首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Protein disulfide isomerases (PDIs) are molecular chaperones that contain thioredoxin (TRX) domains and aid in the formation of proper disulfide bonds during protein folding. To identify plant PDI-like (PDIL) proteins, a genome-wide search of Arabidopsis (Arabidopsis thaliana) was carried out to produce a comprehensive list of 104 genes encoding proteins with TRX domains. Phylogenetic analysis was conducted for these sequences using Bayesian and maximum-likelihood methods. The resulting phylogenetic tree showed that evolutionary relationships of TRX domains alone were correlated with conserved enzymatic activities. From this tree, we identified a set of 22 PDIL proteins that constitute a well-supported clade containing orthologs of known PDIs. Using the Arabidopsis PDIL sequences in iterative BLAST searches of public and proprietary sequence databases, we further identified orthologous sets of 19 PDIL sequences in rice (Oryza sativa) and 22 PDIL sequences in maize (Zea mays), and resolved the PDIL phylogeny into 10 groups. Five groups (I-V) had two TRX domains and showed structural similarities to the PDIL proteins in other higher eukaryotes. The remaining five groups had a single TRX domain. Two of these (quiescin-sulfhydryl oxidase-like and adenosine 5'-phosphosulfate reductase-like) had putative nonisomerase enzymatic activities encoded by an additional domain. Two others (VI and VIII) resembled small single-domain PDIs from Giardia lamblia, a basal eukaryote, and from yeast. Mining of maize expressed sequence tag and RNA-profiling databases indicated that members of all of the single-domain PDIL groups were expressed throughout the plant. The group VI maize PDIL ZmPDIL5-1 accumulated during endoplasmic reticulum stress but was not found within the intracellular membrane fractions and may represent a new member of the molecular chaperone complement in the cell.  相似文献   

3.
The endoplasmic reticulum (ER) is the site of maturation for secretory and membrane proteins in eukaryotic cells. The lumen of the mammalian ER contains >20 members of the protein disulfide isomerase (PDI) superfamily, which ensure formation of the correct set of intramolecular and intermolecular disulfide bonds as crucial, rate-limiting reactions of the protein folding process. Components of the PDI superfamily may also facilitate dislocation of misfolded polypeptides across the ER membrane for ER-associated degradation (ERAD). The reasons for the high redundancy of PDI family members and the substrate features required for preferential engagement of one or the other are poorly understood. Here we show that TMX1, one of the few transmembrane members of the family, forms functional complexes with the ER lectin calnexin and preferentially intervenes during maturation of cysteine-containing, membrane-associated proteins while ignoring the same cysteine-containing ectodomains if not anchored at the ER membrane. As such, TMX1 is the first example of a topology-specific client protein redox catalyst in living cells.  相似文献   

4.
Many proteins of the secretory pathway contain disulfide bonds that are essential for structure and function. In the endoplasmic reticulum (ER), Ero1 alpha and Ero1 beta oxidize protein disulfide isomerase (PDI), which in turn transfers oxidative equivalents to newly synthesized cargo proteins. However, oxidation must be limited, as some reduced PDI is necessary for disulfide isomerization and ER-associated degradation. Here we show that in semipermeable cells, PDI is more oxidized, disulfide bonds are formed faster, and high molecular mass covalent protein aggregates accumulate in the absence of cytosol. Addition of reduced glutathione (GSH) reduces PDI and restores normal disulfide formation rates. A higher GSH concentration is needed to balance oxidative folding in semipermeable cells overexpressing Ero1 alpha, indicating that cytosolic GSH and lumenal Ero1 alpha play antagonistic roles in controlling the ER redox. Moreover, the overexpression of Ero1 alpha significantly increases the GSH content in HeLa cells. Our data demonstrate tight connections between ER and cytosol to guarantee redox exchange across compartments: a reducing cytosol is important to ensure disulfide isomerization in secretory proteins.  相似文献   

5.
The thioredoxin (TRX) superfamily includes redox proteins such as thioredoxins, glutaredoxins (GRXs) and protein disulfide isomerases (PDI). These proteins share a common structural motif named the thioredoxin fold. They are involved in disulfide oxido-reduction and/or isomerization. The sequencing of the Arabidopsisgenome revealed an unsuspected multiplicity of TRX and GRX genes compared to other organisms. The availability of full Chlamydomonasgenome sequence offers the opportunity to determine whether this multiplicity is specific to higher plant species or common to all photosynthetic eukaryotes. We have previously shown that the multiplicity is more limited in Chlamydomonas for TRX and GRX families. We extend here our analysis to the PDI family. This paper presents a comparative analysis of the TRX, GRX and PDI families present in Arabidopsis,Chlamydomonas and Synechocystis. The putative subcellular localization of each protein and its relative expression level, based on EST data, have been investigated. This analysis provides a large overview of the redox regulatory systems present in Chlamydomonas. The data are discussed in view of recent results suggesting a complex cross-talk between the TRX, GRX and PDI redox regulatory networks.  相似文献   

6.
Ero1-α and endoplasmic reticulum (ER) oxidoreductases of the protein disulfide isomerase (PDI) family promote the efficient introduction of disulfide bonds into nascent polypeptides in the ER. However, the hierarchy of electron transfer among these oxidoreductases is poorly understood. In this paper, Ero1-α–associated oxidoreductases were identified by proteomic analysis and further confirmed by surface plasmon resonance. Ero1-α and PDI were found to constitute a regulatory hub, whereby PDI induced conformational flexibility in an Ero1-α shuttle cysteine (Cys99) facilitated intramolecular electron transfer to the active site. In isolation, Ero1-α also oxidized ERp46, ERp57, and P5; however, kinetic measurements and redox equilibrium analysis revealed that PDI preferentially oxidized other oxidoreductases. PDI accepted electrons from the other oxidoreductases via its a′ domain, bypassing the a domain, which serves as the electron acceptor from reduced glutathione. These observations provide an integrated picture of the hierarchy of cooperative redox interactions among ER oxidoreductases in mammalian cells.  相似文献   

7.
Rancy PC  Thorpe C 《Biochemistry》2008,47(46):12047-12056
The flavin-dependent quiescin-sulfhydryl oxidase (QSOX) inserts disulfide bridges into unfolded reduced proteins with the reduction of molecular oxygen to form hydrogen peroxide. This work investigates how QSOX and protein disulfide isomerase (PDI) cooperate in vitro to generate native pairings in two unfolded reduced proteins: ribonuclease A (RNase, four disulfide bonds and 105 disulfide isomers of the fully oxidized protein) and avian riboflavin binding protein (RfBP, nine disulfide bonds and more than 34 million corresponding disulfide pairings). Experiments combining avian or human QSOX with up to 200 muM avian or human reduced PDI show that the isomerase is not a significant substrate of QSOX. Both reduced RNase and RfBP can be efficiently refolded in an aerobic solution containing micromolar concentrations of reduced PDI and nanomolar levels of QSOX without any added oxidized PDI or glutathione redox buffer. Refolding of RfBP is followed continuously using the complete quenching of the fluorescence of free riboflavin that occurs on binding to apo-RfBP. The rate of refolding is half-maximal at 30 muM reduced PDI when the reduced client protein (1 muM) is used in the presence of 30 nM QSOX. The use of high concentrations of PDI, in considerable excess over the folding protein client, reflects the concentration prevailing in the lumen of the endoplasmic reticulum and allows the redox poise of these in vitro experiments to be set with oxidized and reduced PDI. In the absence of either QSOX or redox buffer, the fastest refolding of RfBP is accomplished with excess reduced PDI and just enough oxidized PDI to generate nine disulfides in the protein client. These in vitro experiments are discussed in terms of current models for oxidative folding in the endoplasmic reticulum.  相似文献   

8.
YJ Kim  SY Yeu  BS Park  HJ Koh  JT Song  HS Seo 《PloS one》2012,7(9):e44493
Protein disulfide isomerase (PDI) is a chaperone protein involved in oxidative protein folding by acting as a catalyst and assisting folding in the endoplasmic reticulum (ER). A genome database search showed that rice contains 19 PDI-like genes. However, their functions are not clearly identified. This paper shows possible functions of rice PDI-like protein 1-1 (PDIL1-1) during seed development. Seeds of the T-DNA insertion PDIL1-1 mutant, PDIL1-1Δ, identified by genomic DNA PCR and western blot analysis, display a chalky phenotype and a thick aleurone layer. Protein content per seed was significantly lower and free sugar content higher in PDIL1-1Δ mutant seeds than in the wild type. Proteomic analysis of PDIL1-1Δ mutant seeds showed that PDIL1-1 is post-translationally regulated, and its loss causes accumulation of many types of seed proteins including glucose/starch metabolism- and ROS (reactive oxygen species) scavenging-related proteins. In addition, PDIL1-1 strongly interacts with the cysteine protease OsCP1. Our data indicate that the opaque phenotype of PDIL1-1Δ mutant seeds results from production of irregular starch granules and protein body through loss of regulatory activity for various proteins involved in the synthesis of seed components.  相似文献   

9.
For insulin synthesis, the proinsulin precursor is translated at the endoplasmic reticulum (ER), folds to include its three native disulfide bonds, and is exported to secretory granules for processing and secretion. Protein disulfide isomerase (PDI) has long been assumed to assist proinsulin in this process. Herein we have examined the effect of PDI knockdown (PDI-KD) in β-cells. The data establish that upon PDI-KD, oxidation of proinsulin to form native disulfide bonds is unimpaired and in fact enhanced. This is accompanied by improved proinsulin exit from the ER and increased total insulin secretion, with no evidence of ER stress. We provide evidence for direct physical interaction between PDI and proinsulin in the ER of pancreatic β-cells, in a manner requiring the catalytic activity of PDI. In β-cells after PDI-KD, enhanced export is selective for proinsulin over other secretory proteins, but the same effect is observed for recombinant proinsulin trafficking upon PDI-KD in heterologous cells. We hypothesize that PDI exhibits unfoldase activity for proinsulin, increasing retention of proinsulin within the ER of pancreatic β-cells.  相似文献   

10.
Protein disulfide isomerase (PDI) is the archetypal enzyme involved in the formation and reshuffling of disulfide bonds in the endoplasmic reticulum (ER). PDI achieves its redox function through two highly conserved thioredoxin domains, and PDI can also operate as an ER chaperone. The substrate specificities and the exact functions of most other PDI family proteins remain important unsolved questions in biology. Here, we characterize a new and striking member of the PDI family, which we have named protein disulfide isomerase-like protein of the testis (PDILT). PDILT is the first eukaryotic SXXC protein to be characterized in the ER. Our experiments have unveiled a novel, glycosylated PDI-like protein whose tissue-specific expression and unusual motifs have implications for the evolution, catalytic function, and substrate selection of thioredoxin family proteins. We show that PDILT is an ER resident glycoprotein that liaises with partner proteins in disulfide-dependent complexes within the testis. PDILT interacts with the oxidoreductase Ero1alpha, demonstrating that the N-terminal cysteine of the CXXC sequence is not required for binding of PDI family proteins to ER oxidoreductases. The expression of PDILT, in addition to PDI in the testis, suggests that PDILT performs a specialized chaperone function in testicular cells. PDILT is an unusual PDI relative that highlights the adaptability of chaperone and redox function in enzymes of the endoplasmic reticulum.  相似文献   

11.
Native protein disulfide bond formation in the endoplasmic reticulum (ER) requires protein disulfide isomerase (PDI) and Ero1p. Here we show that oxidizing equivalents flow from Ero1p to substrate proteins via PDI. PDI is predominantly oxidized in wild-type cells but is reduced in an ero1-1 mutant. Direct dithiol-disulfide exchange between PDI and Ero1p is indicated by the capture of PDI-Ero1p mixed disulfides. Mixed disulfides can also be detected between PDI and the ER precursor of carboxypeptidase Y (CPY). Further, PDI1 is required for the net formation of disulfide bonds in newly synthesized CPY, indicating that PDI functions as an oxidase in vivo. Together, these results define a pathway for protein disulfide bond formation in the ER. The PDI homolog Mpd2p is also oxidized by Ero1p.  相似文献   

12.
Y Shimoni  X Z Zhu  H Levanony  G Segal    G Galili 《Plant physiology》1995,108(1):327-335
Wheat (Triticum aestivum) storage proteins fold and assemble into complexes that are linked by intra- and intermolecular disulfide bonds, but it is not yet clear whether these processes are spontaneous or require the assistance of endoplasmic reticulum (ER)-resident enzymes and molecular chaperones. Aiming to unravel these processes, we have purified and characterized the enzyme protein disulfide isomerase (PDI) from wheat endosperm, as well as studied its developmental expression and intracellular localization. This ER-resident enzyme was previously shown to be involved in the formation of disulfide bonds in secretory proteins. Wheat PDI appears as a 60-kD glycoprotein and is among the most abundant proteins within the ER of developing grains. PDI is notably upregulated in developing endosperm in comparison to embryos, leaves, and roots. In addition, the increase in PDI expression in grains appears at relatively early stages of development, preceding the onset of storage protein accumulation by several days. Subcellular localization analysis and immunogold labeling of electron micrographs showed that PDI is not only present in the lumen of the ER but is also co-localized with the storage proteins in the dense protein bodies. These observations are consistent with the hypothesis that PDI is involved in the assembly of wheat storage proteins within the ER.  相似文献   

13.
In the endoplasmic reticulum (ER), disulfide bonds are simultaneously formed in nascent proteins and removed from incorrectly folded or assembled molecules. In this compartment, the redox state must be, therefore, precisely regulated. Here we show that both human Ero1-Lalpha and Ero1-Lbeta (hEROs) facilitate disulfide bond formation in immunoglobulin subunits by selectively oxidizing PDI. Disulfide bond formation is controlled by hEROs, which stand at a crucial point of an electron-flow starting from nascent secretory proteins and passing through PDI. The redox state of ERp57, another ER-resident oxidoreductase, is not affected by over-expression of Ero1-Lalpha, suggesting that parallel and specific pathways control oxidative protein folding in the ER. Mutants in the Ero1-Lalpha CXXCXXC motif act as dominant negatives by limiting immunoglobulin oxidation. PDI-dependent oxidative folding in living cells can thus be manipulated by using hERO variants.  相似文献   

14.
Tsai B  Rodighiero C  Lencer WI  Rapoport TA 《Cell》2001,104(6):937-948
Cholera toxin is assembled from two subunits in the periplasm of Vibrio cholerae and disassembled in the analogous compartment of target cells, the lumen of the endoplasmic reticulum (ER), before a fragment of it, the A1 chain, is transported into the cytosol. We show that protein disulfide isomerase (PDI) in the ER lumen functions to disassemble and unfold the toxin once its A chain has been cleaved. PDI acts as a redox-driven chaperone; in the reduced state, it binds to the A chain and in the oxidized state it releases it. Our results explain the pathway of cholera toxin, suggest a role for PDI in retrograde protein transport into the cytosol, and indicate that PDI can act as a novel type of chaperone, whose binding and release of substrates is regulated by a redox, rather than an ATPase, cycle.  相似文献   

15.
Multimerization of thyroglobulin (TG) takes place extracellularly in the thyroid follicle lumen and is regarded as a mechanism to store TG at high concentrations. Human thyroglobulin (hTG) has been shown to multimerize mainly by intermolecular disulfide cross-links. We recently noted that TG of various mammalian species contains three highly conserved thioredoxin boxes (CXXC). This sequence is known to underlie the enzymatic activity of protein disulfide isomerase (PDI). As hTG formed intermolecular disulfide bonds in the absence of other proteins depending on the redox conditions and hTG concentration, the CXXC-boxes of TG might provide the structural basis for self-assisted intermolecular cross-linking. To test this hypothesis we prepared a recombinant TG fragment containing the three thioredoxin boxes. This fragment exhibited a redox activity amounting to about 10% of the activity of PDI at redox conditions supposed to be present in the extracellular space. This activity might be supplemented by the oxidizing system of the apical cell surfaces of thyrocytes facing the follicle lumen. Indeed, incubation of hTG with peroxidase and H202 resulted in intermolecular disulfide bridge formation. Our results suggest a combined mechanism of self-assisted and peroxidase-mediated disulfide bond formation leading to the intermolecular cross-linking of lumenal hTG.  相似文献   

16.
The presence of correctly formed disulfide bonds is crucial to the structure and function of proteins that are synthesized in the endoplasmic reticulum (ER). Disulfide bond formation occurs in the ER owing to the presence of several specialized catalysts and a suitable redox potential. Work in yeast has indicated that the ER resident glycoprotein Ero1p provides oxidizing equivalents to newly synthesized proteins via protein disulfide isomerase (PDI). Here we show that Ero1-Lalpha, the human homolog of Ero1p, exists as a collection of oxidized and reduced forms and covalently binds PDI. We analyzed Ero1-Lalpha cysteine mutants in the presumed active site C(391)VGCFKC(397). Our results demonstrate that this motif is important for protein folding, structural integrity, protein half-life and the stability of the Ero1-Lalpha-PDI complex.  相似文献   

17.
Oxidative protein folding can exceed the cellular secretion machinery, inducing the unfolded protein response (UPR). Sustained endoplasmic reticulum (ER) stress leads to cell stress and disease, as described for Alzheimer, Parkinson, and diabetes mellitus, among others. It is currently assumed that the redox state of the ER is optimally balanced for formation of disulfide bonds using glutathione as the main redox buffer and that UPR causes a reduction of this organelle. The direct effect of oxidative protein folding in the ER, however, has not yet been dissected from UPR regulation. To measure in vivo redox conditions in the ER and cytosol of the yeast model organism Pichia pastoris we targeted redox-sensitive roGFP variants to the respective organelles. Thereby, we clearly demonstrate that induction of the UPR causes reduction of the cytosol in addition to ER reduction. Similarly, a more reduced redox state of the cytosol, but not of the ER, is observed during oxidative protein folding in the ER without UPR induction, as demonstrated by overexpressing genes of disulfide bond-rich secretory proteins such as porcine trypsinogen or protein disulfide isomerase (PDI1) and ER oxidase (ERO1). Cytosolic reduction seems not to be caused by the action of glutathione reductase (GLR1) and could not be compensated for by overexpression of cytosolic glutathione peroxidase (GPX1). Overexpression of GPX1 and PDI1 oxidizes the ER and increases the secretion of correctly folded proteins, demonstrating that oxidative protein folding per se is enhanced by a more oxidized ER and is counterbalanced by a more reduced cytosol. As the total glutathione concentration of these strains does not change significantly, but the ratio of GSH to GSSG is altered, either transport or redox signaling between the glutathione pools of ER and cytosol is assumed. These data clearly demonstrate that protein folding and ER stress have a severe impact on the cytosolic redox balance, which may be a major factor during development of folding-related diseases.  相似文献   

18.
The oxidative refolding of ribonuclease A has been investigated in several experimental conditions using a variety of redox systems. All these studies agree that the formation of disulfide bonds during the process occurs through a nonrandom mechanism with a preferential coupling of certain cysteine residues. We have previously demonstrated that in the presence of glutathione the refolding process occurs through the reiteration of two sequential reactions: a mixed disulfide with glutathione is produced first which evolves to form an intramolecular S-S bond. In the same experimental conditions, protein disulfide isomerase (PDI) was shown to catalyze formation and reduction of mixed disulfides with glutathione as well as formation of intramolecular S-S bonds. This paper reports the structural characterization of the one-disulfide intermediate population during the oxidative refolding of Ribonuclease A under the presence of PDI and glutathione with the aim of defining the role of the enzyme at the early stages of the reaction. The one-disulfide intermediate population occurring at the early stages of both the uncatalyzed and the PDI-catalyzed refolding was purified and structurally characterized by proteolytic digestion followed by MALDI-MS and LC/ESIMS analyses. In the uncatalyzed refolding, a total of 12 disulfide bonds out of the 28 theoretical possible cysteine couplings was observed, confirming a nonrandom distribution of native and nonnative disulfide bonds. Under the presence of PDI, only two additional nonnative disulfides were detected. Semiquantitative LC/ESIMS analysis of the distribution of the S-S bridged peptides showed that the most abundant species were equally populated in both the uncatalyzed and the catalyzed process. This paper shows the first structural characterization of the one-disulfide intermediate population formed transiently during the refolding of ribonuclease A in quasi-physiological conditions that mimic those present in the ER lumen. At the early stages of the process, three of the four native disulfides are detected, whereas the Cys26-Cys84 pairing is absent. Most of the nonnative disulfide bonds identified are formed by nearest-neighboring cysteines. The presence of PDI does not significantly alter the distribution of S-S bonds, suggesting that the ensemble of single-disulfide species is formed under thermodynamic control.  相似文献   

19.
At low concentrations of a glutathione redox buffer, the protein disulfide isomerase (PDI) catalyzed oxidative renaturation of reduced ribonuclease A exhibits a rapid but incomplete activation of ribonuclease, which precedes the steady-state reaction. This behavior can be attributed to a GSSG-dependent partitioning of the substrate, reduced ribonuclease, between two classes of thiol/disulfide redox forms, those that can be converted to active ribonuclease at low concentrations of GSH and those that cannot. With catalytic concentrations of PDI and near stoichiometric concentrations of glutathione disulfide, approximately 4 equiv (2 equiv of ribonuclease disulfide) of GSH are formed very rapidly followed by a slower formation of GSH, which corresponds to an additional 2 disulfide bond equiv. The rapid formation of RNase disulfide bonds and the subsequent rearrangement of incorrect disulfide isomers to active RNase are both catalyzed by PDI. In the absence of GSSG or other oxidants, disulfide bond equivalents of PDI can be used to form disulfide bonds in RNase in a stoichiometric reaction. In the absence of a glutathione redox buffer, the rate of reduced ribonuclease regeneration increases markedly with increasing PDI concentrations below the equivalence point; however, PDI in excess over stoichiometric concentrations inhibits RNase regeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号