首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low molecular weight dimethylcyclosiloxanes (DMCS) are important precursors in the synthesis of polydimethysiloxane polymers widely used in industry, and in medical and personal care products. The objective of this study was to characterize the ability of two DMCS, octamethylcyclosiloxane (D4) and decamethylcyclopentasiloxane (D5) to induce drug metabolizing enzymes in rats. Male and female Sprague-Dawley rats were administered 1, 5, 20, or 100 mg/kg D4 or D5 in corn oil daily by gavage for 4 days. Changes in the levels of activity and/or immunoreactivity of CYP1A1/2, CYP2B1/2, CYP3A1/2 and NADPH cytochrome P450 reductase in liver microsomes were examined. Significant increases were observed in the liver to body weight ratio in female rats administered either D4 or D5 at doses > or = 20 mg/kg. Increases in the liver to body weight ratio were observed in male rats treated with > or = 100 mg/kg D5 but not with D4. Relatively large increases in CYP2B1/2 enzymatic activity and immunoreactive protein were observed with increasing concentrations of both D4 and D5. Significant increases in 7-pentoxyresorufin O-depentylase (PROD) activity were also detected in male and female rats given D4 at doses > or = 5 mg/kg. D5 increased PROD activity in male rats at doses > or = 20 mg/kg and in female rats at doses > or = 5 mg/kg. 7-Ethoxyresorufin O-deethylase (EROD) activity was increased in both male and female rats receiving > or = 20 mg/kg D4 or > or = 5 mg/kg D5; however, no changes were detected in CYP1A1/2 immunoreactive protein in rats of either sex. D4 and D5 caused significant increases in CYP3A1/2 immunoreactive protein in only male rats treated with 100 mg/kg of either compound. However, significant increases were detected in CYP3A1/2 immunoreactive protein in female rats at D4 doses > or = 20 mg/kg and D5 doses > or = 5 mg/kg. Induction of NADPH cytochrome P-450 reductase immunoreactive protein was observed with D4 in female rats and in both male and female rats with D5. Induction of CYP2B/1/2, CYP3A1/2 and NADPH cytochrome P450 reductase was observed in rats treated with 50 mg/kg phenobarbital by intraperitoneal injection. Maximal CYP2B induction detected with D4 was approximately 50% of the increase observed with phenobarbital. In summary, D4 and D5 induced CYP2B1/2 in adult rat liver in a manner similar to that observed with phenobarbital; however, differences were observed between D4 and D5 in their ability to induce CYP3A1/2 and NADPH cytochrome P450 reductase. Female rats were more sensitive to the inductive properties of low doses of both DMCS than male rats whereas male rats were more responsive to phenobarbital induction.  相似文献   

2.
Chronic endosulfan exposure in rats led to considerable increase in the activities of drug metabolizing enzymes, whereas it had inhibitory effect on the activities of enzymes involved in the androgen biotransformation. Endosulfan also produced a dose- and duration-dependent increase in microsomal lipid peroxidation. The alterations produced after shorter duration showed much variation with respect to the dose levels and exposure period of endosulfan studied. The above biochemical changes were reversed after endosulfan withdrawal.  相似文献   

3.
Dimethylcyclosiloxanes (DMCS) are components of silicone gel containing implants and are known inducers of human drug metabolizing enzymes. The effects of the major DMCS, octamethyltetracyclosiloxane (D4) on cytochrome P450 (CYP) induction were examined in young adult, mature, and pregnant female Sprague-Dawley rats. Also, the ability of D4 administered to pregnant dams to affect CYP expression in fetal liver was examined. Female young, mature, and pregnant Sprague-Dawley rats were administered 0, 5, 20, and 100 mg/kg D4 daily by gavage for 8 days. Liver microsomal CYP (CYP2B, CYP3A, CYP1A) concentrations were evaluated by Western blots using specific antisera, and CYP activities were assayed using CYP selective assays. D4 treatment resulted in a significant induction of CYP2B and CYP3A isoforms. CYP induction was dose and age dependent. A comparison of the inducibility of CYP3A protein by D4 in rats from different age groups showed that the degree of increase was the highest in the pregnant rats at doses of 20 mg/kg D4 or higher. The mature rats had a lesser degree of responsiveness than did the young rats at the dose of 100 mg/ kg D4. Significant increases in CYP2B immunoreactive protein concentrations were observed in young and mature rats given D4 at doses >5 mg/kg and in pregnant rats at doses >20 mg/kg. Maximal CYP2B induction detected with blotting was more than 90-fold in mature rats; however, no significant changes were detected in CYP1A expression. There was a 20% increase of liver to body weight ratio in the mature rats treated with 100 mg/kg D4. D4 has different inductive properties in female rats of different ages and reproductive status. Also, D4 administered to the pregnant dam is capable of inducing CYP expression in fetal liver as well as decreasing fetal body weight.  相似文献   

4.
Induction of CYP 2E1 by carbon tetrachloride (CCl4) is one of the central pathways by which CCl4 generates oxidative stress in hepatocytes. Experimental liver injury was induced in rats by CCl4 to determine toxicological actions on CYP 2E1 by microsomal drug metabolizing enzymes. In this report, ethanolic extract of propolis at a dose of 200 mg/kg (po) was used after 24 h of toxicant administration to validate its protective potential. Intraperitoneal injection of CCl4 (1.5 ml/kg) induced hepatotoxicity after 24 h of its administration that was associated with elevated malonyldialdehyde (index of lipid peroxidation), lactate dehydrogenase and γ-glutamyl transpeptidase release (index of a cytotoxic effect). Hepatic microsomal drug metabolizing enzymes of CYP 2E1 showed sharp depletion as assessed by estimating aniline hydroxylase and amidopyrine N-demethylase activity after CCl4 exposure. Toxic effect of CCl4 was evident on CYP 2E1 activity by increased hexobarbitone induced sleep time and bromosulphalein retention. Propolis extract showed significant improvement in the activity of both enzymes and suppressed toxicant induced increase in sleep time and bromosulphalein retention. Choleretic activity of liver did not show any sign of toxicity after propolis treatment at a dose of 200 mg/kg (id). Histopathological evaluation of the liver revealed that propolis reduced the incidence of liver lesions including hepatocyte swelling and lymphocytic infiltrations induced by CCl4. Electron microscopic observations also showed improvement in ultrastructure of liver and substantiated recovery in biochemical parameters. Protective activity of propolis at 200 mg/kg dose was statistically compared with positive control silymarin (50 mg/kg, po), a known hepatoprotective drug seems to be better in preventing hepatic CYP 2E1 activity deviated by CCl4. These results lead us to speculate that propolis may play hepatoprotective role via improved CYP 2E1 activity and reduced oxidative stress in living system.  相似文献   

5.
Resveratrol, a polyphenolic compound found in grape skin and peanuts has been shown to prevent many diseases including cardiovascular diseases and cancer. To better understand resveratrol's potential in vivo toxicity, we studied the dose response using cDNA stress arrays coupled with drug metabolizing enzymatic (DME) assays to investigate the expression of stress-responsive genes and Phase I and II detoxifying enzymes in rat livers. Male and female CD rats were treated with high doses of resveratrol (0.3, 1.0 and 3.0 gm/kg/day) for a period of 28 days. Total RNA from rat liver was reverse-transcribed using gene-specific primers and hybridized to stress-related cDNA arrays. Among female rats, Phase I DME genes were repressed at 0.3 and 1.0 gm/kg/day doses, while genes such as manganese superoxide dismutase, cytochrome P450 reductase, quinone oxidoreductase and thiosulfate sulfurtransferase demonstrated a dose-dependent increase in gene expression. The modulation of these liver genes may implicate the potential toxicity as observed among the rats at the highest dose level of resveratrol. Real-Time PCR was conducted on some of the Phase II DME genes and anti-oxidant genes to validate the cDNA array data. The gene expression from real-time PCR demonstrated good correlation with the cDNA array data. UGT1A genes were amongst the most robustly induced especially at the high doses of resveratrol. We next performed Phase I and Phase II enzymatic assays on cytochrome P450 2E1 (CYP2E1), cytochrome P450 1A1 (CYP1A1), NAD(P)H:quinone oxidoreductase (NQO1), glutathione S-transferase (GST) and UDP-glucuronosyl transferase (UGT). Induction of Phase II detoxifying enzymes was most pronounced at the highest dose of resveratrol. CYP1A1 activity demonstrated a decreasing trend among the 3 dose groups and CYP2E1 activity increased marginally among female rats over controls. In summary, at lower doses of resveratrol there are few significant changes in gene expression whereas the modulation of liver genes at the high dose of resveratrol may implicate the potential toxicity observed.  相似文献   

6.
The role of drug metabolism in drug discovery (lead compound selection) and the traditional role of identifying the enzymes involved in biotransformation pathways (reaction phenotyping) have both relied heavily on the availability and use of a human liver bank. The assessment of drug metabolizing enzyme activity and variability in a series of individual human livers is essential when characterizing the enzymes involved in metabolic pathways (i.e. correlation analysis). In this regard, a human liver bank of 21 samples (14 males, six females, and one unknown) was characterized with respect to the activity of several important drug metabolizing enzymes. The total CYP450 content of the livers ranged from 0.06 to 0.46 nmol/mg microsomal protein. The fold variations found in specific enzyme contents were as follows: CYP1A2 (3x), CYP2A6 (21x), CYP2C9 (8x), CYP2C19 (175x), CYP2D6 (18x), CYP2E1 (5x), CYP3A4 (18x), FMO (2.5x), UDPGT (4x), NAT (7x), COMT (5x), ST (5x), TPMT (3x), and GST (2.5x). In general, the fold variation of the Phase II enzymes was lower compared with the Phase I enzymes, with the exceptions of CYP1A2, CYP2E1, and FMO. Similar data were reviewed from other established liver banks and compared with regard to the relative variability observed in drug metabolizing capacities found in this study.  相似文献   

7.
《Free radical research》2013,47(12):1416-1424
Abstract

Long-term exposure to cypermethrin induces the nigrostriatal dopaminergic neurodegeneration in adult rats and its pre-exposure in the critical periods of brain development enhances the susceptibility during adulthood. Monoamine transporters, xenobiotic metabolizing enzymes and oxidative stress play critical roles in the nigrostriatal dopaminergic neurodegeneration. The study was undertaken to investigate the effects of cypermethrin on DAT, VMAT 2, CYP2E1, GST Ya, GST Yc and GSTA4-4 expressions, CYP2E1 and GST activities and lipid peroxidation in the nigrostriatal system of adult rats with/without post-natal exposure to cypermethrin. Cypermethrin reduced VMAT 2 and increased CYP2E1 expressions without causing significant change in DAT. Although GSTA4-4 mRNA expression and lipid peroxidation were increased, no significant changes were observed in GST Ya and GST Yc expressions and total GST activity. The results obtained demonstrate that long-term exposure to cypermethrin modulates VMAT 2, CYP2E1, GSTA4-4 expressions and lipid peroxidation, which could contribute to the nigrostriatal dopaminergic neurodegeneration.  相似文献   

8.
Saurabh K  Parmar D 《Biomarkers》2011,16(8):649-656
Cytochrome P450 2B1 and 2B2, the major hepatic drug metabolizing enzymes belonging to CYP2 family and associated constitutive androstane receptor (CAR) were found to be expressed in peripheral blood lymphocytes (PBL) isolated from rats. As observed in liver, pretreatment of phenobarbital (PB) or phenytoin were found to increase the expression of CYP2B1, CYP2B2 and associated enzyme activity in PBL. Like in liver, blood lymphocyte CYP2B1/2B2 catalyzed the activity of 7-pentoxyresorufin O-dealkylase (PROD). The present data, demonstrating similarities in the regulation of blood lymphocyte CYP2B-isoenzymes with the liver enzymes, suggests that blood lymphocyte CYP2B-isoenzymes could be used as a biomarker to monitor tissue levels.  相似文献   

9.
《Biomarkers》2013,18(8):649-656
Cytochrome P450 2B1 and 2B2, the major hepatic drug metabolizing enzymes belonging to CYP2 family and associated constitutive androstane receptor (CAR) were found to be expressed in peripheral blood lymphocytes (PBL) isolated from rats. As observed in liver, pretreatment of phenobarbital (PB) or phenytoin were found to increase the expression of CYP2B1, CYP2B2 and associated enzyme activity in PBL. Like in liver, blood lymphocyte CYP2B1/2B2 catalyzed the activity of 7-pentoxyresorufin O-dealkylase (PROD). The present data, demonstrating similarities in the regulation of blood lymphocyte CYP2B-isoenzymes with the liver enzymes, suggests that blood lymphocyte CYP2B-isoenzymes could be used as a biomarker to monitor tissue levels.  相似文献   

10.
Farnesol is well known as a quorum-sensing molecule of Candida albicans . To assess the pathological function of farnesol, its effects on macrophage viability and functions including growth inhibitory activities against C. albicans were examined in vitro . Murine macrophages, when cultured in the presence of 56–112 μM of farnesol for 1–2 hr, decreased their activity inhibiting the mycelial growth of C. albicans and lost their viability. This suppression of macrophage function by farnesol was neutralized by the coexistence of the anti-oxidants probucol and trolox. Macrophages cultured in the presence of farnesol for 2 hr displayed morphological change of nuclei and DNA fragmentation, which suggested apoptosis of the cells. Intracellular production of ROS in the farnesol-treated macrophages was shown by fluorescence of DCFH-DA and increase of peroxidized materials. These effects of farnesol were blocked by probucol or trolox. These results indicate that farnesol lowered viability of the murine macrophages and suppressed their anti- Candida activity, perhaps through induction of ROS.  相似文献   

11.
近年,在表型及基因型上均发现存在药物氧化代谢多态性,特别是对于人类细胞色素P450氧化酶与药氧化代谢遗传多态性的关系进行了深入的研究。有关CYP2D6、CYP2C19等的突变已大多被鉴定;CYP1A1、CYP1A2等在表型存在多态性而确切的遗传机制尚不清楚。  相似文献   

12.
咖啡因体内代谢及其应用的研究进展   总被引:4,自引:0,他引:4  
Chen Y  Zhou HH 《生理科学进展》2010,41(4):256-260
咖啡因是从茶叶、咖啡果中提取出来的一种生物碱,常用于治疗神经衰弱和昏迷复苏。咖啡因体内代谢过程复杂,现已发现咖啡因的15种代谢产物,参与代谢过程的酶类也被逐一证实。尿液咖啡因代谢产物比率(UCMRs)常用于多种药物代谢酶活性的评估,主要包括CYP1A2、CYP2A6、N-乙酰转移酶和黄嘌呤氧化酶,咖啡因及其代谢产物检测方法也逐步得到改进与更新。总之,咖啡因与人类健康密切相关,以及其重要的科研应用价值,一直受到普遍关注。  相似文献   

13.
The bone marrow (BM) microenvironment contributes to drug resistance in acute myeloid leukaemia (AML) and multiple myeloma (MM). We have shown that the critical drug metabolizing enzymes cytochrome P450 (CYP) 3A4 and cytidine deaminase (CDA) are highly expressed by BM stroma, and play an important role in this resistance to chemotherapy. However, what factors influence the chemoprotective capacity of the BM microenvironment, specifically related to CYP3A4 and CDA expression, are unknown. In this study, we found that the presence of AML cells decreases BM stromal expression of CYP3A4 and CDA, and this effect appears to be at least partially the result of cytokines secreted by AML cells. We also observed that stromal CYP3A4 expression is up‐regulated by drugs commonly used in AML induction therapy, cytarabine, etoposide and daunorubicin, resulting in cross‐resistance. Cytarabine also up‐regulated CDA expression. The up‐regulation of CYP3A4 associated with disease control was reversed by clarithromycin, a potent inhibitor of CYP3A4. Our data suggest that minimal residual disease states are characterized by high levels of stromal drug metabolizing enzymes and thus, strong microenvironment‐mediated drug resistance. These results further suggest a potential role for clinically targeting drug metabolizing enzymes in the microenvironment.  相似文献   

14.
Ginkgo biloba extract (GBE) has been used clinically for improving peripheral vascular diseases in France and Germany and is ingested widely as a herbal medicine in some countries. However, accurate information about its safety as an herbal medicine has not been sufficiently established. To address this issue, we examined the effect of GBE on hepatic drug metabolizing enzymes and their influence on hypotensive drug in rats. Male rats were fed either a control diet or diet containing GBE (0.5% w/w) for 4 weeks. The feeding of a GBE diet did not change the serum transaminase activity, but increased the liver weight and the phospholipid concentration in the liver. In addition, the GBE diet markedly increased the content of cytochrome P-450 (CYP), and the activity of glutathione S-transferase in the liver. Furthermore, the GBE diet markedly induced levels of CYP2B1/2, CYP3A1 and CYP3A2 mRNA in the liver. The levels of CYP1A1, CYP1A2, CYP2E1, CYP2C11 and CYP4A1 were unchanged. The feeding of GBE for 4 weeks significantly reduced the hypotensive effect of nicardipine that was reported to be metabolized by CYP3A2 in rats. These findings suggest that GBE reduces the therapeutic potency of the Ca2+ channel blocker, nicardipine, via enhancement of cytochrome P-450 expression.  相似文献   

15.
Effect of the induction of drug metabolizing enzymes by Sudan III on the in vivo and in vitro genotoxicity elicited by 7,12-dimethyl-benz(a)anthracene (DMBA) was investigated. A significant suppression of DMBA-induced micronucleated reticulocytes was observed in C57BL/6 mice treated with Sudan III intraperitoneally for 3 or 5 days before injection of the DMBA. However, the preincubation of DMBA with hepatic microsomes from Sudan III-treated rats caused a marked increase in the in vitro mutagenicity in the Ames assay, paradoxically. Sudan III was found to induce CYP 1A1, 7-ethoxycoumarin O-deethylase activity as well as both UDP-glucuronyl transferase and glutathione S-transferase activities. The increase of mutagenicity of DMBA observed in the Ames assay using hepatic microsomes from Sudan III-treated rats was inhibited by the addition of uridine 5′-diphosphoglucuronic add or reduced glutathione with cytosol. Mutagenic metabolites of DMBA formed by CYP1A1 appeared to be effectively detoxified by these phase II enzymes. The results of this study suggest that Sudan III-induced prevention of in vivo mutagenesis is due to the induction of both CYP 1A1 and detoxifying phase II enzymes. The induced CYP1A1 may accelerate formation of active metabolic intermediates, but phase II enzymes are also induced and detoxify these intermediates to inactive metabolites. This would reduce residence time of the carcinogen in the body and the time of exposure to active metabolites for target organs.  相似文献   

16.
Phenobarbital causes a multitude of effects in hepatocytes, including increased cell proliferation, inhibition of apoptosis and upregulation of xenobiotic and endobiotic metabolizing enzymes. In this study, the involvement of several protein kinase and phosphatase pathways on constitutive and phenobarbital-induced activities of CYP2A5, CYP2B10 and CYP1A1/2 in primary mouse hepatocytes was determined using well-defined chemical modulators of intracellular protein phosphorylation and desphosphorylation events. A 48-h treatment of the hepatocytes with 2-aminopurine, a nonspecific serine/threonine kinase inhibitor, elicited dose-dependent increases in both basal and phenobarbital-induced CYP2A5 catalytic activity (assayed as coumarin 7-hydroxylation), the maximal induction being 60-fold greater than the control value upon cotreatment with 1.5 mM phenobarbital and 10 mM 2-aminopurine. In contrast, phenobarbital induction of CYP2B10 (pentoxyresorufin O-deethylase) and CYP1A1/2 (ethoxyresorufin O-deethylase) activities were blocked by 2-aminopurine. Increases in CYP2A5 activity were also observed after exposure of the hepatocytes to other protein kinase inhibitors affecting the cell cycle, i.e. roscovitine, K-252a and rapamycin. Inhibitors of protein kinases A and C, as well as tyrosine kinases, did not appreciably affect CYP2A5 activity levels. The serine/threonine phosphatase inhibitors tautomycin, calyculin A and okadaic acid all reduced both basal and phenobarbital-induced CYP2A5, CYP2B10 and CYP1A1/2 activities. These results further strengthen the concept that hepatic CYP2A5 is regulated in a unique way compared with CYP2B10 and CYP1A.  相似文献   

17.
Benzene is an occupational and environmental toxicant. The main human health concern associated with benzene exposure is leukemia. The toxic effects of benzene are dependent on its metabolism by the cytochrome p450 enzyme system. The cytochrome p450 enzymes CYP2E1 and CYP2F2 are the major contributors to the bioactivation of benzene in rats and mice. Although benzene metabolism has been shown to occur with mouse and human lung microsomal preparations, little is known about the ability of human CYP2F to metabolize benzene or the lung cell types that might activate this toxicant. Our studies compared bronchiolar derived (BEAS-2B) and alveolar derived (A549) human cell lines for benzene metabolizing ability by evaluating the roles of CYP2E1 and CYP2F1. BEAS-2B cells that overexpressed CYP2F1 and recombinant CYP2F1 were also evaluated. BEAS-2B cells overexpressing the enzyme CYP2F1 produced 47.4 +/- 14.7 pmols hydroxylated metabolite/10(6) cells/45 min. The use of the CYP2E1-selective inhibitor diethyldithiocarbamate and the CYP2F2-selective inhibitor 5-phenyl-1-pentyne demonstrated that both CYP2E1 and CYP2F1 are important in benzene metabolism in the BEAS-2B and A549 human lung cell lines. The recombinant expressed human CYP2F1 enzyme had a K(m) value of 3.83 microM and a V(max) value of 0.01 pmol/pmol p450 enzyme/min demonstrating a reasonably efficient catalysis of benzene metabolism (V(max)/K(m) = 2.6). Thus, these studies have demonstrated in human lung cell lines that benzene is bioactivated by two lung-expressed p450 enzymes.  相似文献   

18.
Studies have shown that mammalian cytochromes p450 participate in the metabolism of terpenes, yet their role in the biotransformation of farnesol, an endogenous 15-carbon isoprenol, is unknown. In this report, [(14)C]-farnesol was transformed to more polar metabolites by NADPH-supplemented mammalian microsomes. In experiments with microsomes isolated from acetone-treated animals, the production of one polar metabolite was induced, suggesting catalysis by CYP2E1. The metabolite was identified as (2E, 6E, 10E)-12-hydroxyfarnesol. In studies with purified CYP2E1, 12-hydroxyfarnesol was obtained as the major product of farnesol metabolism. Among a series of available human p450 enzymes, only CYP2C19 also produced 12-hydroxyfarnesol. However, in individual human microsomes, CYP2E1 was calculated to contribute up to 62% toward total 12-hydroxyfarnesol production, suggesting CYP2E1 as the major catalyst. Mammalian cells expressing CYP2E1 demonstrated further farnesol metabolism to alpha,omega-prenyl dicarboxylic acids. Since such acids were identified in animal urine, the data suggest that CYP2E1 could be an important regulator of farnesol homeostasis in vivo. In addition, CYP2E1-dependent 12-hydroxyfarnesol formation was inhibited by pharmacological alcohol levels. Given that farnesol is a signaling molecule implicated in the regulation of tissue and cell processes, the biological activity of ethanol may be mediated in part by interaction with CYP2E1-dependent farnesol metabolism.  相似文献   

19.
Estradiol (E2) has been linked to both, protection against damage associated with chronic diseases or exposure to chemicals, and to the incidence of cancer. In its protective role, E2 appears to attenuate oxidative stress while as a carcinogen, E2 damages macromolecules via formation of reactive catechol metabolites. Alterations in the expression of antioxidant and xenobiotic metabolizing enzymes upon administration of pharmacological doses of E2 have been previously identified, but the effect of chronic exposure to low concentrations of E2 on activities of those enzymes in liver is unclear. The August-Copenhagen Irish (ACI) rat is more sensitive to estrogen-induced carcinogenesis than the Sprague-Dawley rat. Accordingly, the effect of treatment of female ACI and Sprague-Dawley rats for 6 weeks with E2 on activities of NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione peroxidase, glutathione S-transferase (GST), phenol sulfotransferase (SULT1A1), cytochrome P450 (CYP450) and UDP-glucuronosyltransferase (UGT) was studied. Basal expression of these enzymes was similar in livers from both strains prior to exposure to E2. However, only NQO1 and GST activity was increased (3- and 2.5-fold, respectively) in liver cytosol of ACI rats treated with E2. In contrast, only NQO1 activity was increased modestly in livers of Sprague-Dawley rats. Other enzymes were not significantly affected in the livers of ACI or Sprague-Dawley rats following chronic treatment with E2. The selective induction of NQO1 and GST activity suggests that under physiological conditions, E2 may protect against oxidative stress via elevation of these antioxidant enzymes. The marked induction of NQO1 and GST in the ACI rat indicates a potential for this strain to be used as a model to study the E2-mediated modulation of these enzymes in tissues that are either sensitive to E2 carcinogenesis or to its protective effects.  相似文献   

20.
Liver microsomes are subcellular fractions that contain many metabolizing enzymes for drugs and endogeneous compounds. Some of these enzymes are regulated by sex hormonal control and exhibit sex-dependent expression pattern and metabolizing speed. Studying these enzymes, however, are complicated by the presence of isoforms such as cytochrome P450 (CYP450), which families share more than 50% amino acid identities. In this study, we applied quantitative shot-gun proteomics approach coupled with stable-isotope dimethyl labeling, two-dimensional reversed-phase peptide separation and tandem mass spectrometry (MS) to explore the gender-dependent expression of rat liver microsomal proteins. A total of 391 proteins were identified and quantified by this approach, and 56% of quantified proteins were enzymes. Although shot-gun approach is rarely used for identifying protein isoforms, we identified 53 isoforms by at least one unique peptide including 21 isoforms of CYP450s. Moreover, by quantitative and statistics assessment, we were able to classify them into 28 male dominant enzymes including CYP2C12 CYP2C11, CYP2C13, CYP2B3, CYP2C11, CYP2C70 and CYP3A2 which are known to be male specific, 21 female dominant enzymes including CYP2A1, CYP2C7, CYP2C12, CYP2D26, alcohol dehydrogenase 1, carboxylesterase 3, glutathione S-transferase, liver carboxylesterase 4, UDP-glucuronosyltransferase 2B1, and glyceraldehyde-3-phosphate dehydrogenase which are known to be female specific; and 125 sex-independent enzymes. However, most of the sex specificities revealed from this study, such as the male specificity of CYP2D1, were novel and not yet reported. We then conducted a mass spectrometry-multiple reaction mode (MS-MRM) based enzyme activity method to determine the catalyzing rate of CYP2D1 in male and female liver microsomes using carteolol as its specific substrate. The reaction rate catalyzed by CYP2D1 in female rats was determined to differ significantly with the rate in male rats. Moreover, the ratio (female/male) of reaction rate (0.68) was found to correlate with their relative protein abundance (0.72). This study revealed novel sex dependences of many rat liver enzymes and also demonstrated a unique MS-based analytical platform that could identify novel iso-enzymes and further quantify their abundance and enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号