首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor-beta 1 (TGF beta 1) is a multifunctional regulator of cell growth and differentiation. We report here that TGF beta 1 decreased the proliferation of nontransformed bovine anterior pituitary-derived cells grown in culture. We have previously demonstrated that these cells express both TGF alpha and its receptor [the epidermal growth factor (EGF) receptor] and that expression can be stimulated by phorbol ester (TPA) and EGF. TGF beta 1 treatment over a 2-day period decreased the proliferation of pituitary cells. This decreased growth rate was accompanied by a decrease in the TGF alpha mRNA level. The effect of TGF beta 1 on TGF alpha mRNA down-regulation was both dose dependent (maximal effect observed at 1.0 ng/ml TGF beta 1) and time dependent (minimum of 2-day treatment with TGF beta 1 was required before a decrease in TGF alpha mRNA was observed). Studies on TGF alpha mRNA stability indicated that TGF beta 1 did not alter the TGF alpha mRNA half-life. Treatment of the TGF beta 1 down-regulated cells with EGF resulted in the stimulation of TGF alpha mRNA levels; thus, the TGF beta 1-treated cells remained responsive to EGF. The decreased proliferation in response to TGF beta 1 could be only partially reversed by simultaneous treatment of the cells with EGF (10(-9)M) and TGF beta 1 (3.0 ng/ml). Qualitatively, the TGF beta 1-induced reduction of TGF alpha mRNA content was independent of cell density. TGF beta 1 treatment of the anterior pituitary-derived cells also reduced the levels of c-myc and EGF receptor mRNA. These results represent the first demonstration of the down-regulation of TGF alpha synthesis by a polypeptide growth factor and suggest that TGF beta 1 may be a physiological regulator of TGF alpha production in vivo.  相似文献   

2.
The impact of the immune response in malignancy is poorly understood. While immune cells can destroy transformed cells, the targeting and accumulation of monocytes and macrophages at tumor sites may promote tumor metastases. The growth factor M-CSF is important in promoting monocyte survival. Since M-CSF(-/-) mice are protected against tumor metastases, we hypothesized that M-CSF induced monocytes to produce angiogenic factors that facilitate metastases. In this study we demonstrate that recombinant human M-CSF induces freshly isolated normal human monocytes to produce and release the growth factor vascular endothelial growth factor (VEGF) in a dose-dependent manner, which peaked at 5 days in culture. VEGF released by these monocytes is biologically active, as cell-free supernatants from these M-CSF-stimulated monocytes induced tube formation in HUVEC. Network formation by these HUVECs after treatment with supernatants from monocytes stimulated with M-CSF were inhibited by anti-VEGF, but not by the isogenic control, Abs. Collectively, these data support an important role for M-CSF and monocytes in VEGF production and angiogenesis.  相似文献   

3.
Transforming growth factor (TGF)-alpha in human milk   总被引:2,自引:0,他引:2  
Transforming growth factor (TGF)-alpha and epidermal growth factor (EGF) were measured in human milk by means of homologous radioimmunoassay. As previously reported, EGF concentration in the colostrum was approximately 200 ng/ml and decreased to 50 ng/ml by day 7 postpartum. The value of immunoreactive (IR)-TGF-alpha was 2.2-7.2 ng/ml, much lower than that of EGF. In contrast to EGF, the concentration of IR-TGF-alpha was fairly stable during the 7 postpartum days. There was no relationship between the concentrations of IR-TGF-alpha and IR-EGF, suggesting that the regulatory mechanism in the release of the two growth factors is different. On gel-chromatography using a Sephadex G-50 column, IR-EGF appeared in the fraction corresponding to that of authentic human EGF, while 70%-80% of the IR-TGF-alpha was eluted as a species with a molecular weight greater than that of authentic human TGF-alpha. Although the physiological role of TGF-alpha in milk is not known, it is possible that it is involved in the development of the mammary gland and/or the growth of newborn infants.  相似文献   

4.
In addition to its activities as a growth factor, recent studies suggest an immunoregulatory role for transforming growth factor-beta (TGF-beta). In this context we have demonstrated that TGF-beta is a potent chemotactic factor in vitro for human T lymphocytes at a concentration of 40 fM and for monocytes at a concentration of 0.4 fM but that it has no chemotactic activity for neutrophils. Furthermore, using an assay of lymphocyte subset chemotaxis we have been able to show that TGF-beta can induce migration of both CD4+ and CD8+ T lymphocytes in vitro. This study provides further evidence that TGF-beta acts as a cytokine, being able to attract T lymphocytes and monocytes to sites of inflammation. Its role in the pathogenesis of inflammatory reactions is likely to be complex.  相似文献   

5.
转化生长因子β   总被引:3,自引:0,他引:3  
张平 《生理科学进展》1990,21(4):323-328
TGFβ广泛存在于动物体多种组织和细胞内,由二条相同的、含112个氨基酸的肽链组成,是细胞的多功能双重调节因子。它对不同组织类型的细胞,可促进生长、分化,也可抑制生长、分化,并直接参与组织修复、胚胎发育等过程,调节细胞外基质形成。  相似文献   

6.
7.
PDGF is a mitogenic protein stored in platelets and released upon platelet degranulation. Recent evidence indicates that PDGF plays an important role in both physiologic and pathophysiologic processes, particularly in tumorigenesis, wound healing, pulmonary fibrosis, and atherogenesis. In addition to its mitogenic potential, it has been reported that PDGF stimulates monocyte chemotaxis. Since the recruitment of monocytes from the peripheral vasculature is an important event in vivo, the potential role of PDGF as a monocyte chemoattractant has significant biologic implications. However, we now report that homogeneous human PDGF from platelets and a recombinant PDGF-2 homodimer do not stimulate monocyte chemotaxis. In contrast to previous reports these results indicate that PDGF is not a monocyte chemoattractant.  相似文献   

8.
Transforming growth factor-Beta (TGF-beta) is a potent growth inhibitor for several cell types including epithelial cells and hematopoietic progenitor cells. Using a human promonocytic leukemia cell line, THP-1, we have shown that TGF-beta inhibits their proliferation and promotes differentiation into cells exhibiting macrophage-like properties. Therefore, a key question is whether TGF-beta influences the expression of genes associated with proliferation and/or growth inhibition. TGF-beta treatment of THP-1 cells results in downregulation of expression of c-myc. We also observe that TGF-beta 1-treated cells express reduced levels of the cell cycle regulated histone, H2B, but express elevated levels of an RNA splicing variant of this histone that has been observed to be upregulated in growth inhibited and terminally differentiated cells. In addition, a nuclear protein associated with senescence and withdrawal of cells from the cell cycle, statin, is also expressed by THP-1 cells in response to TGF-beta 1 treatment. These results suggest that TGF-beta 1 is capable of inducing expression of specific nuclear proteins associated with differentiation and/or cessation of proliferation that may result in changes in nuclear organization and altered gene expression. Such changes in nuclear organization may be incompatible with continued proliferation of the cells.  相似文献   

9.
Murine transforming growth factor-beta 3 (TGF beta 3) cDNAs were isolated from a TGF beta 2-induced AKR-2B cDNA library. The composite cDNA sequence is 2894 nucleotides long, including 610-nucleotide and 1054-nucleotide 5' and 3' untranslated sequences, respectively. The murine TGF beta 3-coding region is 1230 nucleotides in length and encodes a precursor protein of 410 amino acids, with a 96% peptide sequence identity with the human TGF beta 3 precursor. Examination of TGF beta 1 and TGF beta 3 mRNA levels in adult murine tissues showed that TGF beta 1 mRNA expression is predominant in spleen, lung, and placenta. In contrast, TGF beta 3 RNA was present in substantial amounts in brain, heart, adipose tissue, and testis. TGF beta 3 mRNA is also observed in adult mouse lung and placenta. Both TGF beta 1 and TGF beta 3 RNAs were present in all stages of mouse fetal development studied from 10.5-17.5 days postcoitum, with higher levels observed in the latter stages. The differential expression of these TGF beta genes suggests that the various TGF beta species may have distinct physiological roles in vivo.  相似文献   

10.
Latent transforming growth factor-beta-binding proteins (LTBPs) are extracellular matrix (ECM) glycoproteins that play a major role in the storage of latent TGF beta in the ECM and regulate its availability. Here we show that fibronectin is critical for the incorporation of LTBP1 and transforming growth factor-beta (TGF beta) into the ECM of osteoblasts and fibroblasts. Immunolocalization studies suggested that fibronectin provides an initial scaffold that precedes and patterns LTBP1 deposition but that LTBP1 and fibronectin are later localized in separate fibrillar networks, suggesting that the initial template is lost. Treatment of fetal rat calvarial osteoblasts with a 70-kDa N-terminal fibronectin fragment that inhibits fibronectin assembly impaired incorporation of LTBP1 and TGFbeta into the ECM. Consistent with this, LTBP1 failed to assemble in embryonic fibroblasts that lack the gene for fibronectin. LTBP1 assembly was rescued by full-length fibronectin and superfibronectin, which are capable of assembly into fibronectin fibrils, but not by other fibronectin fragments, including a 160-kDa RGD-containing fragment that activates alpha5beta1 integrins. This suggests that the critical event for LTBP1 assembly is the formation of a fibronectin fibrillar network and that integrin ligation by fibronectin molecules alone is not sufficient. Not only was fibronectin essential for the initial incorporation of LTBP1 into the ECM, but the continued presence of fibronectin was required for the continued assembly of LTBP1. These studies highlight a nonredundant role for fibronectin in LTBP1 assembly into the ECM and suggest a novel role for fibronectin in regulation of TGF beta via LTBP1 interactions.  相似文献   

11.
We have examined the effects of TGF beta 1 and TGF beta 2 on the HEL human erythroleukemia cell line. It was observed that TGF beta 1 and 2 induced hemoglobin synthesis in these cells without causing a significant negative effect on cell proliferation. The cell surface markers glycophorin A and transferrin receptor that are associated with erythroid differentiation were also increased. This cell line may provide a model system in which to study the regulation of globin gene expression by a physiological growth factor known to act on hemopoietic cells.  相似文献   

12.
We hypothesize that rat fetal urogenital sinus mesenchyme (UGM) can induce prostatic growth of growth quiescent adult rat prostate through modulations of TGFbetas and their receptors. To test this hypothesis, prostatic ducts from aging rat prostate (4, 12, 17, 22, and 27 months) were combined with fetal rat UGM and grafted under renal capsule of athymic nude mice. At 1, 3, and 5 months the tissue recombinants were harvested from renal capsule and analyzed for their growth. The gene and protein expression of TGFbeta1, 2, 3 and their receptors, TbetaR-I and TbetaR-II, were analyzed by RT-PCR and immunohistochemistry, respectively. The results of these experiments demonstrate that prostate ducts when combined with rat UGM formed larger grafts as compared to control (prostatic ducts without UGM). The older rat prostate recombinants (17, 22, and 27 months) formed larger grafts (159 mg/graft) as compared to younger rat prostate (4 and 12 months) grafts (51 mg/graft). The mRNA and protein expression for TbetaR-I and TbetaR-II in 22 and 27 months rat prostate tissue recombinants were significantly lower than 4, 12, and 17 month tissue recombinants. However, mRNA expression for TGFbeta1, TGFbeta2, and TGFbeta3 did not change with aging rat tissue recombinants. The protein expression for TGFbeta1 was significantly up-regulated whereas TGFbeta2 and TGFbeta3 were down-regulated with aging prostate tissue recombinants. The present study demonstrates for the first time that rat fetal UGM differentially induces growth of aging rat prostate in a tissue recombinant model. The mechanisms of induction may be through up-regulation of TGFbeta1 and down-regulation of TGFbeta2, and TGFbeta3. However, the action of TGFbetas may be through TbetaR-I and TbetaR-II independent pathways since these receptors were lacking or low in older rat prostate tissue recombinants. These findings are important in understanding the mechanisms of UGM mediated prostatic growth.  相似文献   

13.
Human collagenase-3 (matrix metalloproteinase 13 (MMP-13)) is characterized by exceptionally wide substrate specificity and restricted tissue specific expression. Human skin fibroblasts in culture express MMP-13 only when they are in three-dimensional collagen (Ravanti, L., Heino, J., López-Otín, C., and K?h?ri. V.-M. (1999) J. Biol. Chem. 274, 2446-2455). Here we show that MMP-13 is expressed by fibroblasts during normal human gingival wound repair. Expression of MMP-13 by human gingival fibroblasts cultured in monolayer or in collagen gel was induced by transforming growth factor-beta1 (TGF-beta1). Treatment of gingival fibroblasts with TGF-beta1 activated two distinct mitogen-activated protein kinases (MAPKs): extracellular signal-regulated kinase 1/2 (ERK1/2) in 15 min and p38 MAPK in 1 and 2 h. Induction of MMP-13 expression by TGF-beta1 was blocked by SB203580, a specific inhibitor of p38 MAPK, but not by PD98059, a selective inhibitor of ERK1/2 activation. Adenovirus-mediated expression of dominant negative p38alpha and c-Jun potently inhibited induction of MMP-13 expression in gingival fibroblasts by TGF-beta1. Infection of gingival fibroblasts with adenovirus for constitutively active MEK1 resulted in activation of ERK1/2 and JNK1 and up-regulation of collagenase-1 (MMP-1) and stromelysin-1 (MMP-3) production but did not induce MMP-13 expression. In addition, activation of p38 MAPK by constitutively active MKK6b or MKK3b was not sufficient to induce MMP-13 expression. These results show that TGF-beta-elicited induction of MMP-13 expression by gingival fibroblasts is dependent on the activity of p38 MAPK and the presence of functional AP-1 dimers. These observations demonstrate a fundamental difference in the regulation of collagenolytic capacity between gingival and dermal fibroblasts and suggest a role for MMP-13 in rapid turnover of collagenous matrix during repair of gingival wounds, which heal with minimal scarring.  相似文献   

14.
Human bone marrow fibroblasts were cultivated and characterized by immunofluorescent staining and electron microscopy. Their interactions with PDGF and TGF beta were studied. While a positive intracellular antifibronectin staining was observed, the cultured cells were not labeled with specific antibodies toward factor VIII von Willebrand factor (F VIII/vWF), desmin, and macrophage antigen. Moreover, electron microscopy excluded the presence of endothelial cells by the absence of Weibel-Palade bodies. The binding of pure human PDGF to the cultured bone marrow fibroblasts was investigated. Addition of an excess of unlabeled PDGF decreased the binding to 75 and 80%, which means that the nonspecific binding represented 20-25% of total binding, whereas epidermal growth factor (EGF) had no effect. Two classes of sites were detected by Scatchard analysis with respectively 21,000 and 37,000 sites per cell, with a KD of 0.3 x 10(-10) M and KD of 0.5 x 10(-9) M. The stimulation of DNA synthesis by PDGF was quantified by [3H]thymidine incorporation. When PDGF was added alone at a concentration of 15 ng/ml, it induced a maximal DNA synthesis of 400%, which increased up to 900%, in the presence of platelet-poor plasma (PPP). On the other hand, PDGF-induced fibroblast proliferation was inhibited in a dose-dependent manner by TGF beta. This inhibition was related to a significantly decreased binding of 125I-labeled PDGF observed in the presence of TGF beta. Our results suggested that PDGF and TGF beta could modulate the growth of bone marrow fibroblasts.  相似文献   

15.
The production of the leukemic cell-growth-promoting factor (LGF) in TGF-β1-treated fibroblast cells was studied. BALB/c3T3 mouse fibroblast(3T3) cells cultured in Eagle's medium containing a low concentration of TGF-β1 (0.04-1 ng/ml) secreted 3-5 times more LGF than the cells cultured in the absence of TGF-β1. The amount of LGF secretion was dose-dependent on the concentration of post-cultured medium and time-dependent after the addition of TGF-β1. Similar findings were obtained in human diploid fibroblasts, WI-38 cells. LGF is a 18KD glycoprotein that is acid-stable but heat-unstable.  相似文献   

16.
Type beta transforming growth factor (TGF beta) is a polypeptide that may influence the growth of a variety of cell types in a positive or negative fashion. In this study we show that TGF beta markedly inhibits DNA synthesis in normal and neoplastic human B lymphocytes stimulated to proliferate with anti-immunoglobulins and B-cell growth factor (BCGF). Although TGF beta was needed during the initial 12 h of the culture to promote optimal inhibition, we found that it had little or no effect on several early to intermediate parameters of cell activation [( Ca2+]i increase, c-myc mRNA increase, cellular enlargement, RNA increase, and the increase in the expression of the 4F2 activation antigen). In contrast, TGF beta almost completely blocked the induction of transferrin receptor expression, which normally occurs in the late G1 phase of the cell cycle. Therefore, we conclude that TGF beta treatment leads to arrest of the cells in the middle to late G1 phase, prior to transferrin receptor expression.  相似文献   

17.
Transforming growth factor-beta (TGF-beta) has been associated with the onset of cardiac cell hypertrophy, but the mechanisms underlying this dissociation are not completely understood. By a previous study, we investigated the involvement of a MAP3K, ZAK, which in cultured H9c2 cardiac cells is a positive mediator of cell hypertrophy. Our results showed that expression of a dominant-negative form of ZAK inhibited the characteristic TGF-beta-induced features of cardiac hypertrophy, including increased cell size, elevated expression of atrial natriuretic factor (ANF), and increased organization of actin fibers. Furthermore, dominant-negative MKK7 effectively blocked both TGF-beta-and ZAK-induced ANF expression. In contrast, a JNK/SAPK specific inhibitor, sp600125, had little effect on TGF-beta- or ZAK-induced ANF expression. Our findings suggest that a ZAK mediates TGF-beta-induced cardiac hypertrophic growth via a novel TGF-beta signaling pathway that can be summarized as TGF-beta>ZAK>MKK7>ANF.  相似文献   

18.
The molecular mechanism underlying the promotion of wound healing by TGF-beta 1 is incompletely understood. We report that TGF-beta 1 regulates the regenerative/migratory phenotype of normal human keratinocytes by modulating their integrin receptor repertoire. In growing keratinocyte colonies but not in fully stratified cultured epidermis, TGF-beta 1: (a) strongly upregulates the expression of the fibronectin receptor alpha 5 beta 1, the vitronectin receptor alpha v beta 5, and the collagen receptor alpha 2 beta 1 by differentially modulating the synthesis of their alpha and beta subunits; (b) downregulates the multifunctional alpha 3 beta 1 heterodimer; (c) induces the de novo expression and surface exposure of the alpha v beta 6 fibronectin receptor; (d) stimulates keratinocyte migration toward fibronectin and vitronectin; (e) induces a marked perturbation of the general mechanism of polarized domain sorting of both beta 1 and beta 4 dimers; and (f) causes a pericellular redistribution of alpha v beta 5. These data suggest that alpha 5 beta 1, alpha v beta 6, and alpha v beta 5, not routinely used by keratinocytes resting on an intact basement membrane, act as "emergency" receptors, and uncover at least one of the molecular mechanisms responsible for the peculiar integrin expression in healing human wounds. Indeed, TGF-beta 1 reproduces the integrin expression pattern of keratinocytes located at the injury site, particularly of cells in the migrating epithelial tongue at the leading edge of the wound. Since these keratinocytes are inhibited in their proliferative capacity, these data might account for the apparent paradox of a TGF-beta 1-dependent stimulation of epidermal wound healing associated with a growth inhibitory effect on epithelial cells.  相似文献   

19.
Transforming growth factor-beta (TGF beta) is a potent growth inhibitor in most epithelial cells. We evaluated the effects of norethindrone (which in combination with estrogen is commonly used in oral contraceptives) and other progestins [medioxyprogesterone acetate (MPA) and R5020, which are not used in oral contraceptives] on cell growth and the expression of TGF beta 1, TGF beta 2, and TGF beta 3 mRNAs in MCF-7 human breast cancer cells. Growth of MCF-7 cells was stimulated by norethindrone (10(-8)-10(-5) M), with maximal growth stimulation at 10(-7) M norethindrone after 7 days of treatment. However, the growth of MCF-7 cells was not affected by MPA (10(-8) M) or R5020 (10(-8) M). Treatment with the antiestrogen 4-hydroxytamoxifen at a concentration of 10(-7) M blocked the growth stimulation induced by norethindrone. The norethindrone-induced growth stimulation was accompanied by a dramatic decrease in TGF beta 2 and TGF beta 3 mRNA levels, whereas the level of TGF beta 1 mRNA was not affected by any of the compounds tested. In addition, treatment with MPA or R5020 did not affect TGF beta 2 and TGF beta 3 mRNA levels. The inhibitory effect of norethindrone on TGF beta 2 and TGF beta 3 mRNA levels could be blocked by the addition of 10(-7) M 4-hydroxytamoxifen. Norethindrone as well as estradiol decreased estrogen receptor mRNA levels and increased progesterone receptor mRNA levels. This is the first report which demonstrates that norethindrone stimulates estrogen-responsive human breast cancer cell growth and inhibits the expression of TGF beta 2 and TGF beta 3 mRNAs. These results suggest that the differential regulation of TGF beta expression by norethindrone may be at least partly responsible for the growth stimulation induced by norethindrone. Thus, the norethindrone component of some oral contraceptives may be sufficiently estrogenic to facilitate the development of breast cancer.  相似文献   

20.
Platelet-derived growth factor (PDGF) is a potent mitogen in human serum which specifically stimulates the proliferation of mesenchymal cells. We have now examined normal human mammary epithelial cells (HMEC) derived from reduction mammaplasties and grown in a serum-free defined medium. Medium conditioned by HMEC contained a PDGF-like activity that competed with [125I]PDGF for binding to PDGF receptors in normal human fibroblasts. When conditioned media were incubated with antiserum specific for either PDGF-A or PDGF-B, only PDGF-A antiserum was capable of inhibiting binding of conditioned media to PDGF receptors. Using an RNase protection assay, mRNA from normal HMEC was probed for both the PDGF-A and PDGF-B chains. Little or no PDGF-B was found in HMEC strains, while a strong signal was seen with the PDGF-A probe. When HMEC were grown in the presence of transforming growth factor-beta (TGF beta) for 48 h, inhibition of growth was observed in association with a 20- to 40-fold stimulation of PDGF-B mRNA and a 2-fold stimulation of PDGF-A mRNA. This mRNA induction was extremely rapid (within 1 h), and secreted PDGF activity was induced 2- to 3-fold. Two other HMEC growth inhibitors and differentiating agents, sodium butyrate and phorbol ester 12-O-tetradecanoylphorbol-13-acetate, had no effect on PDGF mRNA regulation. The current study suggests that PDGF gene induction is an extremely rapid and specific indicator of TGF beta function regardless of whether TGF beta is acting in a growth stimulatory or inhibitory manner. Any role of PDGF-B in TGF beta modulation of differentiation of normal or malignant mammary gland remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号