首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Completion of germination (radicle emergence) is an all-or-none developmental event for an individual seed. Variation in germination timing among seeds in a population therefore reflects variation among seeds in the rates or extents of physiological or biochemical processes prior to radicle emergence. For tomato (Lycopersicon esculentum Mill.) seeds, correlative evidence suggests that endo-[beta]-mannanase activity weakens the endosperm cap tissue opposite the radicle tip to permit radicle emergence. To test whether endo-[beta]-mannanase activity is causally related to germination rates, we have developed a sensitive assay suitable for use with individual radicle tips or endosperm caps. We show that endo-[beta]-mannanase activity varies at least 100-fold and often more than 1000-fold among individual inbred tomato seeds prior to radicle emergence. Other sources of variation (tissue size and experimental error) were evaluated and cannot account for this range of activity. Endo-[beta]-mannanase activity was generally 10-fold greater in leachates from endosperm caps than from radicle tips. Release of reducing sugars from individual endosperm caps also varied over a considerable (9-fold) range. These extreme biochemical differences among individual tomato seeds prior to radicle emergence indicate that results obtained from bulk samples could be misleading if it is assumed that all seeds exhibit the "average" behavior.  相似文献   

2.
A galactomannan-hydrolyzing enzyme that develops pregerminatively in the micropylar region of the endosperm of the tomato (Lycopersicon esculentum [L.] Mill.) seed was characterized. The enzyme was endo-[beta]-mannanase (EC 3.2.1.78), since it hydrolyzed galactomannan into oligosaccharides with no release of galactose and mannose. The mobility of this pregerminative enzyme in sodium dodecyl sulfate and native polyacrylamide gel electrophoresis was not identical to that of any of the three endo-[beta]-mannanases that develop in the same tissue (endosperm) after germination (H. Nonogaki, M. Nomaguchi, Y. Morohashi [1995] Physiol Plant 94: 328-334). There were also some differences in the products of galactomannan hydrolysis between the pregerminative and the postgerminative enzymes, indicating that the action pattern is different between the two types of enzymes. The pregerminative enzyme began to develop in the micropylar region of the endosperm at about 18 h postimbibition and increased up to the time immediately before radicle protrusion (24 h postimbibition). This enzyme was not present in the lateral part of the endosperm at any stage before or after germination. It is proposed that the enzyme develops prior to germination specifically at the micropylar region of the endosperm.  相似文献   

3.
Lettuce (Lactuca sativa L.) endosperm cell walls isolated prior to radicle emergence underwent autohydrolysis, the rate of which was correlated with whether radicle emergence would subsequently occur. Extraction of endosperm cell walls with 6 M LiCl suppressed autohydrolysis, and the desalted extract possessed activity that was capable of hydrolyzing purified locust bean galactomannan but not arabinogalactan, carboxymethylcellulose, glucomannan, polygalacturonic acid, tomato galactomannan, or native lettuce endosperm cell walls. Some hydrolytic activity was detected on endosperm cell walls if they were modified by partial trifluoroacetic acid hydrolysis or pretreatment with guanidinium thiocyanate. In extended incubations the cell wall enzyme extract released only large molecular mass fragments from locust bean galactomannan, indicating primarily endo-activity. Galactomannan-hydrolyzing activity in the cell wall extract increased as a function of imbibition time and was greatest just prior to radicle emergence. Thermoinhibition (imbibition at 32[deg]C) or treatment with abscisic acid at a temperature optimal for germination (25[deg]C) suppressed both germination and endosperm cell wall mannanase activity, whereas alleviation of thermoinhibition with gibberellic acid was accompanied by significant enhancement of mannanase activity. We conclude that a cell wall-bound endo-[beta]-mannanase is expressed in lettuce endosperm prior to radicle emergence and is regulated by the same conditions that govern germination.  相似文献   

4.
The endosperm tissue enclosing the radicle tip (endosperm cap) governs radicle emergence in tomato (Lycopersicon esculentum Mill.) seeds. Weakening of the endosperm cap has been attributed to hydrolysis of its mannan-rich cell walls by endo-[beta]-D-mannanase. To test this hypothesis, we measured mannanase activity in tomato endosperm caps from seeds allowed to imbibe under conditions of varying germination rates. Over a range of suboptimal temperatures, mannanase activity prior to radicle emergence increased in accordance with accumulated thermal time. Reduced water potential delayed or prevented radicle emergence but enhanced mannanase activity in the endosperm caps. Abscisic acid did not prevent the initial increase in mannanase activity, although radicle emergence was markedly delayed. Sugar composition and percent mannose (Man) content of endosperm cap cell walls did not change prior to radicle emergence under any condition. Man, glucose, and other sugars were released into the incubation solution by endosperm caps isolated from intact seeds during imbibition. Pregerminative release of Man was suppressed and the release of glucose was enhanced when seeds were incubated in osmoticum or abscisic acid; the opposite occurred in the presence of gibberellin. Thus, whereas sugar release patterns were sensitive to environmental and hormonal factors affecting germination, neither assayable endo-[beta]-D-mannanase activity nor changes in cell wall sugar composition of endosperm caps correlated well with tomato seed germination rates under all conditions.  相似文献   

5.
Rupture of the seed coat and rupture of the endosperm are separate events in the germination of Nicotiana tabacum L. cv Havana 425 seeds. Treatment with 10-5 M abscisic acid (ABA) did not appreciably affect seed-coat rupture but greatly delayed subsequent endosperm rupture by more than 100 h and resulted in the formation of a novel structure consisting of the enlarging radicle with a sheath of greatly elongated endosperm tissue. Therefore, ABA appears to act primarily by delaying endosperm rupture and radicle emergence. Measurements of [beta]-1,3-glucanase activity, antigen content, and mRNA accumulation together with reporter gene experiments showed that induction of class I [beta]-1,3-glucanase genes begins just prior to the onset of endosperm rupture but after the completion of seed-coat rupture. This induction was localized exclusively in the micropylar region of the endosperm, where the radicle will penetrate. ABA treatment markedly inhibited the rate of [beta]-1,3-glucanase accumulation but did not delay the onset of induction. Independent of the ABA concentration used, onset of endosperm rupture was correlated with the same [beta]-1,3-glucanase content/seed. These results suggest that ABA-sensitive class I [beta]-1,3-glucanases promote radicle penetration of the endosperm, which is a key limiting step in tobacco seed germination.  相似文献   

6.
A xyloglucan-specific endo-1,4-[beta]-glucanase was isolated from the apoplast fraction of auxin-treated pea (Pisum sativum) stems, in which both the rate of stem elongation and the amount of xyloglucan solubilized were high. The enzyme was purified to apparent homogeneity by sequential cation-exchange chromatographies, affinity chromatography, and gel filtration. The purified enzyme gave a single protein band on sodium dodecyi sulfate-polyacrylamide gel electrophoresis, and the molecular size was determined to be 77 kD by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 70 kD by gel filtration. The isoelectric point was about 8.1. The enzyme specifically cleaved the 1,4-[beta]-glucosyl linkages of the xyloglucan backbone to yield mainly nona- and heptasaccharides but did not hydrolyze carboxymethylcellulose, swollen cellulose, and (1->3, 1->4)-[beta]-glucan. By hydrolysis, the average molecular size of xyloglucan was decreased from 50 to 20 kD with new reducing chain ends in the lower molecular size fractions. This suggests that the enzyme has endo-1,4-[beta]-glucanase activity against xyloglucan. In conclusion, a xyloglucan-specific endo-1,4-[beta]-glucanase with an activity that differs from the activities of cellulase and xyloglucan endotransglycosylase has been isolated from elongating pea stems.  相似文献   

7.
The mRNA accumulation of two endo-1,4-[beta]-D-glucanase genes, Cel1 and Cel2, was examined in the pericarp and locules throughout the development of normal tomato (Lycopersicon esculentum) fruit and the ripening-impaired mutants rin and Nr. Both Cel1 and Cel2 were expressed transiently at the earliest stages of fruit development during a period corresponding to cell division and early cell expansion. In the pericarp, the mRNA abundance of both genes increased markedly at the breaker stage; the level of Cel1 mRNA decreased later in ripening, and that of Cel2 increased progressively. Cel2 mRNA levels also increased at the breaker stage in locules but after initial locule liquefaction was already complete. In rin fruit mRNA abundance of Cel1 was reduced and Cel2 was virtually absent, whereas in Nr Cel1 was expressed at wild-type levels and Cel2 was reduced. In wild-type fruit ethylene treatment slightly promoted the mRNA accumulation of both genes. In rin fruit ethylene treatment strongly increased the mRNA abundance of Cel1 to an extent greater than in wild-type fruit, but Cel2 mRNA was absent even after ethylene treatment. These two endo-1,4-[beta]-D-glucanase genes, therefore, do not show coordinated expression during fruit development and are subject to distinct regulatory control. These results suggest that the product of the Cel2 gene contributes to ripening-associated cell-wall changes.  相似文献   

8.
The bases of differences in germination rates (GRg = inverseof time to germination [tg] of percentage g) among three cold/salt-toleranttomato (Lycopersicon esculentum Mill.) accessions (PI 341988,PI 120256, and PI 174263) and one cold/salt-sensitive tomatocultivar (T5) were investigated. The effects of seed priming(6 d imbibition in aerated –1.2 MPa polyethylene glycolsolution at 20 ?C followed by redrying) and of removing theendosperm/testa cap covering the radicle on the temperaturesensitivity of GRg, and the interaction of these treatmentswith genotypes, were also examined. GRg decreased linearly withdecreasing temperature for all genotypes and seed treatments.The minimum or base temperatures for germination (Tb) variedby 1 ?C among the tomato lines, so genotypic differences inGRg were due to differing thermal time requirements for germination.The mean thermal time requirement for germination of T5 seeds was 22% and 19% greater than that of PI 341988 andPI 120256 seeds, respectively, but only 9% greater than thatof PI 174263 seeds. Seed priming did not lower Tb of any genotype,but significantly reduced by 24, 49, 41, and 49% in T5, PI 341988, PI 120256, and PI 174263, respectively,indicating that priming increased the rate at which the seedsprogressed towards germination when T>Tb, but did not lowerthe minimum temperature at which germination could occur. Primingincreased the GRg of T5 seeds to equal or exceed those of control(non-primed) seeds of the cold/salt-tolerant genotypes at anyT>Tb, but the PI lines exhibited an even greater responseto priming. Times to germination within each seed lot were normallydistributed on a logarithmic scale. Priming increased the variancein tg within a seed lot when compared to control seeds. However,the variation in thermal time for germination between the 10thand 90th percentiles of the seed population (T(10–90))was relatively unaffected by priming due to the reduction in in primed seeds. Removing the endosperm cap and testa opposite the radicle tip decreased almost 6-fold and and reduced Tb by 5 ?C in T5 and PI 341988,implicating processes in the endosperm/testa as the limitingfactors in germination at suboptimal temperatures. Key words: Lycopersicon esculentum Mill., tomato, genetic variation, seed priming, thermal time, germination rate  相似文献   

9.
Seed germination rates (GR =inverse of time to germination)are sensitive to genetic, environmental, and physiological factors.We have compared the GR of tomato (Lycopersicon esculentum Mill.)seeds of cultivar T5 to those of rapidly germinating L. esculentumgenotypes PI 341988 and PI 120256 over a range of water potential(). The influence of seed priming treatments and removal ofthe endosperm/testa cap enclosing the radicle tip on germinationat reduced were also assessed. Germination time-courses atdifferent 's were analysed according to a model that identifieda base, or minimum, allowing germination of a specific percentage(g) of the seed population (b(g)), and a ‘hydrotime constant’(H) indicating the rate of progress toward germination per MPa.h.The distribution of b(g) determined by probit analysis was characterizedby a mean base (b) and the standard deviation in b among seeds(b). The three derived parameters, b, b) and H, were sufficientto predict the time-courses of germination of intact seeds atany . A normalized time-scale for comparing germination responsesto reduced is introduced. The time to germination at any (tg())can be normalized to be equivalent to that observed in water(tg(0)) according to the equation tg(0)=[l–(/b(g))]tg().PI 341988 seeds were more tolerant of reduced and had a morerapid GR than T5 seeds due to both a lower b and a smaller H.The rapid germination of PI 120256, on the other hand, couldbe attributed entirely to a smaller H. Seed priming (6 d in–1.2 MPa polyethylene glycol 8000 solution at 20 ?C followedby drying) increased GR at all >b(g), but did not lower theminimum allowing germination; i.e. priming reduced H withoutlowering b. Removing the endosperm/testa cap (cut seeds) markedlyincreased GR and lowered the mean required to inhibit germinationby 0.7 to 0.9 MPa. However, this resulted primarily from downwardadjustment in b during the incubation of cut seeds at low inthe test solutions. The difference in b between intact and cutseeds incubated at high was much less (0.l MPa), indicatingthat at the time of radicle protrusion, the endosperm had weakenedto the point where it constituted only a small mechanical barrier.In the intact seed, endosperm weakening and the downward adjustmentin embryo b ceased at < –0.6 MPa, while the reductionin H associated with priming proceeded down to at least –1.2MPa. Based on these data and on the pressure required to pushthe embryos from the seeds at various times after imbibition,it appears that the primary effect of priming was to shortenthe time required for final endosperm weakening to occur. However,as priming increased GR even in cut seeds, priming effects onthe embryo may control the rate of endosperm weakening. Key words: tomato, Lycopersicon esculentum Mill., water potential, germination rate, seed priming, genetic variation  相似文献   

10.
11.
Skadsen RW 《Plant physiology》1993,102(1):195-203
The physiological and molecular bases for contrasting [alpha]-amylase phenotypes were examined in germinating seeds of two barley (Hordeum vulgare L.) cultivars, Morex and Steptoe. Morex is a high-quality malting barley that develops high [alpha]-amylase activity soon after germination. Steptoe is a feed barley that develops only low [alpha]-amylase activity levels during this period. The expression of all high- and low-isoelectric point (pl) [alpha]-amylase isozymes is reduced in Steptoe. The amount of [alpha]-amylase mRNA per gram of seedling tissue is correspondingly lower in Steptoe. Southern blot analysis revealed that the cultivars have the same copy number and organization for most high- and low-pl genes. Steptoe seedlings or embryoless half-seeds produce little [alpha]-amylase in response to exogenous applications of gibberellic acid (GA3) compared with Morex. However, when isolated aleurones of both cultivars are treated with GA3, they produce similar amounts of high- and low-pl [alpha]-amylase RNAs. This suggests that a factor in the starchy endosperm is responsible for lowered [alpha]-amylase response in Steptoe. The factor is probably not abscisic acid (ABA), since the two cultivars have similar concentrations of ABA during germination.  相似文献   

12.
In ripening fruits of tomato (Lycopersicon esculentum L. var 83-G-38), the amounts of cellulose and xyloglucan (XG) remained constant during tissue softening, but the relative molecular weight (Mr) of XG decreased markedly and the Mr of cellulose declined slightly. These changes could have been due to activities of non-specific endo-1,4-[beta]-glucanases and/or buffer-soluble XG endo-transglycosylase, both of which increased when tissue firmness declined most rapidly. Tomato extracts also reduced the viscosity of XG solutions, especially in the presence of added XG oligosac-charides. This depolymerizing (XGase) capacity differed from [beta]-glucanase and XG transglycosylase activity (a) by being almost entirely buffer insoluble, and (b) by declining precipitously during fruit softening. Although it disappeared from ripe fruit, XGase may have functioned in promoting wall loosening at earlier stages of fruit development when its activity was highest. By contrast, during aging of fruit in the ripening-inhibited mutant rin there was no change in Mr of XG or cellulose, and activities of [beta]-glucanases and XG transglycosylase were lower than in wild-type tomato. Nevertheless, some softening of the fruit did take place over time and XG amounts declined, possibly because high XGase activity was maintained in the mutant, unlike in wild-type fruit.  相似文献   

13.
Studies have been made on the time to germination and earlyseedling growth of the tomato Lycopersicon esculentum var. Potentateand Lycopersicon pimpinellifolium var. Red Currant, as wellas on derivative generations from their hybridization. Althoughtime to germination showed a genetic component, the relationshipsbetween different genotypes was much influenced by environmentalfactors. A marked maternal effect on time to germination dueto the varying seed sizes was noted while variation betweendifferent genotypes of similar seeds size was ascribed to anendospermic effect. The F1 hybrid embryo with L. Pimpinellifoliumas maternal parent contained more cells than that of the parentbut the hybrid cmbryo with L. esculentum as maternal parentcontained a similar number of cells to that of the parent itself.It is suggested that the results for embryo size both supportAshby‘s assertion that embryo size may be important indetermining heterosis, and also Hatcher’s findings in1940, that heterosis for hypocotyl extension is found in hybridsfrom parcnts of different sized seeds provided the small seededvariety is the maternal parent.  相似文献   

14.
The germination inhibitory activity of organic acids relatedto coumarin was investigated. The activity was found to be unrelatedto the nature of the side chain carrying the carboxyl group.Little or no relation between structure and activity existed.pH was found to be of secondary importance on the activity ofthe acids. Synergism between buffers and the acids exists insome cases. Moreover, the use of buffers in studying germinationinhibition was found to be unnecessary, due to the powerfulbuffering action of the seeds, and impermissible due to verymarked secondary effects of the buffers themselves and theireffect on germination.  相似文献   

15.
Two cell lines of tomato (Lycopersicon esculentum Mill cv VFNT-Cherry) were systematically compared for their capacity to tolerate cadmium. Unselected CdS cells died in the presence of 0.3 mM CdCl2. CdR6-0 cells, which were selected from CdS, survived and grew in medium supplemented with 0.3 mM CdCl2. Growth of CdR6-0 cells under this condition was accompanied by synthesis of cadmium-binding phytochelatins and maintenance of cellular glutathione (GSH) levels. CdR6-0 cells also exhibited increased tolerance to buthionine sulfoximine, in both the presence and absence of 0.1 mM CdCl2. The specific activity of [gamma]-glutamylcysteine synthetase (EC 6.3.2.2) was approximately 2-fold higher in CdR6-0 cells than in CdS cells, whereas there was no difference between cell lines in specific activity of GSH synthetase (EC 6.3.2.3). Increased activity of the first enzyme of GSH biosynthesis in CdR6-0 cells, presumably a result of selection for increased cadmium tolerance, provides an enhanced capacity to synthesize GSH and to maintain the production of phytochelatins in response to cadmium. This adaptation may contribute to the enhanced cadmium tolerance of CdR6-0 cells.  相似文献   

16.
17.
The activation of the cell cycle in embryo root tips of imbibing tomato (Lycopersicon esculentum Mill. cv Lerica) seeds was studied by flow cytometric analyses of the nuclear DNA content and by immunodelection of [beta]-tubulin. With dry seeds, flow cytometric profiles indicated that the majority of the cells were arrested at the G1 phase of the cell cycle. In addition, [beta]-tubulin was not detectable on western blots. Upon imbibition of water, the number of cells in G2 started to increase after 24 h, and a 55-kD [beta]-tubulin signal was detected between 24 and 48 h. Two-dimensional immunoblots revealed at least three different [beta]-tubulin isotypes. Thus, [beta]-tubulin accumulation and DNA replication were induced during osmotic priming. These processes, as well as seed germination rate, were enhanced upon subsequent imbibition of water, compared with control seeds that imbibed but were not primed. By contrast, when aged seeds imbibed, DNA replication, [beta]-tubulin accumulation, and germination were delayed. In all cases studied, both DNA replication and [beta]-tubulin accumulation preceded visible germination. We suggest that activation of these cell-cycle-related processes is a prerequisite for tomato seed germination. Furthermore, [beta]-tubulin expression can be used as a parameter for following the initial processes that are activated during seed imbibition.  相似文献   

18.
玉米籽粒胚乳细胞增殖及其与淀粉充实的关系   总被引:3,自引:0,他引:3  
用纤维素酶解离胚乳、滤膜法统计玉米胚乳细胞的数目,进一步借助Logistic方程模拟胚乳细胞增殖动态的结果表明,整个灌浆期间胚乳细胞增殖呈现“慢-快-慢”的变化趋势。授粉15d后,不同类型胚乳的细胞数目依序为普通玉米〉糯玉米〉甜玉米〉爆裂玉米;胚乳细胞数目主要取决于细胞的增殖速率,并与淀粉充实和粒重关系密切。胚乳发育前期以胚乳细胞增殖为主,后期以淀粉积累为主。  相似文献   

19.
Osaki  M.  Shinano  T.  Kaneda  T.  Yamada  S.  Nakamura  T. 《Photosynthetica》2001,39(2):205-213
Ontogenetic changes of rates of photon-saturated photosynthesis (P sat) and dark respiration (R D) of individual leaves were examined in relation to nitrogen content (Nc) in rice, winter wheat, maize, soybean, field bean, tomato, potato, and beet. P sat was positively correlated with Nc as follows: P sat = CfNc + P sat0, where Cf and P sat0 are coefficients. The value of Cf was high in maize, medium in rice and soybean, and low in field bean, potato, tomato, and beet, of which difference was not explained by ribulose-1,5-bisphoshate carboxylase/oxygenase (RuBPCO) content. R D was explained by P sat and/or Nc, however, two models must be applied according to plant species. R D related linearly with P sat and Nc in maize, field bean, and potato as follows: R D = a P sat + b, or R D = aNc + b, where a, a, b and b are coefficients. In other species, the R D/P sat ratio increased exponentially with the decrease of Nc as follows: R D/P sat = a exp(b Nc), where a and b are coefficients. Therefore, R D in these crops was expressed as follows: In(R D) = ln(a P sat) + b Nc, indicating that R D in these crops was regulated by both P sat and Nc.  相似文献   

20.
Peroxidase (EC 1.11.1.7) activity is associated with suberization during endodermal development and metacutization in roots of white spruce (Picea glauca [Moench] Voss) seedlings. Histochemical analysis indicates a relationship between suberization and peroxidase activity, but peroxidase is ubiquitous. Increased peroxidase activity results from the induction of four anodic peroxidase isozymes in addition to quantitative increases in two anodic peroxidase isozymes. Four of these polymerized eugenol. Cold temperatures induce formation of two anodic isozymes and result in suberization. The increased peroxidase activity associated with suberization is correlated to residual respiration. In an attempt to elucidate this relationship, the effect of respiratory inhibitors on respiration and peroxidase activity are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号