首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Zn2+ (1 mM), Cd2+ (1 mM), and Hg2+ (0.1 mM) belonging to the IIb group in the periodic table stimulated glucose transport activity and cAMP phosphodiesterase in rat adipocytes. The stimulation of glucose transport was due to the translocation of glucose transporters from the intracellular site to the plasma membrane. However, in intact adipocytes none of these ions stimulated insulin receptor kinase activity or phosphorylation of the 95-kDa subunit of insulin receptor or 170- or 60-kDa proteins at the tyrosyl residues. These proteins were markedly phosphorylated by addition of 0.3 nM insulin which stimulated glucose transport activity as effectively as these metal ions. These results indicate that Zn2+, Cd2+, and Hg2+ mimic insulin action by a post-receptor/kinase mechanism.  相似文献   

2.
Muscle contractions induce an increase in glucose transport. The acute effect of muscle contractions on glucose transport is independent of insulin and reverses rapidly after cessation of exercise. As the acute increase in glucose transport reverses, a marked increase in the sensitivity of muscle to insulin occurs. The mechanism for this phenomenon is unknown. We hypothesize that an increase in insulin sensitivity is a general phenomenon that occurs during reversal of an increase in cell surface GLUT4 induced by any stimulus, not just exercise. To test this hypothesis, epitrochlearis, rat soleus, and flexor digitorum brevis muscles were incubated for 30 min with a maximally effective insulin concentration (1.0 mU/ml). Muscles were allowed to recover for 3 h in the absence of insulin. Muscles were then exposed to 60 microU/ml insulin for 30 min followed by measurement of glucose transport. Preincubation with 1.0 mU/ml insulin resulted in an approximately 2-fold greater increase in glucose transport 3.5 h later in response to 60 microU/ml insulin than that which occurred in control muscles treated with 60 microU/ml insulin. Pretreatment of muscles with combined maximal insulin and exercise stimuli greatly amplified the increase in insulin sensitivity. The increases in glucose transport were paralleled by increases in cell surface GLUT4. We conclude that stimulation of glucose transport by any agent is followed by an increase in sensitivity of glucose transport to activation that is mediated by translocation of more GLUT4 to the cell surface.  相似文献   

3.
This study was done to evaluate the effect of insulin on sugar transport into skeletal muscle after exercise. The permeability of rat epitrochlearis muscle to 3-O-methylglucose (3-MG) was measured after exposure to a range of insulin concentrations 30, 60, and 180 min after a bout of exercise. Thirty and 60 min after exercise, the effects of exercise and insulin on 3-MG transport were additive over a wide range of insulin concentrations, with no increase in sensitivity or responsiveness to insulin. After 180 min, when approximately 66% of the exercise-induced increase in sugar transport had worn off, both the responsiveness and sensitivity of the glucose transport process to insulin were increased. These findings appear compatible with the hypothesis that the actions of exercise and insulin result in activation and/or translocation into the plasma membrane of two separate pools of glucose transporters in mammalian skeletal muscle.  相似文献   

4.
It was previously found that transgenic mice that overexpress the calpain inhibitor calpastatin (CsTg) have an approximately 3-fold increase in GLUT4 protein in their skeletal muscles. Despite the increase in GLUT4, which appears to be due to inhibition of its proteolysis by calpain, insulin-stimulated glucose transport is not increased in CsTg muscles. PKB (Akt) protein level is reduced approximately 60% in CsTg muscles, suggesting a possible mechanism for the relative insulin resistance. Muscle contractions stimulate glucose transport by a mechanism that is independent of insulin signaling. The purpose of this study was to test the hypothesis that the threefold increase in GLUT4 in CsTg would result in a large increase in contraction-stimulated glucose transport. CAMKII and AMPK mediate steps in the contraction-stimulated pathway. The protein levels of AMPK and CAMKII were increased three- to fourfold in CsTg muscles, suggesting that these proteins are also calpain substrates. Despite the large increases in GLUT4, AMPK, and CAMKII, contraction-stimulated GLUT4 translocation and glucose transport were not increased above wild-type values. These findings suggest that inhibition of calpain results in impairment of a step in the GLUT4 translocation process downstream of the insulin- and contraction-signaling pathways. They also provide evidence that CAMKII and AMPK are calpain substrates.  相似文献   

5.
The effects of fluorescein isothiocyanate II (FITC) on the actions of insulin in rat adipocytes were studied. When adipocytes were incubated with FITC at pH 7.4 (2 mM agent, 8 min), the cells were completely deprived of their specific insulin-binding activity and rendered unresponsive to the hormone. The effect of FITC on the insulin-binding activity was milder at pH 9.0, and cAMP phosphodiesterase in cells exposed to FITC at pH 9.0 was maximally stimulated if the insulin concentration was increased to 100 nM. Under identical conditions, however, glucose transport activity was rendered not only less sensitive but also less responsive to the hormone. When FITC was added to cells after insulin at pH 9.0, the glucose transport activity that had been stimulated by the hormone was considerably reduced. This reduction was largely, but not entirely, prevented if the cells were deprived of ATP, suggesting that FITC (a) elicited the ATP-dependent reversal of the hormonal effect and, simultaneously, (b) mildly inhibited the transport activity per se. Western blot assay of GLUT-4 (a major isoform of glucose transporter in adipocytes) indicated that FITC (a) partially blocked insulin-dependent translocation of GLUT-4 from the intracellular site to the plasma membrane while it (b) induced a mild "insulin-like" effect. It is concluded that FITC at pH 9.0 (a) renders both glucose transport and phosphodiesterase activities less insulin sensitive presumably by modifying the cellular hormone receptor and (b) makes glucose transport activity less responsive to insulin presumably by (i) blocking hormone-dependent translocation of glucose transporter and (ii) mildly inhibiting intrinsic glucose transport activity.  相似文献   

6.
Insulin activates certain protein kinase C (PKC) isoforms that are involved in insulin-induced glucose transport. In this study, we investigated the possibility that activation of PKCdelta by insulin participates in the mediation of insulin effects on glucose transport in skeletal muscle. Studies were performed on primary cultures of rat skeletal myotubes. The role of PKCdelta in insulin-induced glucose uptake was evaluated both by selective pharmacological blockade and by over-expression of wild-type and point-mutated inactive PKCdelta isoforms in skeletal myotubes. We found that insulin induces tyrosine phosphorylation and translocation of PKCdelta to the plasma membrane and increases the activity of this isoform. Insulin-induced effects on translocation and phosphorylation of PKCdelta were blocked by a low concentration of rottlerin, whereas the effects of insulin on other PKC isoforms were not. This selective blockade of PKCdelta by rottlerin also inhibited insulin-induced translocation of glucose transporter 4 (GLUT4), but not glucose transporter 3 (GLUT3), and significantly reduced the stimulation of glucose uptake by insulin. When overexpressed in skeletal muscle, PKCdelta and PKCdelta were both active. Overexpression of PKCdelta induced the translocation of GLUT4 to the plasma membrane and increased basal glucose uptake to levels attained by insulin. Moreover, insulin did not increase glucose uptake further in cells overexpressing PKCdelta. Overexpression of PKCdelta did not affect basal glucose uptake or GLUT4 location. Stimulation of glucose uptake by insulin in cells overexpressing PKCdelta was similar to that in untransfected cells. Transfection of skeletal myotubes with dominant negative mutant PKCdelta did not alter basal glucose uptake but blocked insulin-induced GLUT4 translocation and glucose transport. These results demonstrate that insulin activates PKCdelta and that activated PKCdelta is a major signaling molecule in insulin-induced glucose transport.  相似文献   

7.
The aim of our work was to investigate a possible role of protein kinase C (PKC) in insulin-stimulated glucose uptake in mouse skeletal muscle, and to search for a defect in PKC activation in insulin resistance found in obesity. In isolated soleus muscle of lean mice, insulin (100 nM) and 12-O-tetradecanoylphorbol 13-acetate (TPA) (1 microM) acutely stimulated glucose uptake 3- and 2-fold respectively. The effects of insulin and TPA were not additive. When PKC activity was down-regulated by long-term (24 h) TPA pretreatment, before measurement of glucose transport, the TPA effect was abolished, but in addition insulin-stimulated glucose transport returned to basal values. Furthermore, polymyxin B, which inhibits PKC in muscle extracts, prevented insulin-stimulated glucose uptake in muscle. In muscle of obese insulin-resistant mice, glucose uptake evoked by insulin was decreased, whereas the TPA effect, expressed as a fold increase, was unaltered. Thus both agents stimulated glucose transport to the same extent. Furthermore, no difference was observed when PKC activation by TPA was measured in muscle from lean and obese mice. These results suggest that: (1) PKC is involved in the insulin effect on glucose transport in muscle; (2) PKC activation explains only part of the insulin stimulation of glucose transport; (3) the defect in insulin response in obese mice does not appear to be due to an alteration in the PKC-dependent component of glucose transport. We propose that insulin stimulation of glucose uptake occurs by a sequential two-step mechanism, with first translocation of transporters to the plasma membrane, which is PKC dependent, and second, activation of the glucose transporters. In obesity only the activation step was decreased, whereas the translocation step was unaltered.  相似文献   

8.
It is well established that insulin stimulation of glucose uptake in skeletal muscle cells is mediated through translocation of GLUT4 from intracellular storage sites to the cell surface. However, the established skeletal muscle cell lines, with the exception of L6 myocytes, reportedly show minimal insulin-dependent glucose uptake and GLUT4 translocation. Using C(2)C(12) myocytes expressing exofacial-Myc-GLUT4-enhanced cyan fluorescent protein, we herein show that differentiated C(2)C(12) myotubes are equipped with basic GLUT4 translocation machinery that can be activated by insulin stimulation ( approximately 3-fold increase as assessed by anti-Myc antibody uptake and immunostaining assay). However, this insulin stimulation of GLUT4 translocation was difficult to demonstrate with a conventional 2-deoxyglucose uptake assay because of markedly elevated basal glucose uptake via other glucose transporter(s). Intriguingly, the basal glucose transport activity in C(2)C(12) myotubes appeared to be acutely suppressed within 5 min by preincubation with a pathophysiologically high level of extracellular glucose (25 mM). In contrast, this activity was augmented by acute glucose deprivation via an unidentified mechanism that is independent of GLUT4 translocation but is dependent on phosphatidylinositol 3-kinase activity. Taken together, these findings indicate that regulation of the facilitative glucose transport system in differentiated C(2)C(12) myotubes can be achieved through surprisingly acute glucose-dependent modulation of the activity of glucose transporter(s), which apparently contributes to obscuring the insulin augmentation of glucose uptake elicited by GLUT4 translocation. We herein also describe several methods of monitoring insulin-dependent glucose uptake in C(2)C(12) myotubes and propose this cell line to be a useful model for analyzing GLUT4 translocation in skeletal muscle.  相似文献   

9.
[3H]Cytochalasin B binding and its competitive inhibition by D-glucose have been used to quantitate the number of functional glucose transport units in plasma and microsomal membranes prepared from intact rat diaphragm. In a series of three experiments, plasma membranes prepared from diaphragms which have not been incubated with insulin bind approximately 16 pmol of cytochalasin B/mg of membrane protein to the D-glucose-inhibitable binding site. If 280 nM (40,000 microunits/ml) insulin is present during the incubation, cytochalasin B binding to the plasma membranes is increased approximately 2-fold without alteration in the dissociation constant of this site. Membranes in the microsomal fraction prepared from diaphragms which have been incubated for 30 min in the absence of insulin contain 21 pmol of D-glucose-inhibitable cytochalasin B binding sites/mg of membrane protein. However, in the presence of insulin during the incubation period, the number of these sites in the microsomal fraction is decreased to 12 pmol/mg of membrane protein. These results suggest that insulin stimulates glucose transport in the isolated rat diaphragm primarily through a translocation of functional glucose transport units from an intracellular membrane pool to the plasma membrane. These results are similar to the results observed in rat adipose cells (Cushman, S. W., and Wardzala, L. J. (1980) J. Biol. Chem. 255, 4758-4762) and suggest that this mechanism of insulin-stimulated glucose transport activity may be general to other cell types.  相似文献   

10.
Tumour-promoting phorbol esters have insulin-like effects on glucose transport and lipogenesis in adipocytes and myocytes. It is believed that insulin activates the glucose-transport system through translocation of glucose transporters from subcellular membranes to the plasma membrane. The aim of the present study was to investigate if phorbol esters act through the same mechanism as insulin on glucose-transport activity of rat adipocytes. We compared the effects of the tumour-promoting phorbol ester tetradecanoylphorbol acetate (TPA) and of insulin on 3-O-methylglucose transport and on the distribution of D-glucose-inhibitable cytochalasin-B binding sites in isolated rat adipocytes. Insulin (100 mu units/ml) stimulated 3-O-methylglucose uptake 9-fold, whereas TPA (1 nM) stimulated the uptake only 3-fold (mean values of five experiments, given as percentage of equilibrium reached after 4 s: basal 7 +/- 1.3%, insulin 60 +/- 3.1%, TPA 22 +/- 2.3%). In contrast, both agents stimulated glucose-transporter translocation to the same extent [cytochalasin B-binding sites (pmol/mg of protein; n = 7): plasma membranes, basal 6.2 +/- 1.0, insulin 13.4 +/- 2.0, TPA 12.7 +/- 2.7; low-density membranes, basal 12.8 +/- 2.1, insulin 6.3 +/- 0.9, TPA 8.9 +/- 0.7; high-density membranes, 6.9 +/- 1.1; insulin 12.5 +/- 1.0, TPA 8.1 +/- 0.9]. We conclude from these data: (1) TPA stimulates glucose transport in fat-cells by stimulation of glucose-carrier translocation; (2) insulin and TPA stimulate the carrier translocation to the same extent, whereas the stimulation of glucose uptake is 3-fold higher with insulin, suggesting that the stimulatory effect of insulin on glucose-transport activity involves other mechanisms in addition to carrier translocation.  相似文献   

11.
The mechanism of the effect of noradrenaline on the transport of 3-O-methyl-D-[14C]glucose ([14C]-MG) was studied in mouse brown adipocytes. When cells were exposed to low concentrations (< 10(-8) M) of insulin, the [14C]-MG uptake by cells was enhanced by noradrenaline additively. The action of noradrenaline was mimicked by isoproterenol, and was completely blocked by propranolol. Exposing cells to noradrenaline induced both an increase in the transport activity of plasma membrane fractions and a decrease in that of microsomal fractions similar to insulin exposure, indicating that noradrenaline also induces the translocation of glucose transporters to the plasma membrane. The ratio of an increase in the transport activity of plasma membrane fraction to a decrease in the activity of microsomal fraction was lower in cells exposed to noradrenaline than in cells exposed to insulin. This quantitative disagreement suggests that there are at least two different modes involved in the regulation of the translocation of glucose transporters in mouse brown adipocytes.  相似文献   

12.
This historical review describes the research on the regulation of glucose transport in skeletal muscle conducted in my laboratory and in collaboration with a number of colleagues in other laboratories. This research includes studies of stimulation of glucose transport, GLUT4 translocation, and GLUT4 expression by exercise/muscle contractions, the role of Ca(2+) in these processes, and the interactions between the effects of exercise and insulin. Among the last are the additive effects of insulin and contractions on glucose transport and GLUT4 translocation and the increases in muscle insulin sensitivity and responsiveness induced by exercise.  相似文献   

13.
M D Resh 《Biochemistry》1983,22(12):2781-2784
The time course of insulin activation of sodium and potassium ion activated adenosinetriphosphatase [(Na+,K+)ATPase] was studied in the rat adipocyte and was compared to activation of the glucose transporter. Under conditions in which the binding of insulin to its cell surface receptor was not rate limiting, a distinct time lag was apparent between insulin addition and stimulation of transport activity. At 37 degrees C, 40-50 s elapsed before an increase in Rb+ uptake [a measure of (Na+,K+)ATPase transport activity] or 2-deoxyglucose uptake could be observed. This lag time increased in an identical manner for both transport processes as the temperature was lowered to 23 degrees C. Addition of the insulinomimetic agent hydrogen peroxide also produced a lag time similar to that for insulin before activation of Rb+ and 2-deoxyglucose uptakes was detected. These data provide the first evidence of a discrete time lag involved during stimulation of the adipocyte (Na+,K+)ATPase. A model for the molecular mechanism of insulin activation of (Na+,K+)ATPase is presented that incorporates these results into the hypothesis of insulin mediated "translocation" of glucose transporters to the plasma membrane.  相似文献   

14.
Insulin stimulates glucose uptake into skeletal muscle tissue mainly through the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. The precise mechanism involved in this process is presently unknown. In the cascade of events leading to insulin-induced glucose transport, insulin activates specific protein kinase C (PKC) isoforms. In this study we investigated the roles of PKC zeta in insulin-stimulated glucose uptake and GLUT4 translocation in primary cultures of rat skeletal muscle. We found that insulin initially caused PKC zeta to associate specifically with the GLUT4 compartments and that PKC zeta together with the GLUT4 compartments were then translocated to the plasma membrane as a complex. PKC zeta and GLUT4 recycled independently of one another. To further establish the importance of PKC zeta in glucose transport, we used adenovirus constructs containing wild-type or kinase-inactive, dominant-negative PKC zeta (DNPKC zeta) cDNA to overexpress this isoform in skeletal muscle myotube cultures. We found that overexpression of PKC zeta was associated with a marked increase in the activity of this isoform. The overexpressed, active PKC zeta coprecipitated with the GLUT4 compartments. Moreover, overexpression of PKC zeta caused GLUT4 translocation to the plasma membrane and increased glucose uptake in the absence of insulin. Finally, either insulin or overexpression of PKC zeta induced serine phosphorylation of the GLUT4-compartment-associated vesicle-associated membrane protein 2. Furthermore, DNPKC zeta disrupted the GLUT4 compartment integrity and abrogated insulin-induced GLUT4 translocation and glucose uptake. These results demonstrate that PKC zeta regulates insulin-stimulated GLUT4 translocation and glucose transport through the unique colocalization of this isoform with the GLUT4 compartments.  相似文献   

15.
Protein kinase C (PKC) zeta has been implicated in insulin-induced glucose uptake in skeletal muscle cell, although the underlying mechanism remains unknown. In this study, we investigated the effect of PKCzeta on actin remodeling and glucose transport in differentiated rat L6 muscle cells expressing myc-tagged glucose transporter 4 (GLUT4). On insulin stimulation, PKCzeta translocated from low-density microsomes to plasma membrane accompanied by increase in GLUT4 translocation and glucose uptake. Z-scan confocal microscopy revealed a spatial colocalization of relocated PKCzeta with the small GTPase Rac-1, actin, and GLUT4 after insulin stimulation. The insulin-mediated colocalization, PKCzeta distribution, GLUT4 translocation, and glucose uptake were inhibited by wortmannin and cell-permeable PKCzeta pseudosubstrate peptide. In stable transfected cells, overexpression of PKCzeta caused an insulin-like effect on actin remodeling accompanied by a 2.1-fold increase in GLUT4 translocation and 1.7-fold increase in glucose uptake in the absence of insulin. The effects of PKCzeta overexpression were abolished by cell-permeable PKCzeta pseudosubstrate peptide, but not wortmannin. Transient transfection of constitutively active Rac-1 recruited PKCzeta to new structures resembling actin remodeling, whereas dominant negative Rac-1 prevented the insulin-mediated PKCzeta translocation. Together, these results suggest that PKCzeta mediates insulin effect on glucose transport through actin remodeling in muscle cells.  相似文献   

16.
In muscle and some other tissues the membrane transport of glucose is normally rate limiting for glucose utilization. It is modulated by insulin, muscular contraction, availability of oxygen and alternative substrates, and many other factors. An increase in glucose transport is associated with interventions increasing the influx of Ca2+ or its release from internal stores, thus presumably raising cytoplasmic [Ca2+]. Recent results with isolated myocytes from adult rat hearts are shown to be consistent with this hypothesis, and supporting evidence was obtained with other cell types. In avian erythrocytes glucose transport was found to be modulated only by internal Ca2+ redistribution, as plasmalemmal fluxes were very slow. In isolated bovine adrenal chromaffin cells glucose transport was found to be increased in a Ca2+-dependent manner by insulin (resembling muscle) and by stimulators of catecholamine secretion. These features are essentially preserved during the morphologic changes these cells undergo when cultured. Thus, enhanced glucose transport is often coupled to increased energy production for contraction, secretion, growth, etc., and to some hormonal signals. Other factors, notably the oxidation of fatty acids, exert a suppressive influence; this negative feedback may account in part for the decreased peripheral response to insulin in diabetes. It is suggested that binding of Ca2+ to a regulatory site, perhaps involved in the translocation of glucose transporters to the plasma membrane, may be involved in these regulatory phenomena and may play a central role in coupling glucose transport to a variety of other cellular processes.  相似文献   

17.
A marked resistance to the stimulatory action of insulin on glucose metabolism has previously been shown in guinea pig, compared to rat, adipose tissue and isolated adipocytes. The mechanism of insulin resistance in isolated guinea pig adipocytes has, therefore, been examined by measuring 125I-insulin binding, the stimulatory effect of insulin on 3-0-methylglucose transport and on lipogenesis from [3-3H]glucose, the inhibitory effect of insulin on glucagon-stimulated glycerol release, and the translocation of glucose transporters in response to insulin. The translocation of glucose transporters was assessed by measuring the distribution of specific D-glucose-inhibitable [3H]cytochalasin B binding sites among the plasma, and high and low density microsomal membrane fractions prepared by differential centrifugation from basal and insulin-stimulated cells. At a glucose concentration (0.5 mM) where transport is thought to be rate-limiting for metabolism, insulin stimulates lipogenesis from 30 to 80 fmol/cell/90 min in guinea pig cells and from 25 to 380 fmol/cell/90 min in rat cells with half-maximal effects at approximately 100 pM in both cell types. Insulin similarly stimulates 3-O-methylglucose transport from 0.40 to 0.70 fmol/cell/min and from 0.24 to 3.60 fmol/cell/min in guinea pig and rat fat cells, respectively. Nevertheless, guinea pig cells bind more insulin per cell than rat cells, and insulin fully inhibits glucagon-stimulated glycerol release. In addition, the differences between guinea pig and rat cells in the stimulatory effect of insulin on lipogenesis and 3-O-methylglucose transport cannot be explained by the greater cell size of the former compared to the latter (0.18 and 0.09 micrograms of lipid/cell, respectively). However, the number of glucose transporters in the low density microsomal membrane fraction prepared from basal guinea pig cells is markedly reduced compared to that from rat fat cells (12 and 70 pmol/mg of membrane protein, respectively) and the translocation of intracellular glucose transporters to the plasma membrane fraction in response to insulin is correspondingly reduced. These results suggest that guinea pig adipocytes are markedly resistant to the stimulatory action of insulin on glucose transport and that this resistance is the consequence of a relative depletion in the number of intracellular glucose transporters.  相似文献   

18.
Stimulation of glucose transport by insulin in cultured adipocytes through translocation of intracellular GLUT4 glucose transporters to the plasma membrane has been suggested to require phosphatidylinositol (PI) 3-kinase-dependent and independent mechanisms. To test the involvement of a PI 3-kinase-independent pathway leading to activation of the TC10 GTPase, the putative intermediates CAP, c-Cbl, Cbl-b, and CrkII were selectively depleted in 3T3-L1 adipocytes using highly efficient small interfering (si) RNAs. Simultaneous depletion of the ubiquitination factors c-Cbl plus Cbl-b in cultured adipocytes had the expected effect of delaying dephosphorylation of EGF receptors upon removal of EGF. However, siRNA-mediated gene silencing of both Cbl isoforms or CAP or CrkII in these cells failed to attenuate insulin-stimulated deoxyglucose transport or Myc-tagged GLUT4-GFP translocation at either sub-maximal or maximal concentrations of insulin. The dose-response relationship for insulin stimulation of deoxyglucose transport in primary adipocytes derived from c-Cbl knock-out mice was also identical to insulin action on adipocytes from wild type mice. These data are consistent with the hypothesis that CAP, Cbl iso-forms, and CrkII are not required components of insulin signaling to GLUT4 transporters.  相似文献   

19.
This study examines the relationship between insulin-stimulated glucose transport and insulin-induced translocation of glucose transporters in isolated rat adipocytes. Adipose cells were incubated with or without cycloheximide, a potent inhibitor of protein synthesis, for 60 min and then for an additional 30 min with or without insulin. After the incubation we measured 3-O-methylglucose transport in the adipose cells, and subcellular membrane fractions were prepared. The numbers of glucose transporters in the various membrane fractions were determined by the cytochalasin B binding assay. Basal and insulin-stimulated 3-O-methylglucose uptakes were not affected by cycloheximide. Furthermore, cycloheximide affected neither Vmax. nor Km of insulin-stimulated 3-O-methylglucose transport. In contrast, the number of glucose transporters in plasma membranes derived from cells preincubated with cycloheximide and insulin was markedly decreased compared with those from cells incubated with insulin alone (10.5 +/- 0.8 and 22.2 +/- 1.8 pmol/mg of protein respectively; P less than 0.005). The number of glucose transporters in cells incubated with cycloheximide alone was not significantly different compared with control cells. SDS/polyacrylamide-gel-electrophoretic analysis of [3H]cytochalasin-B-photolabelled plasma-membrane fractions revealed that cycloheximide decreases the amount of labelled glucose transporters in insulin-stimulated membranes. However, the apparent molecular mass of the protein was not changed by cycloheximide treatment. The effect of cycloheximide on the two-dimensional electrophoretic profile of the glucose transporter in insulin-stimulated low-density microsomal membranes revealed a decrease in the pI-6.4 glucose-transporter isoform, whereas the insulin-translocatable isoform (pI 5.6) was decreased. Thus the observed discrepancy between insulin-stimulated glucose transport and insulin-induced translocation of glucose transporters strongly suggests that a still unknown protein-synthesis-dependent mechanism is involved in insulin activation of glucose transport.  相似文献   

20.
Osteosarcoma is the most common type of malignant bone cancer, accounting for 35% of primary bone malignancies. Because cancer cells utilize glucose as their primary energy substrate, the expression and regulation of glucose transporters (GLUT) may be important in tumor development and progression. GLUT expression has not been studied previously in human osteosarcoma cell lines. Furthermore, although insulin and insulin-like growth factor (IGF-I) play an important role in cell proliferation and tumor progression, the role of these hormones on GLUT expression and glucose uptake, and their possible relation to osteosarcoma, have also not been studied. We determined the effect of insulin and IGF-I on GLUT expression and glucose transport in three well-characterized human osteosarcoma cell lines (MG-63, SaOs-2, and U2-Os) using immunocytochemical, RT-PCR and functional kinetic analyses. Furthermore we also studied GLUT isoform expression in osteosarcoma primary tumors and metastases by in situ hybridization and immunohistochemical analyses. RT-PCR and immunostaining show that GLUT1 is the main isoform expressed in the cell lines and tissues studied, respectively. Immunocytochemical analysis shows that although insulin does not affect levels of GLUT1 expression it does induce a translocation of the transporter to the plasma membrane. This translocation is associated with increased transport of glucose into the cell. GLUT1 is the main glucose transporter expressed in osteosarcoma, furthermore, this transporter is regulated by insulin in human MG-63 cells. One possible mechanism through which insulin is involved in cancer progression is by increasing the amount of glucose available to the cancer cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号