model of learning and memory. Thus, LTP-like changes in synaptic plasticity may underlie fear conditioning. Given that the neural circuit underlying fear conditioning has been implicated in emotional disorders in humans, the molecular mechanisms of fear conditioning are potential targets for psychotherapeutic drug development.  相似文献   

11.
Chronic stress in rodents was shown to induce structural shrinkage and functional alterations in the hippocampus that were linked to spatial memory impairments. Effects of chronic stress on the amygdala have been linked to a facilitation of fear conditioning. Although the underlying molecular mechanisms are still poorly understood, increasing evidence highlights the neural cell adhesion molecule (NCAM) as an important molecular mediator of stress‐induced structural and functional alterations. In this study, we investigated whether altered NCAM expression levels in the amygdala might be related to stress‐induced enhancement of auditory fear conditioning and anxiety‐like behavior. In adult C57BL/6J wild‐type mice, chronic unpredictable stress resulted in an isoform‐specific increase of NCAM expression (NCAM‐140 and NCAM‐180) in the amygdala, as well as enhanced auditory fear conditioning and anxiety‐like behavior. Strikingly, forebrain‐specific conditional NCAM‐deficient mice (NCAM‐floxed mice that express the cre‐recombinase under the control of the promoter of the α‐subunit of the calcium‐calmodulin‐dependent protein kinase II), whose amygdala NCAM expression levels are reduced, displayed impaired auditory fear conditioning which was not altered following chronic stress exposure. Likewise, chronic stress in these conditional NCAM‐deficient mice did not modify NCAM expression levels in the amygdala or hippocampus, while they showed enhanced anxiety‐like behavior, questioning the involvement of NCAM in this type of behavior. Together, our results strongly support the involvement of NCAM in the amygdala in the consolidation of auditory fear conditioning and highlight increased NCAM expression in the amygdala among the mechanisms whereby stress facilitates fear conditioning processes.  相似文献   

12.
The guinea pig organ of Corti was studied using transmission electron microscopy, the second turn of the cochlea being examined at various ages between 20 days before birth and 30 days postnatal. Outer hair cells were examined at each of these ages. At all ages studied, the efferent (presynaptic) terminals are large and are packed with synaptic vesicles, whereas the afferent (postsynaptic) terminals are generally smaller, with a relatively small number of vesicles. During development, the subsynaptic cistern changes from a fragmented, diffuse profile extending over 50-70% of the length of the efferent contact zones, to a continuous, compact structure spanning neighbouring synapses. Synaptic vesicles in the efferent terminals are predominantly rounded in early development, flattened vesicles appearing postnatally. The synaptic bodies at afferent synapses do not change noticeably during development. Quantitative analysis revealed that the area of efferent terminals and the length of their active zone increase with increasing age, the same parameters decreasing in afferent terminals. Synaptic vesicles in the efferent terminals decrease in diameter, but remain constant in afferent terminals, with increasing age. The number of hair cell membrane invaginations decreases as development proceeds.  相似文献   

13.
Gonadal steroids and their metabolites have been shown to be important modulators of emotional behavior. Allopregnanolone (ALLO), for example, is a metabolite of progesterone that has been linked to anxiety-related disorders such as posttraumatic stress disorder. In rodents, it has been shown to reduce anxiety in a number of behavioral paradigms including Pavlovian fear conditioning. We have recently found that expression of conditioned contextual (but not auditory) freezing in rats can be suppressed by infusion of ALLO into the bed nucleus of the stria terminalis (BNST). To further explore the nature of this effect, we infused ALLO into the BNST of male rats prior to both conditioning and testing. We found that suppression of contextual fear occurred when the hormone was present during either conditioning or testing but not during both procedures, suggesting that ALLO acts in a state-dependent manner within the BNST. A shift in interoceptive context during testing for animals conditioned under ALLO provided further support for this mechanism of hormonal action on contextual fear. Interestingly, infusions of ALLO into the basolateral amygdala produced a state-independent suppression of both conditioned contextual and auditory freezing. Altogether, these results suggest that ALLO can influence the acquisition and expression of fear memories by both state-dependent and state-independent mechanisms.  相似文献   

14.
In rabbits the depressor nerves and cardiac vagal branches were stimulated. Their actions on heart rate, atrio-ventricular conduction time, myocardial action potential and mean central blood pressure were recorded. The frequency-effect characteristics of the chronotropic, dromotropic and electrotropic actions on the heart, resulting from afferent and efferent nerve stimulation, are compared. The participation of each of the depressor nerves in their total effects on heart rate and blood pressure is studied. Time courses of heart rate and blood pressure decrease by afferent and efferent nerve stimulation with sinusoidally modulated pulse rates are presented. The results are discussed with respect to the different dynamics of blood pressure and heart rate control. It is concluded that at least two mechanisms are involved in blood pressure control by the depressor nerves: 1. Decrease of vascular resistance by lowering the sympathetic tone. 2. Decrease of heart rate by enhancing the cardiac vagal activity. It is suggested that the parasympathetic control unit compensates rapid disturbances, whereas the slow-acting sympathetic vascular mechanism exerts a long-time pressure control of high efficiency.  相似文献   

15.
Memory loss is one of the hallmark symptoms of Alzheimer's disease (AD). It has been proposed that soluble amyloid-beta (Abeta) oligomers acutely impair neuronal function and thereby memory. We here report that natural Abeta oligomers acutely impair contextual fear memory in mice. A natural Abeta oligomer solution containing Abeta monomers, dimers, trimers, and tetramers was derived from the conditioned medium of 7PA2 cells, a cell line that expresses human amyloid precursor protein containing the Val717Phe familial AD mutation. As a control we used 7PA2 conditioned medium from which Abeta oligomers were removed through immunodepletion. Separate groups of mice were injected with Abeta and control solutions through a cannula into the lateral brain ventricle, and subjected to fear conditioning using two tone-shock pairings. One day after fear conditioning, mice were tested for contextual fear memory and tone fear memory in separate retrieval trials. Three experiments were performed. For experiment 1, mice were injected three times: 1 hour before and 3 hours after fear conditioning, and 1 hour before context retrieval. For experiments 2 and 3, mice were injected a single time at 1 hour and 2 hours before fear conditioning respectively. In all three experiments there was no effect on tone fear memory. Injection of Abeta 1 hour before fear conditioning, but not 2 hours before fear conditioning, impaired the formation of a contextual fear memory. In future studies, the acute effect of natural Abeta oligomers on contextual fear memory can be used to identify potential mechanisms and treatments of AD associated memory loss.  相似文献   

16.
A possibility of efferent innervation of gustatory and mechanosensitive afferent fiber endings was studied in frog fungiform papillae with a suction electrode. The amplitude of antidromic impulses in a papillary afferent fiber induced by antidromically stimulating an afferent fiber of glossopharyngeal nerve (GPN) with low voltage pulses was inhibited for 40 s after the parasympathetic efferent fibers of GPN were stimulated orthodromically with high voltage pulses at 30 Hz for 10 s. This implies that electrical positivity of the outer surface of papillary afferent membrane was reduced by the efferent fiber-induced excitatory postsynaptic potential. The inhibition of afferent responses in the papillae was blocked by substance P receptor blocker, L-703,606, indicating that substance P is probably released from the efferent fiber terminals. Slow negative synaptic potential, which corresponded to a slow depolarizing synaptic potential, was extracellularly induced in papillary afferent terminals for 45 s by stimulating the parasympathetic efferent fibers of GPN with high voltage pulses at 30 Hz for 10 s. This synaptic potential was also blocked by L-703,606. These data indicate that papillary afferent fiber endings are innervated by parasympathetic efferent fibers.  相似文献   

17.
The review of own and literature data devoted to structural and neurochemical organization of the nucleus accumbens (Acc) as well as spatial organization of their projection fibers in comparison with nucleus caudatus (neostriatum) has been presented. The facts concerned with correlations revealed between both the cell clusters and histochemical compartments as well as the compartmental organization of afferent and efferent striatal connections were analyzed. The presented data propose the existence of sensorimotor and limbic parts of the dorsal and ventral striatum, which are involved in the parallelly functioning systems. The common and different signs of these two systems and its role in the regulation of the movement behaviour has been proposed. A lot of attention also was payed to the Acc and the neostriatum interaction. The many pathways by which Acc can influence neostriatum functions and therefore the motor activity controlled by the neostriatum are discussed. It was shown that the Acc can influence on the striatal synaptic DA release. The sign of this influence depended upon DA/glutamic acid interactions in the Acc. It was stressed that the influence of Acc on striatal DA-ergic system is very likely mediated via kainate/quisqualate (but not NMDA) inputs of the neostriatum. The balance of DA-ergic mechanisms of neostriatum and Acc as important basis of animals adequate behaviour in conditioning situation was proposed. The disbalance of these mechanisms could leads to pathology.  相似文献   

18.
A neural network model of the mechanism of selective attention in visual pattern recognition is proposed and simulated on a digital computer.When a complex figure consisting of two patterns or more is presented to the model, it is segmented into individual patterns, and each pattern is recognized separately. Even if one of the patterns to which the model is paying selective attention is affected by noise or defects, the model can recall the complete pattern from which the noise has been eliminated and the defects corrected. It is not necessary for perfect recall that the stimulus pattern should be identical in shape to the training pattern. Even though the pattern is distorted in shape or changed in size, it can be correctly recognized and the missing portions restored.The model consists of a hierarchical neural network which has efferent as well as afferent connections between cells. The afferent and the efferent signals interact with each other in the network: the efferent signals, that is, the signals for selective attention, have a facilitating effect on the afferent ones, and, at the same time, the afferent signals gate efferent signal flow. When some feature in the stimulus is not extracted in the afferent paths, the threshold for detection of that feature is automatically lowered by decreasing the efficiency of inhibition, and the model tries to extract even vague traces of the undetected feature.  相似文献   

19.
The effects of beta-alanine on the electrically evoked vagal efferent (hexamethonium-sensitive initial excitatory response) and afferent (hexamethonium-resistant delayed excitatory response) responses of the cat stomach were studied. beta-alanine (30 to 300 micrograms/kg, i.v.) dose-dependently inhibited both the efferent and afferent response. The IC50 values of beta-alanine on the efferent and afferent response were 296 +/- 65 micrograms/kg and 128 +/- 35 microgram/kg, respectively. Maximal inhibitory effects of beta-alanine (300 micrograms/kg, i.v.) appeared about 1 hr after the injection. Glycine and taurine (100 to 10,000 micrograms/kg) did not affect these responses. Treatment with hexamethonium (10 mg/kg, i.v.) prevented the efferent response, but augmented the afferent response. The treatment with hexamethonium abolished the inhibitory effect of beta-alanine on the afferent response. Both picrotoxin (100 and 500 micrograms/kg, i.v.) and bicuculline (2000 micrograms/kg, i.v.) antagonized the inhibitory effects of beta-alanine on the vagal efferent and afferent responses of the stomach. The present experiments clearly demonstrated that beta-alanine inhibited both the vagal efferent and afferent excitatory responses of stomach to electrical stimulation of vagal trunk in cats.  相似文献   

20.
The branchial vascular anatomy of Urolophus mucosus and U. paucimaculatus was studied by scanning electron microscopical examination of critical-point-dried tissue or of vascular corrosion casts. The vasculature could be divided into arterioarterial and arteriovenous pathways, which channel the flow of blood through the gills. The arterioarterial pathway consists of an afferent branchial artery which gives rise to afferent distributing arteries that run through the tissues of the interbranchial septum and supply the afferent filament arteries of several filaments. Afferent filament arteries open regularly into a corpus cavernosum in the core of the filament; unlike other elasmobranchs no septal corpora cavernosa are found. At the tip of the filament, channels of the corpus cavernosum connect to a channel which passes across the distal end of the filament from afferent to efferent side. This channel always connects to the afferent filament artery, and in many filaments it connects to the efferent filament artery as well. In addition, a vascular arcade connects all the afferent filament arteries along the entire length of each hemibranch. The filament corpus cavernosum supplies the secondary lamellae. The lamellae drain into efferent lamellar arterioles which in turn drain into the efferent filament artery and the efferent branchial artery. The vascular anatomy of the arteriovenous pathway is similar to that described in other elasmobranchs and consists of arteriovenous anastomoses, found only arising from efferent arterial circulation, and the venolymphatic system, which is composed of the central venous sinus and the companion vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号