首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method that gives high recovery of deoxyribonucleic acid (DNA) from crude bacterial lysates using ethidium bromide-cesium chloride density gradient centrifugation is presented. After Pronase digestion and shearing of the lysate, essentially 100% recovery of chromosomal DNA and a reproducible recovery of covalently closed circular (CCC) plasmid DNA is obtained for a specific plasmid in a given strain. This method should be useful for comparing the CCC plasmid/chromosome ratio of various plasmid-host combinations.  相似文献   

2.
Cleavage of chloroplast deoxyribonucleic acid (DNA) of Euglena gracilis Z with restriction endonuclease RI from Escherichia coli (EcoRI) yielded 23 bands upon electrophoresis in gels of agarose. Four of the bands contained twice the stoichiometric amount of DNA. One of these bands contained two similarly sized fragments. The sum of the molecular weight of the 24 different fragments equaled the molecular weight of the circular molecule. The restriction fragments had different buoyant densities, with four having distinctly heavy densities in CsCl. Restriction fragments with a high buoyant density were preferentially lost when broken chloroplast DNA was purified by equilibrium density gradient centrifugation. Hybridization of chloroplast ribosomal ribonucleic acid to intact chloroplast DNA determined that there are two cistrons for 16S and 23S ribosomal ribonucleic acid. These two cistrons are located on six restriction fragments, all of which have buoyant densities greater than the intact molecule of chloroplast DNA.  相似文献   

3.
Nineteen Bacillus subtilis isolates obtained from type culture collections were examined for the presence of covalently closed circular duplex deoxyribonucleic acid molecules by the technique of cesium chloride-ethidium bromide density gradient centrifugation. Four of the 19 strains tested carried covalently closed circular molecules. Two of these strains (IFO3022, IFO3215) harbored a similar plasmid with a molecular weight of 5.4 X 10(6). The other two strains (IAM1232, IAM1261) carried 4.9 C 10(6)-and 5.3 X 10(6)-dalton plasmids, respectively. These plasmid-harboring strains did not show phenotypic traits such as antibiotic resistance orbacteriocin production. The plasmid deoxyribonucleic acids were digested by three restriction endonucleases, EcoRI, HindIII, and BamNI, and were classified into three different types from their electrophoretic patterns in agarose gels.  相似文献   

4.
Covalently closed circular DNA can be isolated rapidly from cell lysates in a two-step process. Hydroxylapatite chromatography to prepurify the plasmid DNA from contaminating protein and RNA is followed by a step gradient elution of covalently closed circular (CCC) plasmid DNA from an acridine yellow affinity column. This procedure results in CCC DNA of a purity comparable to that obtained from ethidium bromide-CsCl gradients without lengthy centrifugation and free of contaimination by intercalating dye. Up to 250 μg of CCC pBR 322 can be isolated from 500 ml of bacterial culture in 4–6 h.  相似文献   

5.
Plasmid deoxyribonucleic acid (DNA) from Streptococcus faecalis, strain DS5, was transferred to the Challis strain of Streptococcus sanguis by transformation. Two antibiotic resistance markers carried by the beta plasmid from strain DS5, erythromycin and lincomycin, were transferred to S. sanguis at a maximum frequency of 1.8 x 10-5/colony-forming unit. Approximately 70% of the covalently closed circular DNA isolated from transformant cultures by dye buoyant density gradients was shown to be hybridizable to beta plasmid DNA. Two major differences were observed between the beta plasmid from S. faecalis and the plasmid isolated from transformed S. sanguis: (i) the beta plasmid from strain DS5 sedimented in velocity gradients at 43S, whereas the covalently closed circular DNA from transformed Challis sedimented at 41S, suggesting a 1.5-Mdal deletion from the beta plasmid occurred; (ii) although the 43S beta plasmid remained in the supercoiled configuration for several weeks after isolation, the 41S plasmid was rapidly converted to a linear double-stranded molecule. Attempts to transform S. sanguis with the alpha plasmid from S. faecalis, strain DS5, were unsuccessful.  相似文献   

6.
Extrachromosomal Elements in Group N Streptococci   总被引:19,自引:5,他引:14       下载免费PDF全文
The deoxyribonucleic acid (DNA) of Streptococcus lactis C2, S. cremoris B(1), and S. diacetilactis 18-16 was labeled by growing cells in Trypticase soy broth containing (3)H-labeled thymine. The cells were gently lysed with lysozyme, ethylenediaminetetraacetic acid, and sodium lauryl sulfate. The chromosomal DNA was separated from plasmid DNA by precipitation with 1.0 M sodium chloride. The existence of covalently closed circular DNA in the three organisms was shown by cesium chloride-ethidium bromide equilibrium density gradient centrifugation of the cleared lysate material. In an attempt to correlate the loss of lactose metabolism with the loss of plasmid DNA, lactose-negative mutants of these organisms were examined for the presence of extrachromosomal particles. Covalently closed circular DNA was detected in the lactose-negative mutants of S. lactis C2 and S. diacetilactis 18-16. In S. cremoris B(1), however, no covalently closed circular DNA was observed by using cesium chloride-ethidium bromide gradients. Electron micrographs of the satellite band material from S. lactis C2 and its lactose-negative mutant confirmed the presence of plasmid DNA. Three distinct plasmids having approximate molecular weights of 1.3 x 10(6), 2.1 x 10(6), and 5.1 x 10(6) were observed in both organisms.  相似文献   

7.
A new technique has been developed for the rapid isolation of covalently closed circular DNA molecules. The procedure is a selective extraction based on differences in the partitioning of covalently closed circular DNA molecules and noncovalently closed species between phenol and water at acid pH and low ionic strength. Under the conditions described, linear as well as nicked circular DNA is extracted into phenol, while covalently closed circular DNA molecules remain in the water phase. The method permits the quantitative isolation of covalently closed circular DNA from either total cellular DNA or partially purified preparations, to a degree of purity comparable with buoyant density procedures.  相似文献   

8.
The existence of nonintegrated plasmid-chromosome complexes has been deduced in previous work from the cosedimentation of covalently closed, circular plasmids with host folded chromosomes. In the present work, it is shown that about 70 to 90% of the covalently closed, circular F deoxyribonucleic acid could be released in vitro from chromosome complexes by ribonuclease treatment but not by protease, Sarkosyl, or ethidium bromide. Consistent with the in vitro studies, Escherichia coli cells treated for 5 min with rifampin, an inhibitor of ribonucleic acid initiation, released upon lysis 90% of their plasmid deoxyribonucleic acid as freely sedimenting molecules.  相似文献   

9.
A fraction of Bacillus subtilis 168 spores, purified by Urografin isopycnic density centrifugation, heat activated, and inoculated in nutrient broth plus glucose, germinated and outgrew very synchronously. Synchrony was documented by nuclear staining and fluorescence microscopy, and by determining the variation of the buoyant density of the cells during outgrowth. Cell mass increased at constant rates and the passage from one rate to the next was dependent upon deoxyribonucleic acid (DNA) synthesis. DNA synthesis inhibitors induced the formation of anucleated sister cells in a vast majority of the population, indicating that septation was programmed and became independent from DNA synthesis very early in the cell cycle.  相似文献   

10.
Two clinical isolates of Bacteroides contained covalently closed circular deoxyribonucleic acid (DNA) as shown by sedimentation in an alkaline sucrose gradient, CsCl ethidium bromide equilibrium centrifugation, and electron microscopy. Bacteriodes fragilis N1175 contained a homogeneous species of plasmid DNA with a molecular weight of 25 x 10(6). Bacteroides ochraceus 2228 contained two distinct, covalently closed circular DNA elements. The larger cosedimented with the covalently closed circular DNA form of the R plasmid, R100, corresponding to a molecular weight of 70 x 10(6); the smaller sedimented as a 58S molecule with a calculated molecular weight of 25 x 10(6). The roles of these plasmids are unknown. Neither strain transferred antibiotic resistance to plasmid-negative Bacteroides or Escherichia coli, and neither produced bacteriocins active against other Bacteroides or sensitive indicator strains of E. coli.  相似文献   

11.
RP1, a group of genes specifying resistance to carbenicillin, neomycin, kanamycin, and tetracycline and originating in a strain of Pseudomonas aeruginosa, was freely transmissible between strains of P. aeruginosa, Escherichia coli, and Proteus mirabilis. Acquisition of the multiple drug resistance specified by RP1 by these strains was accompanied by acquisition of an extrachromosomal satellite of covalently closed circular deoxyribonucleic acid of molecular weight about 40 million daltons and of buoyant density 1.719 g/cm(3) (60% guanine plus cytosine).  相似文献   

12.
When F+ donor cells of Escherichia coli are conjugated with F-, F+, or Hfr recipients under the conditions of phenocopy mating, the male recipients are found capable of accepting the F episome as effectively as the F- recipients. The F deoxyribonucleic acid (DNA) superinfected into the male recipients is converted to the covalently closed, circular duplex form, as in the F- recipients. It is also found that the synthesis of the strand complementary to the transferred single strand and its subsequent conversion to the covalently closed, circular duplex occur effectively in male recipients as well as in female recipients. Under these mating conditions, F-ilv+ episome superinfected to F+ and Hfr cells is diluted out during growth, whereas F-ilv+ transferred into F-cells is replicated and established in almost all progeny cells. These results suggest that the incompatibility of the F episome is not due to the reduction in the rate of the conversion of transferred single-straned F DNA to covalently closed, circular duplex, but, rather, to an inhibition of further replication of the covalently closed, circular F DNA.  相似文献   

13.
Isolation of plasmid deoxyribonucleic acid from Pseudomonas putida.   总被引:14,自引:10,他引:4       下载免费PDF全文
Conditions suitable for reproducible recovery of covalently closed circular deoxyribonucleic acid from strains of Pseudomonas putida containing degradative plasmids (CAM, SAL, OCT, etc.) have been defined. These degradative plasmids could not be isolated by the usual procedure, whereas RP1, an R factor of the P group, present in the isogenic strain of P. putida, was isolated equally well by either the usual procedure or the modified procedure. Characterization by electron microscopy of RP1 deoxyribonucleic acid confirmed the molecular weight (about 40 X 10(6)) previously determined by sucrose gradient centrifugation.  相似文献   

14.
K Andersson  R Hjorth 《Plasmid》1985,13(1):78-80
Plasmids extracted from bacterial cells by alkaline extraction can easily be isolated from linear DNA by isopycnic centrifugation in CsTFA. This is a fast and simple method which circumvents the use of the intercalating dye, ethidium bromide, and consequently the problems associated with its removal. The buoyant densities for covalently closed circular DNA and linear DNA in CsTFA are 1.60 g/ml and 1.65 g/ml, respectively. The isolation is achieved regardless of plasmid size and can be accomplished at temperatures of between 4 and 30 degrees C. Plasmid DNA isolated in gradients of CsTFA are of a high purity and have been found to be intact when cleaved with restriction enzymes and ligated with T4 DNA ligase.  相似文献   

15.
We present a technique for analytical buoyant density sedimentation of nucleic acids which is performed in a preparative ultracentrifuge, in contrast to an analytical ultracentrifuge. Following centrifugation in a preparative rotor, small cylindrical quartz tubes are optically scanned; upon completion of the scan the data are processed immediately by a microcomputer and the buoyant density of the nucleic acid is calculated. Experimental data are presented employing several different deoxyribonucleic acids banded in neutral and alkaline cesium sulfate. Results are independent of rotor speed, location of bands within the gradient, and loading density of the cesium sulfate solution. Derived buoyant density values agree within 0.5% of previously published values.  相似文献   

16.
Eight strains of thermophilic bacteria were examined for the presence of covalently closed circular deoxyribonucleic acid molecules by caesium chloride-ethidium bromide density gradient centrifugation. Four of the eight strains tested, Thermus flavus BS1, AT61, AT62 and Thermus thermophilus HB8 carried covalently closed circular DNA molecules. Thermus flavus BS1 haboured two species of plasmids with molecular weights of 6.1 X 10(6) and 17.0 X 10(6) as determined by electron microscopy. Thermus thermophilus HB8, T. flavus AT61 and T. flavus AT62 carried plasmids with molecular weights of 6.2 X 10(6), 6.6 X 10(6) and 6.6 X 10(6), respectively. Plasmids from T. flavus AT61 and AT62 were indistinguishable in their electrophoretic patterns in agarose or acrylamide gel after digestion with various restriction endonucleases. This is the first evidence for the presence of plasmids in extremely thermophilic bacteria, though their functions are unknown.  相似文献   

17.
Detection and characterization of plasmids in Pseudomonas glycinea.   总被引:6,自引:2,他引:4       下载免费PDF全文
Pathogenic strains of Pseudomonas glycinea were shown to possess plasmid deoxyribonucleic acid by dye-buoyant density gradient centrifugation. The size and number of plasmids of four different isolates were determined by neutral sucrose gradient centrifugation. Two isolates were found to harbor a single plasmid; however, they differed in size, having molecular weights of 43 X 10(6) and 54 X 10(6). Two other isolates each contained two different plasmids. Plasmids with molecular weights of 43 X 10(6) and 73 X 10(6) were observed in one isolate, and the other carried plasmids with molecular weights of 25 X 10(6) and 87 X 10(6). An auxotrophic mutant derived from the latter strain was found to contain plasmids of identical size. The plasmids were found to be under stringent control of replication, having plasmid copies of 1.0 to 2.7 per chromosome equivalent. By the dye-cesium chloride technique, the mutant showed twice as much covalently closed circular deoxyribonucleic acid as did the parental strain.  相似文献   

18.
The physical characteristics of a mutant, R(M201-2), capable of conferring high and stable ampicillion resistance was analyzed. The R(M201-2) and its parent R-factor deoxyribonucleic acid (DNA) could be isolated as an extrachromosomal and covalently closed circular form. Their buoyant densities were both 1.712 g/cm(3), and their molecular weights were about 82 x 10(6) and 64 x 10(6), respectively, when measured by CsCl and sucrose density gradient analyses. The contour lengths by electron microscopy were 35.9 +/- 0.6 and 31.0 +/- 0.6 mum, respectively. By using the extracted R-factor DNA, the mutant and parent characters were transformable to another Escherichia coli strain. The mutant R factor showed an increased amount of DNA even after conjugal transfer to Proteus. An increase in the size of R-factor DNA was thus considered to be the cause of the high level of ampicillin resistance.  相似文献   

19.
The protozoan Crithidia acanthocephali contains, within a modified region of a mitochondrion, a mass of DNA known as kinetoplast DNA (kDNA). This DNA consists mainly of an association of approximately 27,000 covalently closed 0.8-mum circular molecules which are apparently held together in a definite ordered manner by topological interlocking. After culturing of C. acanthocephali cells for 25 generations in medium containing 75% deuterium oxide, both nuclear DNA (rhonative, nondeuterated=1.717 g/cm3) and kDNA (rhonative, nondeuterated=1.702 g/cm3) increased in buoyant density by 0.012 g/cm3. The replication of the two DNAs was studied by cesium chloride buoyant density analysis of DNAs from exponentially growing cells taken at 1.0, 1.4, 2.0, 3.0, and 4.0 cell doublings after transfer of cells from D2O- containing medium into medium containing only normal water. The results obtained from analysis of both native and denatured nuclear DNAs indicate that this DNA replicates semiconservatively. From an analysis of intact associations of kDNA, it appears that this DNA doubles once per generation and that the newly synthesized DNA does not segregate from parental DNA. Fractions of covalently closed single circular molecules and of open circular and unit length linear molecules were obtained from associations of kDNA by sonication, sucrose sedimentation, and cesium chloride-ethidium bromide equilibrium gradient centrifugation. Buoyant density profiles obtained from these fractions indicate that: (a) doubling of the kDNA results from the replication of each circular molecule rather than from repeated replication of a small fraction of the circular molecules; (b) replication of kDNA is semiconservative rather than conservative, but there is recombination between the circles at an undefined time during the cell cycle.  相似文献   

20.
Extrachromosomal deoxyribonucleic acid in different enterobacteria   总被引:4,自引:1,他引:3       下载免费PDF全文
Eighty-seven different enterobacteria and pseudomonas strains were examined for the presence of extrachromosomal deoxyribonucleic acid (DNA). Thirty-four strains contained closed circular DNA by the ethidium bromide CsCl density technique. Extrachromosomal DNA was most frequent in Escherichia and Klebsiella strains. The extrachromosomal DNA was isolated and characterized by analytical ultracentrifugation and electron microscopy. All the extrachromosomal DNA-containing bacteria contained circular DNA molecules of small size (0.5-4 mum). Most of these bacteria also contained larger circles (20-40 mum). The number of different size classes of circular DNA in each strain varied from one to five. The buoyant density of the extrachromosomal DNA ranged from 1.692 to 1.721 g/cm(3). Many bacteria contained extrachromosomal DNA of more than one density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号