首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequenced genomes of dissimilatory sulfur-oxidizing and sulfate-reducing bacteria containing genes coding for DsrAB, the enzyme dissimilatory sulfite reductase, inevitably also contain the gene coding for the 12-kDa DsrC protein. DsrC is thought to have a yet unidentified role associated with the activity of DsrAB. Here we report the solution structure of DsrC from the sulfur-oxidizing purple sulfur bacterium Allochromatium vinosum determined with NMR spectroscopy in reducing conditions, and we describe the redox behavior of two conserved cysteine residues upon transfer to an oxidizing environment. In reducing conditions, the DsrC structure is disordered in the highly conserved carboxy-terminus. We present multiple lines of evidence that, in oxidizing conditions, a strictly conserved cysteine (Cys111) at the penultimate position in the sequence forms an intramolecular disulfide bond with Cys100, which is conserved in DsrC in all organisms with DsrAB. While an intermolecular Cys111-Cys111 disulfide-bonded dimer is rapidly formed under oxidizing conditions, the intramolecularly disulfide-bonded species (Cys100-Cys111) is the thermodynamically stable form of the protein under these conditions. Treatment of the disulfidic forms with reducing agent regenerates the monomeric species that was structurally characterized. Using a band-shift technique under nondenaturing conditions, we obtained evidence for the interaction of DsrC with heterohexameric DsrEFH, a protein encoded in the same operon. Mutation of Cys100 to serine prevented formation of the DsrC species assigned as an intramolecular disulfide in oxidizing conditions, while still allowing formation of the intermolecular Cys111-Cys111 dimer. In the reduced form, this mutant protein still interacted with DsrEFH. This was not the case for the Cys111Ser and Cys100Ser/Cys111Ser mutants, both of which also did not form protein dimers. Our observations highlight the central importance of the carboxy-terminal DsrC cysteine residues and are consistent with a role as a sulfur-substrate binding/transferring protein, as well as with an electron-transfer function via thiol-disulfide interchanges.  相似文献   

2.
The crystal structure of human phenylethanolamine N-methyltransferase (hPNMT) reveals a disulfide-linked dimer, despite the presence of reducing agent in the crystallisation conditions. By removing the reducing agent, hPNMT crystals grow more rapidly and at lower protein concentrations. However, it was unclear whether the disulfide bonds are only present in the crystal form or whether these affect enzyme activity. The solution oligomeric state of hPNMT was investigated using biochemical techniques and activity assays. We found that in the absence of reducing agent, hPNMT forms dimers in solution. Furthermore, the solution dimer of hPNMT incorporates disulfide bonds, since this form is sensitive to reducing agent. The C48A and C139A mutants of hPNMT, which are incapable of forming the disulfide bond observed in the crystal structure, have a decreased propensity to form dimer in solution. Those dimers that do form are also sensitive to reducing agent. Further, the C48A/C139A double mutant shows only monomeric behaviour. Both dimeric and monomeric hPNMT, as well as mutants have wildtype enzyme activity. These results show that a variety of disulfides, including those observed in the crystal structure, can form in solution. In addition, disulfide-linked dimers are as active as the monomeric enzyme indicating that the crystal structure of the protein is a valid target for inhibitor design.  相似文献   

3.
Chloride intracellular channel (CLIC) proteins possess the remarkable property of being able to convert from a water-soluble state to a membrane channel state. We determined the three-dimensional structure of human CLIC2 in its water-soluble form by X-ray crystallography at 1.8-Å resolution from two crystal forms. In contrast to the previously characterized CLIC1 protein, which forms a possibly functionally important disulfide-induced dimer under oxidizing conditions, we show that CLIC2 possesses an intramolecular disulfide and that the protein remains monomeric irrespective of redox conditions. Site-directed mutagenesis studies show that removal of the intramolecular disulfide or introduction of cysteine residues in CLIC2, equivalent to those that form the intramolecular disulfide in CLIC1, does not cause dimer formation under oxidizing conditions. We also show that CLIC2 forms pH-dependent chloride channels in vitro with higher channel activity at low pH levels and that the channels are subject to redox regulation. In both crystal forms, we observed an extended loop region from the C-terminal domain, called the foot loop, inserting itself into an interdomain crevice of a neighboring molecule. The equivalent region in the structurally related glutathione transferase superfamily corresponds to the active site. This so-called foot-in-mouth interaction suggests that CLIC2 might recognize other proteins such as the ryanodine receptor through a similar interaction.  相似文献   

4.
The polypyrimidine tract binding protein (PTB) is an important regulator of alternative splicing that also affects mRNA localization, stabilization, polyadenylation, and translation. NMR structural analysis of the N-terminal half of PTB (residues 55-301) shows a canonical structure for RRM1 but reveals novel extensions to the beta strands and C terminus of RRM2 that significantly modify the beta sheet RNA binding surface. Although PTB contains four RNA recognition motifs (RRMs), it is widely held that only RRMs 3 and 4 are involved in RNA binding and that RRM2 mediates homodimerization. However, we show here not only that the RRMs 1 and 2 contribute substantially to RNA binding but also that full-length PTB is monomeric, with an elongated structure determined by X-ray solution scattering that is consistent with a linear arrangement of the constituent RRMs. These new insights into the structure and RNA binding properties of PTB suggest revised models of its mechanism of action.  相似文献   

5.
The polypyrimidine tract binding protein (PTB) is an RNA binding protein that normally functions as a regulator of alternative splicing but can also be recruited to stimulate translation initiation by certain picornaviruses. High-resolution structures of the four RNA recognition motifs (RRMs) that make up PTB have previously been determined by NMR. Here, we have used small-angle X-ray scattering to determine the low-resolution structure of the entire protein. Scattering patterns from full-length PTB and deletion mutants containing all possible sequential combinations of the RRMs were collected. All constructs were found to be monomeric in solution. Ab initio analysis and rigid-body modeling utilizing the high-resolution models of the RRMs yielded a consistent low-resolution model of the spatial organization of domains in PTB. Domains 3 and 4 were found to be in close contact, whereas domains 2 and especially 1 had loose contacts with the rest of the protein.  相似文献   

6.
Immunoglobulin binding domain B1 of streptococcal protein G (GB1), a small (56 residues), stable, single domain protein, is one of the most extensively used model systems in the area of protein folding and design. The recently determined NMR structure of a quadruple mutant (HS#124F26A, L5V/F30V/Y33F/A34F) revealed a domain-swapped dimer that dissociated into a partially folded, monomeric species at low micromolar protein concentrations. Here, we have characterized this monomeric, partially folded species by NMR and show that extensive conformational heterogeneity for a substantial portion of the polypeptide chain exists. Exchange between the conformers within the monomer ensemble on the microsecond to millisecond timescale renders the majority of backbone amide resonances broadened beyond detection. Despite these extensive temporal and spatial fluctuations, the overall architecture of the monomeric mutant protein resembles that of wild-type GB1 and not the monomer unit of the domain-swapped dimer.  相似文献   

7.
We have investigated the aggregation of recombinant human granulocyte colony stimulating factor (rhGCSF), a protein that rapidly aggregates and precipitates at pH 6.9 and 37 degrees C. We observed that native monomeric rhGCSF reversibly forms a dimer under physiological conditions and that this dimeric species does not participate in the irreversible aggregation process. Sucrose, a thermodynamic stabilizer, inhibits the aggregation of rhGCSF. We postulate that sucrose acts by reducing the concentration of structurally expanded species, consistent with the hypothesis that preferential exclusion favors most compact species in the native state ensemble. Thermodynamic stability data from unfolding curves and hydrogen-deuterium exchange experimental results support the above hypothesis. Thus, the strategy of stabilizing the native state of the protein under physiological conditions using thermodynamic stabilizers, especially ligands binding with high affinity to the native state, is expected to protect against protein aggregation occurring under such nonperturbing solution conditions.  相似文献   

8.
We have investigated the potential for the steroid affinity-labeled human glucocorticoid receptor to form both intramolecular and intermolecular disulfide bonds. Glucocorticoid receptors labeled in intact HeLa S3 cells with the covalent affinity label [3H]dexamethasone mesylate ([3H]DM) were analyzed on denaturing 5-12% polyacrylamide gels under both nonreducing and reducing conditions. Under nonreducing conditions the affinity-labeled receptor migrated as a heterogeneous species having an average molecular mass of approximately 96 kDa whereas, under reducing conditions, the receptor migrated as a more discrete form. These data suggest that a reducing environment can influence the structure of the glucocorticoid receptor monomer and further imply that sulfhydryl groups within the affinity-labeled receptor are available for modification. To pursue this observation in greater detail, we tested the effect of oxidizing conditions on the structure of the glucocorticoid receptor. The presence of low concentrations (0.125-0.5 mM) of three oxidizing reagents (sodium tetrathionate, disulfiram, and iodosobenzoate) altered the migration of the affinity-labeled receptor resulting in forms of apparent lower molecular mass (as low as 78 kDa). This altered migration, not seen with most other cytosolic proteins, is consistent with the formation of intramolecular disulfide bonds within the receptor which presumably cause it to assume a folded conformation and migrate faster through the gel. At higher concentrations of these reagents (up to 5.0 mM), we also detect a saturably labeled [3H]DM band which has a higher molecular mass (approximately 140 kDa), indicating the formation of intermolecular disulfide bonds between the [3H]DM-labeled receptor and another closely associated protein(s) having a molecular mass of approximately 40 kDa. The effects which these oxidizing reagents have on glucocorticoid receptor structure are completely reversed upon the addition of dithiothreitol, indicating that the observed changes in migration do not reflect receptor proteolysis but rather a folding and unfolding within the receptor monomeric protein. We have also analyzed the effect of this oxidation/reduction on the function of the glucocorticoid receptor. Oxidation of the [3H]DM-labeled receptor complex with 0.5 mM sodium tetrathionate inhibited activation of receptor to a form capable of binding to DNA-cellulose. This inhibition can be reversed with dithiothreitol at 25 degrees C but not at 0 degrees C, suggesting that these oxidizing reagents are inhibitory at the transformation and/or activation steps.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
In plants, the first committed enzyme for glutathione biosynthesis, γ-glutamylcysteine ligase (GCL), is under multiple controls. The recent elucidation of GCL structure from Brassica juncea (BjGCL) has revealed the presence of two intramolecular disulfide bridges (CC1, CC2), which both strongly impact on GCL activity in vitro . Here we demonstrate that cysteines of CC1 are confined to plant species from the Rosids clade, and are absent in other plant families. Conversely, cysteines of CC2 involved in the monomer–dimer transition in BjGCL are not only conserved in the plant kingdom, but are also conserved in the evolutionarily related α- (and some γ-) proteobacterial GCLs. Focusing on the role of CC2 for GCL redox regulation, we have extended our analysis to all available plant (31; including moss and algal) and related proteobacterial GCL (46) protein sequences. Amino acids contributing to the homodimer interface in BjGCL are highly conserved among plant GCLs, but are not conserved in related proteobacterial GCLs. To probe the significance of this distinction, recombinant GCLs from Nicotiana tabacum (NtGCL), Agrobacterium tumefaciens (AtuGCL, α-proteobacteria) and Xanthomonas campestris (XcaGCL, γ-proteobacteria) were analyzed for their redox response. As expected, NtGCL forms a homodimer under oxidizing conditions, and is activated more than threefold. Conversely, proteobacterial GCLs remain monomeric under oxidizing and reducing conditions, and their activities are not inhibited by DTT, despite the presence of CC2. We conclude that although plant GCLs are evolutionarily related to proteobacterial GCLs, redox regulation of their GCLs via CC2-dependent dimerization has been acquired later in evolution, possibly as a consequence of compartmentation in the redox-modulated plastid environment.  相似文献   

10.
The OpuA system of Bacillus subtilis is a member of the substrate-binding-protein-dependent ABC transporter superfamily and serves for the uptake of the compatible solute glycine betaine under hyperosmotic growth conditions. Here, we have characterized the nucleotide-binding protein (OpuAA) of the B.subtilis OpuA transporter in vitro. OpuAA was overexpressed heterologously in Escherichia coli as a hexahistidine tag fusion protein and purified to homogeneity by affinity and size exclusion chromatography (SEC). Dynamic monomer/dimer equilibrium was observed for OpuAA, and the K(D) value was determined to be 6 microM. Under high ionic strength assay conditions, the monomer/dimer interconversion was diminished, which enabled separation of both species by SEC and separate analysis of both monomeric and dimeric OpuAA. In the presence of 1 M NaCl, monomeric OpuAA showed a basal ATPase activity (K(M)=0.45 mM; k(2)=2.3 min(-1)), whereas dimeric OpuAA showed little ATPase activity under this condition. The addition of nucleotides influenced the monomer/dimer ratio of OpuAA, demonstrating different oligomeric states during its catalytic cycle. The monomer was the preferred species under post-hydrolysis conditions (e.g. ADP/Mg(2+)), whereas the dimer dominated the nucleotide-free and ATP-bound states. The affinity and stoichiometry of monomeric or dimeric OpuAA/ATP complexes were determined by means of the fluorescent ATP-analog TNP-ATP. One molecule of TNP-ATP was bound in the monomeric state and two TNP-ATP molecules were detected in the dimeric state of OpuAA. Binding of TNP-ADP/Mg(2+) to dimeric OpuAA induced a conformational change that led to the decay of the dimer. On the basis of our data, we propose a model that couples changes in the oligomeric state of OpuAA with ATP hydrolysis.  相似文献   

11.
The NCS protein Visinin-like Protein 1 (VILIP-1) transduces calcium signals in the brain and serves as an effector of the non-retinal receptor guanylyl cyclases (GCs) GC-A and GC-B, and nicotinic acetyl choline receptors (nAchR). Analysis of the quaternary structure of VILIP-1 in solution reveals the existence of monomeric and dimeric species, the relative contents of which are affected but not exclusively regulated by divalent metal ions and Redox conditions. Using small-angle X-ray scattering, we have investigated the low resolution structure of the calcium-bound VILIP-1 dimer under reducing conditions. Scattering profiles for samples with high monomeric and dimeric contents have been obtained. The dimerization interface involves residues from EF-hand regions EF3 and EF4.Using monolayer adsorption experiments, we show that myristoylated and unmyristoylated VILIP-1 can bind lipid membranes. The presence of calcium only marginally improves binding of the protein to the monolayer, suggesting that charged residues at the protein surface may play a role in the binding process.In the presence of calcium, VILIP-1 undergoes a conformational re-arrangement, exposing previously hidden surfaces for interaction with protein partners. We hypothesise a working model where dimeric VILIP-1 interacts with the membrane where it binds membrane-bound receptors in a calcium-dependent manner.  相似文献   

12.
A mutation at the dimer interface of Plasmodium falciparum triosephosphate isomerase (PfTIM) was created by mutating a tyrosine residue at position 74, at the subunit interface, to glycine. Tyr74 is a critical residue, forming a part of an aromatic cluster at the interface. The resultant mutant, Y74G, was found to have considerably reduced stability compared with the wild-type protein (TIMWT). The mutant was found to be much less stable to denaturing agents such as urea and guanidinium chloride. Fluorescence and circular dichroism studies revealed that the Y74G mutant and TIMWT have similar spectroscopic properties, suggestive of similar folded structures. Further, the Y74G mutant also exhibited a concentration-dependent loss of enzymatic activity over the range 0.1-10 microM. In contrast, the wild-type enzyme did not show a concentration dependence of activity in this range. Fluorescence quenching of intrinsic tryptophan emission was much more efficient in case of Y74G than TIMWT, suggestive of greater exposure of Trp11, which lies adjacent to the dimer interface. Analytical gel filtration studies revealed that in Y74G, monomeric and dimeric species are in dynamic equilibrium, with the former predominating at low protein concentration. Spectroscopic studies established that the monomeric form of the mutant is largely folded. Low concentrations of urea also drive the equilibrium towards the monomeric form. These studies suggest that the replacement of tyrosine with a small residue at the interface of triosephosphate isomerase weakens the subunit-subunit interactions, giving rise to structured, but enzymatically inactive, monomers at low protein concentration.  相似文献   

13.
Chemokine dimerization has been the subject of much interest in recent years as evidence has accumulated that different quaternary states of chemokines play different biological roles; the monomer is believed to be the receptor-binding unit, whereas the dimer has been implicated in binding cell surface glycosaminoglycans. However, although several studies have provided evidence for this paradigm by making monomeric chemokine variants or dimer-impaired chemokines, few have provided direct evidence of the receptor function of a chemokine dimer. We have produced a covalent dimer of the CC chemokine macrophage inflammatory protein-1beta (MIP-1beta) by placing a disulfide bond at the center of its dimer interface through a single amino acid substitution (MIP-1beta-A10C). This variant was shown to be a nondissociating dimer by SDS-PAGE and analytical ultracentrifugation. NMR reveals a structure largely the same as the wild type protein. In studies of glycosaminoglycan binding, MIP-1beta-A10C binds to a heparin-Sepharose column as tightly as the wild type protein and more tightly than monomeric variants. However, MIP-1beta-A10C neither binds nor activates the MIP-1beta receptor CCR5. It was found that the ability to activate CCR5 was recovered upon reduction of the intermolecular disulfide cross-link by incubation with 1 mm dithiothreitol. This work provides the first definitive evidence that the CC chemokine MIP-1beta dimer is not able to bind or activate its receptor and implicates the CC chemokine monomer as the sole receptor-interacting unit.  相似文献   

14.
Based on the current model of its structure and function, photosystem II (PSII) seems to have evolved from an ancestor that was homodimeric in terms of its protein core and contained a special pair of chlorophylls as the photo-oxidizable cofactor. It is proposed that the key event in the evolution of PSII was a mutation that resulted in the separation of the two pigments that made up the special chlorophyll pair, making them into two chlorophylls that were neither special nor paired. These ordinary chlorophylls, along with the two adjacent monomeric chlorophylls, were very oxidizing: a property proposed to be intrinsic to monomeric chlorophylls in the environment provided by reaction centre (RC) proteins. It seems likely that other (mainly electrostatic) changes in the environments of the pigments probably tuned their redox potentials further but these changes would have been minor compared with the redox jump imposed by splitting of the special pair. This sudden increase in redox potential allowed the development of oxygen evolution. The highly oxidizing homodimeric RC would probably have been not only inefficient in terms of photochemistry and charge storage but also wasteful in terms of protein or pigments undergoing damage due to the oxidative chemistry. These problems would have constituted selective pressures in favour of the lop-sided, heterodimeric system that exists as PSII today, in which the highly oxidized species are limited to only one side of the heterodimer: the sacrificial, rapidly turned-over D1 protein. It is also suggested that one reason for maintaining an oxidizable tyrosine, TyrD, on the D2 side of the RC, is that the proton associated with its tyrosyl radical, has an electrostatic role in confining P(+) to the expendable D1 side.  相似文献   

15.
—Frog myelin basic protein, when subjected to ion-exchange chromatography at alkaline pH, underwent conversion to a higher molecular weight form. Treatment of the latter with 2-mercaptoethanol regenerated the monomeric basic protein. Amino acid analysis of the monomer and the higher molecular weight species after performic acid oxidation demonstrated the presence of approximately 1 mol of cysteic acid per mol of protein of molecular weight 19,700. Treatment of the monomer with the mild oxidizing agent azodicarboxylic acid bis dimethyl amide resulted in its partial conversion to the higher molecular weight form. These studies demonstrate that the frog myelin basic protein, unlike those of all other species hitherto examined, contains a single cysteinyl residue in its polypeptide chain.  相似文献   

16.
A high molecular weight actin-binding protein was isolated from the Physarum polycephalum plasmodia. The protein ( HMWP ) shares many properties with other high molecular weight actin-binding proteins such as spectrin, actin-binding protein from macrophages, and filamin. It has a potent activity to cross-link F-actin into a gel-like structure. Its cross-linking activity does not depend on calcium concentrations. Hydrodynamic studies have revealed that the protein is in the monomeric state of a polypeptide chain with molecular weight of approximately 230,000 in a high ionic strength solvent, while it self-associates into a dimer under physiological ionic conditions. Electron microscopic examinations of HMWP have shown that the monomer particle observed in a high ionic strength solvent is rod shaped with the two-stranded morphology very similar to that of spectrin. On the other hand, under physiological ionic conditions, the HMWP dimer shows the dumb-bell shape with two globular domains connected with a thin flexible strand.  相似文献   

17.
Potent cell activation by endotoxin requires sequential protein-endotoxin and protein-protein interactions involving lipopolysaccharide-binding protein, CD14, MD-2, and Toll-like receptor 4 (TLR4). MD-2 plays an essential role by bridging endotoxin (E) recognition initiated by lipopolysaccharide-binding protein and CD14 to TLR4 activation by presenting endotoxin as a monomeric E.MD-2 complex that directly and potently activates TLR4. Secreted MD-2 (sMD-2) exists as a mixture of monomers and multimers. Published data suggest that only MD-2 monomer can interact with endotoxin and TLR4 and support cell activation, but the apparent instability of MD-2 has thwarted efforts to more fully separate and characterize the individual species of sMD-2. We have taken advantage of the much greater stability of sMD-2 in insect culture medium to fully separate sMD-2 monomer from dimer by gel sieving chromatography. At low nanomolar concentrations, the sMD-2 monomer, but not dimer, reacted with a monomeric complex of E.sCD14 to form monomeric E.MD-2 and activate HEK293/TLR4 cells. The monomer, but not dimer, also reacted with the ectodomain of TLR4 with an affinity comparable with the picomolar affinity of E.MD-2. These findings demonstrate directly that the monomeric form of sMD-2 is the active species both for reaction with E.CD14 and TLR4, as needed for potent endotoxin-induced TLR4 activation.  相似文献   

18.
The p53 tumor suppressor protein plays a key role in maintaining genomic integrity. Enhanced expression of p53 during genotoxic stress is due to both increased protein stability and translational up regulation. Previous reports have shown that p53 mRNA is translated from an alternative initiation codon to produce N-terminal truncated isoform (ΔN-p53) besides full-length p53. We have demonstrated that two internal ribosome entry sites (IRESs) regulate the translation of p53 and ΔN-p53 in a distinct cell-cycle phase-dependent manner. Here, we report that polypyrimidine tract-binding protein (PTB) is a p53 IRES interacting trans-acting factor. PTB protein binds specifically to both the p53 IRESs but with differential affinity. siRNA-mediated knockdown of PTB protein results in reduction of activity of both IRESs and also the levels of both the isoforms. It is well known that DNA-damaging agents such as doxorubicin enhance the expression of p53. Our results indicate that during doxorubicin treatment, PTB protein translocates from nucleus to the cytoplasm, probably to facilitate IRES mediated p53 translation. These observations suggest that the relative cytoplasmic abundance of PTB protein, under DNA-damaging conditions, might contribute to regulating the coordinated expression of the p53 isoforms, owing to the differential affinity of PTB binding to the two p53 IRESs.  相似文献   

19.
Polypyrimidine tract-binding protein (PTB) is an RNA binding protein existing both as dimer and monomer and shuttling between nucleus and cytoplasm. However, the regulation of PTB dimerization and the relationship between their functions and subcellular localization are unknown. Here we find that PTB presents as dimer and monomer in nucleus and cytoplasm respectively, and a disulfide bond involving Cysteine 23 is critical for the dimerization of PTB. Additionally, protein disulfide isomerase (PDI) is identified to be the enzyme that catalyzes the de-dimerization of PTB, which is dependent on the CGHC active site of the a’ domain of PDI. Furthermore, upon DNA damage induced by topoisomerase inhibitors, PTB is demonstrated to be de-dimerized with cytoplasmic accumulation. Finally, cytoplasmic PTB is found to associate with the ribosome and enhances the translation of p53. Collectively, these findings uncover a previously unrecognized mechanism of PTB dimerization, and shed light on the de-dimerization of PTB functionally linking to cytoplasmic localization and translational regulation.  相似文献   

20.
We have purified luteinizing hormone/human choriogonadotropin (hCG) receptor from rat ovary by sequential affinity column on wheat germ lectin-Sepharose and hCG-Sepharose chromatography. The purified receptor, previously identified as a single protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (Kusuda, S., and Dufau, M.L. (1986) J. Biol. Chem. 261, 16161-16168), was further characterized by radioiodination with 1,3,4,6-tetrachloro-3 alpha, 6 alpha-diphenylglycouril, and column chromatography on wheat germ lectin-Sepharose. Autoradiography of SDS-PAGE analysis under reducing conditions showed a single radiolabeled band of Mr = 80,000. The radioiodinated receptors treated with peptide:N-glycosidase F migrated at Mr = 54,000. Treatment with neuraminidase alone caused only a minor reduction in molecular weight, and subsequent treatment with endo-alpha-N-acetyl-D-galactosaminidase had little further effect on the receptor. When the radioiodinated receptor was analyzed by fast protein liquid chromatography, a single broad peak was eluted with Mr of approximately 350,000. The higher Mr of radioiodinated receptors than that of native receptors (Mr = 190,000 dimeric form) could be due to the aggregation of labeled molecules. These complexes dissociated into the monomeric form in the presence of SDS. To determine whether the monomers can bind hormone, the purified unlabeled receptors resolved with SDS were electroblotted to nitrocellulose membranes and incubated with 125I-hCG. Autoradiograms of the blots showed a band of monomer (Mr = 78,000) as well as one of dimer (Mr approximately 150,000). These studies have demonstrated that the luteinizing hormone/hCG receptors are predominantly N-linked glycosylated and suggest that the native receptor is a dimer of identical hormone binding subunits associated by noncovalent interactions. Although the individual subunits can bind hormone, it is conceivable that the dimeric form is necessary for signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号