首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of biomass of the macrophyte community in Badfish Creek was examined in three sections (A–C) totaling ten kilometers. Biomass samples were taken in a stratified-random manner, with sediment characteristics, depth, current velocity and incident light measured at each site to correlate individual biomass samples with environmental factors. Total community biomass decreased in the downstream section (C), with the biomass ofElodea canadensis decreasing abruptly below section A. The only environmental factors which were correlated with the decrease in macrophyte community biomass, especially that ofPotamogeton pectinatus, in section C was the increase in substrate heterogeneity and sand substrates which lacked surface gravel. The change in substrate was related to channelization. Considering the stream as a whole, the biomass of the dominant species,Potamogeton pectinatus, was correlated with incident light. Other species present wereCeratophyllum demersum andCladophora glomerata. Analysis of riparian vegetation type indicates that tree cover significantly reduced macrophyte biomass by incident light reduction.  相似文献   

2.
We studied preferences of invasive Ponto-Caspian amphipod P. robustoides for various macrophyte species (Myriophyllum spicatum, Ceratophyllum demersum, Potamogeton perfoliatus, Elodea canadensis) and artificial plant-like objects (artificial Christmas tree branches) in laboratory pairwise-choice tests. Juvenile (<7 mm) and adult gammarids exhibited different habitat preferences. Adults did not discriminate between artificial and natural substrata, or among most of the tested species of plants. In contrast, juveniles clearly preferred all tested macrophytes over artificial substrata. Moreover, they particularly preferred plants with the finest leaf elements: M. spicatum and C. demersum over the others and E. canadensis over P. perfoliatus. We found no influence of chironomid larvae, a potential food source for adult gammarids, on their distribution, nor any effect of adults on the habitat choice by juveniles. The habitat partitioning between juvenile and adult P. robustoides may help them survive in a new environment and increase their invasive potential by reducing the intraspecific competition and cannibalism.  相似文献   

3.
The presence of algae can greatly reduce the amount of light that reaches submerged macrophytes, but few experimental studies have been conducted to examine the effects of algae on biomass and structure of submerged macrophyte communities. We constructed communities with four submerged macrophytes (Hydrilla verticillata, Egeria densa, Ceratophyllum demersum, and Chara vulgaris) in three environments in which 0 (control), 50 and 100% of the water surface was covered by Spirogyra arcta. Compared to the control treatment, the 100% spirogyra treatment decreased biomass of the submerged macrophyte communities and of all the four macrophytes except C. demersum. Compared to the control and 50% treatments, the 100% treatment significantly increased relative abundance of C. demersum and decreased that of E. densa. Therefore, the presence of S. arcta can greatly affect the productivity and alter the structure of submerged macrophyte communities. To restore submerged macrophyte communities in conditions with abundant algae, assembling communities consisting of C. demersum or similar species may be a good practice.  相似文献   

4.
《Aquatic Botany》1987,29(2):157-168
Epiphyton samples same taken from different macrophyte species (three chararaceans Potamogeton pectinatus L.). While some epiphyton taxa were evenly distributed, the density of others differed according to plant part, site or macrophyte species. Diatoms were classified according to host plant species by cluster analysis. Thus, the neutral substrate hypothesis is revised.Differences in epiphyton composition were larger between the closely related species Chara tomentosa L. and C. globularis Thuill. than between Chara tomentosa and Nitellopsis obtusa (Desv.) J. Groves. The latter two species were heavily marl-encrusted. Potamogeton pectinatus was separated from the other macrophyte species by its lower total density of epiphyton and the high abundance of Cocconeis placentula Ehr.  相似文献   

5.
Species composition, relative abundance, distribution and physical habitat associations of submerged aquatic macrophytes in the main channel border (MCB) habitat of Pool 5A, Upper Mississippi River (UMR) were investigated during the summers of 1980 and 1983. The submerged aquatic macrophytes in Pool .5A MCB were a small and stable component of the river ecosystem. Submerged plants occurred primarily in small, monospecific clumps. Clumps in close proximity to each other formed plant patches. Plant patches were stable in location and number between 1980 and 1983; 82.5% of the patches first observed in 1980 were present in 1983. Submerged macrophytes covered about 10–12 ha of the 201 ha MCB in Pool 5A. Submerged plants were most common in the lower two-thirds of the pool. Ten species of aquatic macrophytes occurred on rock channel-training structures and eleven occurred on non-rock substrates in the MCB. The most common submerged plants, in order of abundance, were Vallisneria americana Michx., Heteranthra dubia Jacq., Potamogeton pectinatus L., Ceratophyllum demersum L. and Potamogeton americanus C. & S.  相似文献   

6.
Submerged macrophytes as indicators of the ecological quality of lakes   总被引:1,自引:0,他引:1  
1. We analysed submerged macrophyte communities from 300 Danish lakes to determine the efficacy of different species, maximum colonisation depth (Cmax) of plants as well as coverage and plant volume inhabited (PVI) as indicators of eutrophication. 2. Most species occurred at a wide range of phosphorus and chlorophyll a (Chla) concentrations, but some species of isoetids (Lobelia, Isoëtes) and Potamogeton (Potamogeton gramineus, Potamogeton alpinus and Potamogeton filiformis) were mainly found at low nutrient concentrations and hence may be considered as indicators of nutrient poor conditions. However, species typically found in nutrient‐rich conditions, such as Elodea canadensis and Potamogeton pectinatus, were also found at total phosphorus (TP) <0.02 mg P L?1 and Chla <5 μg L?1 and therefore cannot be considered as reliable indicators of eutrophic conditions. 3. Submerged macrophyte coverage, PVI and the Cmax were negatively correlated with TP and Chla. However, variability among lakes was high and no clear thresholds were observed. At TP between 0.03 and 0.07 mg P L?1 plant coverage in shallow lakes ranged from nearly 0 to 100%, whilst at concentrations between 0.10 and 0.20 mg P L?1 only 29% of the lakes had coverage >10%. Cmax was found to be a useful indicator only in deep lakes with unvegetated areas in the deeper part, whereas the use of coverage was restricted to shallow lakes or shallow areas of deep lakes. 4. Overall, submerged macrophytes responded clearly to eutrophication, but the metrics investigated here showed no well‐defined thresholds. We developed a simple index based on species richness, presence of indicator species, coverage and Cmax, which might be used to track major changes in macrophyte communities and for lake classification.  相似文献   

7.
In this study, we used a macrophyte model to describe the growth production and the interaction between above‐ and below‐ground organs of Potamogeton pectinatus in Lake Burullus, Egypt. Above‐ and below‐ground biomass of P. pectinatus was sampled on a monthly basis from April to December 2011 at three sites of Lake Burullus. Shoots started to grow in April, reached the maximum biomass in September and then rapidly decreased in October when they moved into the senescence stage. Tubers biomass reduced in August due to the upward translocation to shoots, but sharply increased to the maximum in October by downward translocation from shoots and roots. Potamogeton pectinatus allocated approximately 82.3% of its total biomass to shoots, 15.5% to tubers and 2.2% to roots.  相似文献   

8.
Populations of common submerged vascular plants were established in a series of 18 experimental ponds in 1967 and subjected to a replicated inorganic N-P fertilization program. The 18 ponds were fertilized as follows in 1968: 6 unfertilized controls, 6 low fertility (.75 mg. P/1) and 6 high fertility (75 mg. N/1., 7·5 mg. P/1.). The high fertility levels tended to eliminate the benthic plant populations and increase the phytoplankton standing crops. Elodea canadensis grew in the highest nutrient levels but Myriophyllum spicatum var. exalbescens and Ceratophyllum demersum appeared to be eliminated. Potamogeton crispus produced an abundance of winter buds under conditions of high fertility. There were no obvious differences in the benthic plant and phytoplankton populations among the control and low fertility ponds.Supported by funds from OWRR Title II Matching Grant and the College of Agriculture at Cornell University.  相似文献   

9.
In saline lakes, areal cover and both species and structural diversity of macrophytes often decline as salinity increases. To assess effects of the loss of certain macrophyte growth forms, we characterized benthic and epiphytic invertebrates in three growth forms (thin-stemmed emergents, erect aquatics, and low macroalgae) in oligosaline lakes (0.8–4.2 mS cm−1) of the Wyoming High Plains, USA. We also measured the biomass and taxonomic composition of epiphytic and benthic invertebrates in two erect aquatics with very similar structure that are found in both oligosaline (Potamogeton pectinatus) and mesosaline (9.3–23.5 mS cm−1) (Ruppia maritima) lakes. Although total biomass of epiphytic invertebrates varied among oligosaline lakes, the relative distribution of biomass among growth forms was similar. For epiphytic invertebrates, biomass per unit area of lake was lowest in emergents and equivalent in erect aquatics and low macroalgae; biomass per unit volume of macrophyte habitat was greatest in low macroalgae. For benthic invertebrates, biomass was less beneath low macroalgae than other growth forms. Taxonomic composition did not differ appreciably between growth forms for either benthic or epiphytic invertebrates, except that epiphytic gastropods were more abundant in erect aquatics. Total biomass of epiphytic and benthic invertebrates for the same growth form (erect aquatic) did not differ between oligosaline (Potamogeton pectinatus) and mesosaline (Ruppia maritima) lakes, but taxonomic composition did change. In the oligosaline to mesosaline range, direct toxic effects of salinity appeared important for some major taxa such as gastropods and amphipods. However, indirect effects of salinity, such as loss of macrophyte cover and typically higher nutrient levels at greater salinities, probably have larger impacts on total invertebrate biomass lake-wide.  相似文献   

10.
11.
1. Seasonal relationships between macrophyte and phytoplankton populations may alter considerably as lakes undergo eutrophication. Understanding of these changes may be key to the interpretation of ecological processes operating over longer (decadal‐centennial) timescales. 2. We explore the seasonal dynamics of macrophytes (measured twice in June and August) and phytoplankton (measured monthly May–September) populations in 39 shallow lakes (29 in the U.K. and 10 in Denmark) covering broad gradients for nutrients and plant abundance. 3. Three site groups were identified based on macrophyte seasonality; 16 lakes where macrophyte abundance was perennially low and the water generally turbid (‘turbid lakes’); 7 where macrophyte abundance was high in June but low in August (‘crashing’ lakes); and 12 where macrophyte abundance was high in both June and August (‘stable’ lakes). The seasonal behaviour of the crashing and turbid lakes was extremely similar with a consistent increase in nutrient concentrations and chlorophyll‐a over May–September. By contrast in the stable lakes, seasonal changes were dampened with chlorophyll‐a consistently low (<10–15 μg L?1) over the entire summer. The crashing lakes were dominated by one or a combination of Potamogeton pusillus, Potamogeton pectinatus and Zannichellia palustris, whereas Ceratophyllum demersum and Chara spp. were more abundant in the stable lakes. 4. A long‐term loss of macrophyte species diversity has occurred in many shallow lakes affected by eutrophication. One common pathway is from a species‐rich plant community with charophytes to a species‐poor community dominated by P. pusillus, P. pectinatus and Z. palustris. Such compositional changes may often be accompanied by a substantial reduction in the seasonal duration of plant dominance and a greater tendency for incursions by phytoplankton. We hypothesise a slow‐enacting (10–100 s years) feedback loop in nutrient‐enriched shallow lakes whereby increases in algal abundance are associated with losses of macrophyte species and hence different plant seasonal strategies. In turn such changes may favour increased phytoplankton production thus placing further pressure on remaining macrophytes. This study blurs the distinction between so‐called turbid phytoplankton‐dominated and clear plant‐dominated shallow lakes and suggests that plant loss from them may be a gradual process.  相似文献   

12.
Macrophyte communities of European streams with altered physical habitat   总被引:2,自引:2,他引:0  
The impact of altering hydro-morphology on three macrophyte community types was investigated at 107 European stream sites. Sites were surveyed using standard macrophyte and habitat survey techniques (Mean Trophic Rank Methodology and River Habitat Survey respectively). Principal Components Analysis shows the macrophyte community of upland streams live in a more structurally diverse physical habitat than lowland communities. Variables representing the homogeneity and diversity of the physical environment were used to successfully separate un-impacted from impacted sites, e.g. homogeneity of depth and substrate increased with decreasing quality class for lowland sites (ANOVA p < 0.05). Macrophyte attribute groups and structural metrics such as species richness were successfully linked to hydro-morphological variables indicative of impact. Most links were specific to each macrophyte community type, e.g., the attribute group liverworts, mosses and lichens decreased in abundance with increasing homogeneity of depth and decreasing substrate size at lowland sites but not at upland sites. Elodea canadensis, Sparganium emersum and Potamogeton crispus were indicative of impacted lowland sites. Many of the indicator species are also known to be tolerant to other forms of impact. The potential for a macrophyte tool indicative of hydro-morphological impact is discussed. It is concluded one could be constructed by combining indicator species and metrics such as species richness and evenness.  相似文献   

13.
This study explores: (1) whether the abundance of macroinvertebrates differs between macrophytes differing in both morphological complexity and tolerance to nutrient enrichment; (2) whether the distribution of invertebrates between macrophytes is due to active habitat choice; and (3) whether invertebrates prefer structurally complex to simple macrophytes. Macroinvertebrate abundance was compared between two common soft-bottom plants of the Baltic Sea that are tolerant to eutrophication, Myriophyllum spicatum and Potamogeton pectinatus, and one common plant that is sensitive to eutrophication, Chara baltica. Both field sampling and habitat choice experiments were conducted. We recorded higher total macroinvertebrate abundance on the structurally complex M. spicatum than on the more simply structured P. pectinatus and C. baltica, but found no difference in macroinvertebrate abundance between P. pectinatus and C. baltica. In accordance with the field results, our experiment indicated that the crustacean Gammarus oceanicus actively chose M. spicatum over the other macrophytes. Besides, we found that G. oceanicus actively preferred complex to simply structured artificial plants, indicating that the animal distribution was at least partly driven by differences in morphological complexity between plant species. In contrast, the gastropod Theodoxus fluviatilis did not make an active habitat choice between the plants. Our findings suggest that human-induced changes in vegetation composition can affect the faunal community. Increased abundance of structurally complex macrophytes, for example, M. spicatum, can result in increased abundance of macroinvertebrates, particularly mobile arthropods that may actively choose a more structurally complex macrophyte.  相似文献   

14.
Fourteen samples of sago pondweed (Potamogeton pectinatus L.) and associated invertebrates were collected every two weeks over a single season of plant growth in a large monospecific pondweed-bed located in Coyote Hills Marsh (Alameda Co., California, USA), using pull-up samplers that collect plants, epiphytic macroinvertebrates, and microcrustaceans throughout the water column. The macro-invertebrate fauna was dominated by insects, primarily chironomids. Semi-aquatic neustonic taxa, including an aphid and a springtail, were common; this is in contrast with most aquatic plant-invertebrate studies, in which neustonic insects are seldom collected because of sampling bias. Over the entire season, P. pectinatus biomass and the densities of four insect taxa (Anopheles spp. mosquitoes, Hydrellia sp. brineflies, Ademon sp. parasitic wasps, and coenagrionid damselflies) were significantly correlated. These correlations resulted from both similar overall phenologies of the plant and each of the insect taxa, and ecological relationships in which P. pectinatus provides either a specialized habitat or food source. macroinvertebrate numbers were highest in mid-summer, when P. pectinatus forms a dense floating canopy; microcrustaceans were more common during plant senescence in early autumn. Individuals of some taxa may be distributed in proportion to plant biomass; this occurred commonly in damselflies, perhaps as a result of territoriality in these nymphs.  相似文献   

15.
The distribution, abundance and habitat characteristics of an alien species, Elodea canadensis, were surveyed in watercourses in Slovenia. The accompanying plant community was also examined. Distribution and abundance of macrophytes were assessed in reaches of different length, and habitat assessment is based on 12 parameters of the Riparian, Channel, and Environmental (RCE) Inventory. E. canadensis thrived in 132 out of 1,227 reaches examined and in 12 of the 39 watercourses surveyed. It grew in the company of a variety of species, most frequently with different species of Potamogeton. It was rarely found as the prevailing, and never as the only species in any reach. Canonical correspondence analysis (CCA) of reaches with E. canadensis revealed that the presence of detritus, retention structures and properties of the riparian zone explained most of the variance in community composition. Habitat analysis of well-established stands of E. canadensis showed that its preferred habitats were watercourses flowing through agricultural landscape, with a narrow, more or less disturbed riparian zone, with moderate presence of retention structures, and with sediment that was a mixture of gravel, sand and silt with either coarse or fine organic matter. It was not found in the parts of streams with the most dynamic flow, and was absent from watercourses in the karst region, due to the frequent and extreme water level fluctuations. The alien species E. canadensis did not express its invasive character in heterogeneous watercourses with rich macrophyte communities.  相似文献   

16.
The dynamics of metal content in higher aquatic plants (macrophytes) in a small Bugach water reservoir in 1998–2006 was studied. A comparative estimation of the metal content in six macrophyte species (Typha latifolia L., Typha angustifolia L., Polygonium amphibium L., Potamogeton perfoliatus L., Potamogeton pectinatus L., Phragmites australis (Cav) Trin. Ex Steud.) showed that their metal concentrations do not generally exceed those known from the literature. Cluster analysis showed that the macrophyte species under study form two ecological groups with respect to the metal content, i.e., submerged plants (hydrophytes) and emergent aquatic plants (heliophytes).  相似文献   

17.
18.
19.
Ecosystem development in different types of littoral enclosures   总被引:2,自引:2,他引:0  
Vermaat  J. E.  Hootsmans  M. J. M.  van Dijk  G. M. 《Hydrobiologia》1990,200(1):391-398
Macrophyte growth was studied in two enclosure types (gauze and polythene) in a homogeneousPotamogeton pectinatus bed in Lake Veluwe (The Netherlands). The gauze was expected to allow for sufficient exchange with the lake to maintain similar seston densities, the polythene was expected to exclude fish activity and most water exchange. Polythene enclosures held higher totalP. pectinatus biomass (ash-free dry weight, AFDW) than the lake, gauze enclosures were intermediate. The enclosures had a higher abundance of other macrophyte species (Chara sp.,Potamogeton pusillus) than the lake. Seston ash content was not but seston AFDW, periphyton ash content and AFDW were lower in polythene than in gauze enclosures. The difference in plant biomass between gauze and polythene may be attributed to a difference in periphyton density and in seston AFDW due to zooplankton grazing (Rotatoria andDaphnia densities were higher in polythene enclosures). Since seston and periphyton AFDW and ash content were similar in lake and gauze enclosures, the intermediate macrophyte biomass in the gauze enclosures may be explained by reduced wave action and mechanical stress. Alternatively, phytoplankton inhibition by allelopathic excretions from the macrophytes may have caused the high macrophyte biomass in the polythene, and an absence of sediment-disturbing fish the intermediate biomass in the gauze enclosures. Creation of sheltered areas may favour macrophyte growth through both mechanisms and we conclude that this can be an important tool in littoral biomanipulation.  相似文献   

20.
Fennel (= Sago) pondweed (Potamogeton pectinatus L.) is a submersed macrophyte of nearly cosmopolitan distribution. The plant is of worldwide ecological importance as structuring component of shallow lakes, and as food for waterfowl. We developed nine polymorphic microsatellite primers for the population genetic analysis of P. pectinatus. The loci were identified using a GA/CT‐enriched genomic library using subtractive hybridization with magnetic particles. All nine loci were highly polymorphic with 6–9 alleles and heterozygosities ranging from 0.23 to 0.80 in a subset of N = 40 genotypes from five locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号