首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jain R  Katavic V  Agrawal GK  Guzov VM  Thelen JJ 《Proteomics》2008,8(16):3397-3405
Plastids are functionally and structurally diverse organelles responsible for numerous biosynthetic reactions within the plant cell. Plastids from embryos have a range of properties depending upon the plant source but compared to other plastid types are poorly understood and therefore, we term them embryoplasts. Isolating intact plastids from developing embryos is challenging due to large starch granules within the stroma and the prevalence of nonplastid, storage organelles (oil bodies and protein storage vacuoles) which compromise plastid integrity and purity, respectively. To characterize rapeseed embryoplasts it was necessary to develop an improved isolation procedure. A new method is presented for the isolation of intact plastids from developing embryos of Brassica napus seeds. Intactness and purity of embryoplast preparations was determined using phase-contrast and transmission electron microscopy, immunoblotting, and multidimensional protein identification technology (MudPIT) MS/MS. Eighty nonredundant proteins were identified by MudPIT analysis of embryoplast preparations. Approximately 53% of these proteins were components of photosystem, light harvesting, cytochrome b/f, and ATP synthase complexes, suggesting ATP and NADPH production are important functions for this plastid type.  相似文献   

2.
Plastids are the organelles of plants and algae that house photosynthesis and many other biochemical pathways. Plastids contain a small genome, but most of their proteins are encoded in the nucleus and posttranslationally targeted to the organelle. When plants and algae lose photosynthesis, they virtually always retain a highly reduced "cryptic" plastid. Cryptic plastids are known to exist in many organisms, although their metabolic functions are seldom understood. The best-studied example of a cryptic plastid is from the intracellular malaria parasite, Plasmodium, which has retained a plastid for the biosynthesis of fatty acids, isoprenoids, and heme by the use of plastid-targeted enzymes. To study a completely independent transformation of a photosynthetic plastid to a cryptic plastid in another alga-turned-parasite, we conducted an expressed sequence tag (EST) survey of Helicosporidium. This parasite has recently been recognized as a highly derived green alga. Based on phylogenetic relationships to other plastid homologues and the presence of N-terminal transit peptides, we have identified 20 putatively plastid-targeted enzymes that are involved in a wide variety of metabolic pathways. Overall, the metabolic diversity of the Helicosporidium cryptic plastid exceeds that of the Plasmodium plastid, as it includes representatives of most of the pathways known to operate in the Plasmodium plastid as well as many others. In particular, several amino acid biosynthetic pathways have been retained, including the leucine biosynthesis pathway, which was only recently recognized in plant plastids. These two parasites represent different evolutionary trajectories in plastid metabolic adaptation.  相似文献   

3.
We have analyzed proteome dynamics during light-induced development of rice (Oryza sativa) chloroplasts from etioplasts using quantitative two-dimensional gel electrophoresis and tandem mass spectrometry protein identification. In the dark, the etioplast allocates the main proportion of total protein mass to carbohydrate and amino acid metabolism and a surprisingly high number of proteins to the regulation and expression of plastid genes. Chaperones, proteins for photosynthetic energy metabolism, and enzymes of the tetrapyrrole pathway were identified among the most abundant etioplast proteins. The detection of 13 N-terminal acetylated peptides allowed us to map the exact localization of the transit peptide cleavage site, demonstrating good agreement with the prediction for most proteins. Based on the quantitative etioplast proteome map, we examined early light-induced changes during chloroplast development. The transition from heterotrophic metabolism to photosynthesis-supported autotrophic metabolism was already detectable 2 h after illumination and affected most essential metabolic modules. Enzymes in carbohydrate metabolism, photosynthesis, and gene expression were up-regulated, whereas enzymes in amino acid and fatty acid metabolism were significantly decreased in relative abundance. Enzymes involved in nucleotide metabolism, tetrapyrrole biosynthesis, and redox regulation remained unchanged. Phosphoprotein-specific staining at different time points during chloroplast development revealed light-induced phosphorylation of a nuclear-encoded plastid RNA-binding protein, consistent with changes in plastid RNA metabolism. Quantitative information about all identified proteins and their regulation by light is available in plprot, the plastid proteome database (http://www.plprot.ethz.ch).  相似文献   

4.
A proteomic analysis of cold stress responses in rice seedlings   总被引:28,自引:0,他引:28  
Cui S  Huang F  Wang J  Ma X  Cheng Y  Liu J 《Proteomics》2005,5(12):3162-3172
Using proteomic analysis, an investigation aimed at a better understanding of the molecular adaptation mechanisms of cold stress was carried out in rice (Oryza sativa). The seedlings were exposed to a progressively low temperature stress treatment from normal temperature to 15, 10, and 5 degrees C. Proteins were extracted from the leaves collected from both control and stressed seedlings. By fractionation, approximately 1700 protein spots were separated and visualized on CBB-stained 2-D gels. Sixty protein spots were found to be up-regulated in responding to the progressively low temperature stress and displayed different dynamic patterns. As an initial work, 41 of these proteins were identified using MALDI-TOF MS or ESI/MS/MS. These cold responsive proteins, besides two proteins of unknown function, include four factors of protein biosynthesis, four molecular chaperones, two proteases, and eight enzymes involved in biosynthesis of cell wall components, seven antioxidative/detoxifying enzymes, and proteins linked to energy pathway, as well as a protein involved in signal transduction. The functional proteomes illuminate the facts, at least in plant cell, that protein quality control mediated by chaperones and proteases and enhancement of cell wall components play important roles in tolerance to cold stress. Using TargetP program, the subcellular localization of the identified proteins was analyzed. Proteins (43.9%) were predicted to be located in the chloroplasts, implying that chloroplast proteome is virtually subjective to cold stress. The physiological implications, revealed from the experimental data, are discussed in context of a complex metabolic network in plant cells responsive to cold stress.  相似文献   

5.
6.
Plastids are cellular organelles which originated when a photosynthetic prokaryote was engulfed by the eukaryotic ancestor of green and red algae and land plants. Plastids have diversified in plants from their original function as chloroplasts to fulfil a variety of other roles in metabolite biosynthesis and in storage, or purely to facilitate their own transmission, according to the cell type that harbours them. Therefore cellular development and plastid biogenesis pathways must be closely intertwined. Cell biological, biochemical, and genetic approaches have generated a large body of knowledge on a variety of plastid biogenesis processes. A brief overview of the components and functions of the plastid genetic machinery, the plastid division apparatus, and protein import to and targeting inside the organelle is presented here. However, key areas in which our knowledge is still surprisingly limited remain, and these are also discussed. Chloroplast-defective mutants suggest that a substantial number of important plastid biogenesis proteins are still unknown. Very little is known about how different plastid types differentiate, or about what mechanisms co-ordinate cell growth with plastid growth and division, in order to achieve what is, in photosynthetic cells, a largely constant cellular plastid complement. Further, it seems likely that major, separate plastid and chloroplast 'master switches' exist, as indicated by the co-ordinated gene expression of plastid or chloroplast-specific proteins. Recent insights into each of these developing areas are reviewed. Ultimately, this information should allow us to gain a systems-level understanding of the plastid-related elements of the networks of plant cellular development.  相似文献   

7.
8.
The function of plastid ribosomes in pea (Pisum sativum L.) was investigated by characterizing the products of protein synthesis in vitro in plastids isolated at different stages during the transition from etioplast to chloroplast. Etioplasts and plastids isolated after 24, 48 and 96h of greening in continuous white light, use added ATP to incorporate labelled amino acids into protein. Plastids isolated from greening leaves can also use light as the source of energy for protein synthesis. The labelled polypeptides synthesized in isolated plastids were analysed by electrophoresis in sodium dodecyl sulphate-ureapolyacrylamide gels. Six polypeptides are synthesized in etioplasts with ATP as energy source. Only one of these polypeptides is present in a 150 000g supernatant fraction. This polypeptide has been identified as the large subunit of Fraction I protein (3-phospho-D-glycerate carboxylyase EC 4.1.1.39) by comparing the tryptic 'map' of its L-(35S)methionine-labelled peptides with the tryptic 'map' of large subunit peptides from Fraction I labelled with L-(35S)methionine in vivo. The same gel pattern of six polypeptides is seen when plastids isolated from greening leaves are incubated with either added ATP or light as the energy source. However, the rates of synthesis of particular polypeptides are different in plastids isolated at different stages of the etioplast to chloroplast transition. The results support the idea that plastid ribosomes synthesize only a small number of proteins, and that the number and molecular weight of these proteins does not alter during the formation of chloroplasts from etioplasts.  相似文献   

9.
Methods were developed for the isolation of plastids from mature green and ripening tomatoes (Lycopersicon esculentum Mill.) and purification by sucrose or Percoll density-gradient centrifugation. Assessment of the purity of preparations involved phase-contrast and electron microscopy, assays for marker enzymes and RNA extraction and analysis. Proteins were extracted from isolated plastids at different ripening stages and separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The profiles obtained from chloroplasts and chromoplasts showed many qualitative and quantitative differences. Labelling of proteins with [35S]methionine in vivo showed that there was active protein synthesis throughout ripening, but there was a change in the plastid proteins made as ripening proceeded. The cellular location of synthesis of specific proteins has yet to be established.Abbreviations CS citrate synthase - EDTA ethylenediaminetetraacetic acid,-acetate - GAPDH NADP+-glyceraldehyde-3-phosphate dehydrogenase - rRNA ribosomal RNA - SDS sodium dodecyl sulphate - SDS-PAGE SDS-polyacrylamide gel electrophoresis - Tris 2-amino-2(hydroxymethyl)-1,3-propanediol  相似文献   

10.
Plastids are vital plant organelles involved in many essential biological processes. Plastids are not created de novo but divide by binary fission mediated by nuclear-encoded proteins of both prokaryotic and eukaryotic origin. Although several plastid division proteins have been identified in plants, limited information exists regarding possible division control mechanisms. Here, we describe the identification of GIANT CHLOROPLAST 1 (GC1), a new nuclear-encoded protein essential for correct plastid division in Arabidopsis. GC1 is plastid-localized and is anchored to the stromal surface of the chloroplast inner envelope by a C-terminal amphipathic helix. In Arabidopsis, GC1 deficiency results in mesophyll cells harbouring one to two giant chloroplasts, whilst GC1 overexpression has no effect on division. GC1 can form homodimers but does not show any interaction with the Arabidopsis plastid division proteins AtFtsZ1-1, AtFtsZ2-1, AtMinD1, or AtMinE1. Analysis reveals that GC1-deficient giant chloroplasts contain densely packed wild-type-like thylakoid membranes and that GC1-deficient leaves exhibit lower rates of CO(2) assimilation compared to wild-type. Although GC1 shows similarity to a putative cyanobacterial SulA cell division inhibitor, our findings suggest that GC1 does not act as a plastid division inhibitor but, rather, as a positive factor at an early stage of the division process.  相似文献   

11.
Majeran W  Cai Y  Sun Q  van Wijk KJ 《The Plant cell》2005,17(11):3111-3140
Chloroplasts of maize (Zea mays) leaves differentiate into specific bundle sheath (BS) and mesophyll (M) types to accommodate C4 photosynthesis. Consequences for other plastid functions are not well understood but are addressed here through a quantitative comparative proteome analysis of purified M and BS chloroplast stroma. Three independent techniques were used, including cleavable stable isotope coded affinity tags. Enzymes involved in lipid biosynthesis, nitrogen import, and tetrapyrrole and isoprenoid biosynthesis are preferentially located in the M chloroplasts. By contrast, enzymes involved in starch synthesis and sulfur import preferentially accumulate in BS chloroplasts. The different soluble antioxidative systems, in particular peroxiredoxins, accumulate at higher levels in M chloroplasts. We also observed differential accumulation of proteins involved in expression of plastid-encoded proteins (e.g., EF-Tu, EF-G, and mRNA binding proteins) and thylakoid formation (VIPP1), whereas others were equally distributed. Enzymes related to the C4 shuttle, the carboxylation and regeneration phase of the Calvin cycle, and several regulators (e.g., CP12) distributed as expected. However, enzymes involved in triose phosphate reduction and triose phosphate isomerase are primarily located in the M chloroplasts, indicating that the M-localized triose phosphate shuttle should be viewed as part of the BS-localized Calvin cycle, rather than a parallel pathway.  相似文献   

12.
The molecular biology of plastid division in higher plants   总被引:11,自引:0,他引:11  
Plastids are essential plant organelles vital for life on earth, responsible not only for photosynthesis but for many fundamental intermediary metabolic reactions. Plastids are not formed de novo but arise by binary fission from pre-existing plastids, and plastid division therefore represents an important process for the maintenance of appropriate plastid populations in plant cells. Plastid division comprises an elaborate pathway of co-ordinated events which include division machinery assembly at the division site, the constriction of envelope membranes, membrane fusion and, ultimately, the separation of the two new organelles. Because of their prokaryotic origin bacterial cell division has been successfully used as a paradigm for plastid division. This has resulted in the identification of the key plastid division components FtsZ, MinD, and MinE, as well as novel proteins with similarities to prokaryotic cell division proteins. Through a combination of approaches involving molecular genetics, cell biology, and biochemistry, it is now becoming clear that these proteins act in concert during plastid division, exhibiting both similarities and differences compared with their bacterial counterparts. Recent efforts in the cloning of the disrupted loci in several of the accumulation and replication of chloroplasts mutants has further revealed that the division of plastids is controlled by a combination of prokaryote-derived and host eukaryote-derived proteins residing not only in the plastid stroma but also in the cytoplasm. Based on the available data to date, a working model is presented showing the protein components involved in plastid division, their subcellular localization, and their protein interaction properties.  相似文献   

13.
We have used fusions of gibberellin biosynthesis enzymes to green fluorescent protein (GFP) to determine the subcellular localization of the early steps of the pathway. Gibberellin biosynthesis from geranylgeranyl diphosphate is catalysed by enzymes of the terpene cyclase, cytochrome P450 mono-oxygenase and 2-oxoglutarate-dependent dioxygenase classes. We show that the N-terminal pre-sequences of the Arabidopsis thaliana terpene cyclases copalyl diphosphate synthase (AtCPS1) and ent-kaurene synthase (AtKS1) direct GFP to chloroplasts in transient assays following microprojectile bombardment of tobacco leaves. The AtKS1-GFP fusion is also imported by isolated pea chloroplasts. The N-terminal portion of the cytochrome P450 protein ent-kaurene oxidase (AtKO1) directs GFP to chloroplasts in tobacco leaf transient assays. Chloroplast import assays with 35S-labelled AtKO1 protein show that it is targeted to the outer face of the chloroplast envelope. The leader sequences of the two ent-kaurenoic acid oxidases (AtKAO1 and AtKAO2) from Arabidopsis direct GFP to the endoplasmic reticulum. These data suggest that the AtKO1 protein links the plastid- and endoplasmic reticulum-located steps of the gibberellin biosynthesis pathway by association with the outer envelope of the plastid.  相似文献   

14.
Plastids (chloroplasts) of higher plants exhibit two types of conversional RNA editing: cytidine-to-uridine editing in mRNAs and adenosine-to-inosine editing in at least one plastid genome-encoded tRNA, the tRNA-Arg(ACG). The enzymes catalyzing RNA editing reactions in plastids are unknown. Here we report the identification of the A-to-I tRNA editing enzyme from chloroplasts of the model plant Arabidopsis thaliana. The protein (AtTadA) has an unusual structure in that it harbors a large N-terminal domain of >1000 amino acids, which is not required for catalytic activity. The C-terminal region of the protein displays sequence similarity to tadA, the tRNA adenosine deaminase from Escherichia coli. We show that AtTadA is imported into chloroplasts in vivo and demonstrate that the in vitro translated protein triggers A-to-I editing in the anticodon of the plastid tRNA-Arg(ACG). Suppression of AtTadA gene expression in transgenic Arabidopsis plants by RNAi results in reduced A-to-I editing in the chloroplast tRNA-Arg(ACG). The RNAi lines display a mild growth phenotype, presumably due to reduced chloroplast translational efficiency upon limited availability of edited tRNA-Arg(ACG).  相似文献   

15.
16.
Lee DW  Kim JK  Lee S  Choi S  Kim S  Hwang I 《The Plant cell》2008,20(6):1603-1622
The N-terminal transit peptides of nuclear-encoded plastid proteins are necessary and sufficient for their import into plastids, but the information encoded by these transit peptides remains elusive, as they have a high sequence diversity and lack consensus sequences or common sequence motifs. Here, we investigated the sequence information contained in transit peptides. Hierarchical clustering on transit peptides of 208 plastid proteins showed that the transit peptide sequences are grouped to multiple sequence subgroups. We selected representative proteins from seven of these multiple subgroups and confirmed that their transit peptide sequences are highly dissimilar. Protein import experiments revealed that each protein contained transit peptide-specific sequence motifs critical for protein import into chloroplasts. Bioinformatics analysis identified sequence motifs that were conserved among members of the identified subgroups. The sequence motifs identified by the two independent approaches were nearly identical or significantly overlapped. Furthermore, the accuracy of predicting a chloroplast protein was greatly increased by grouping the transit peptides into multiple sequence subgroups. Based on these data, we propose that the transit peptides are composed of multiple sequence subgroups that contain distinctive sequence motifs for chloroplast targeting.  相似文献   

17.
De novo purine biosynthesis is localized to both mitochondria and plastids isolated from Bradyrhizobium sp.-infected cells of cowpea (Vigna unguiculata L. Walp) nodules, but several of the pathway enzymes, including aminoimidazole ribonucleotide synthetase (AIRS [EC 6.3.3.1], encoded by Vupur5), are encoded by single genes. Immunolocalization confirmed the presence of AIRS protein in both organelles. Enzymatically active AIRS was purified separately from nodule mitochondria and plastids. N-terminal sequencing showed that these two isoforms matched the Vupur5 cDNA sequence but were processed at different sites following import; the mitochondrial isoform was five amino acids longer than the plastid isoform. Electrospray tandem mass spectrometry of a trypsin digest of mitochondrial AIRS identified two internal peptides identical with the amino acid sequence deduced from Vupur5 cDNA. Western blots of proteins from mitochondria and plastids isolated from root tips showed a single AIRS protein present at low levels in both organelles. (35)S-AIRS protein translated from a Vupur5 cDNA was imported into isolated pea (Pisum sativum) leaf chloroplasts in vitro by an ATP-dependent process but not into import-competent mitochondria from several plant and non-plant sources. Components of the mature protein are likely to be important for import because the N-terminal targeting sequence was unable to target green fluorescent protein to either chloroplasts or mitochondria in Arabidopsis leaves. The data confirm localization of the protein translated from the AIRS gene in cowpea to both plastids and mitochondria and that it is cotargeted to both organelles, but the mechanism underlying import into mitochondria has features that are yet to be identified.  相似文献   

18.
Labelling of plastids with fluorescent proteins has revealed the diversity of their sizes and shapes in different tissues of vascular plants. Stromules, stroma-filled tubules comprising thin extensions of the stroma surrounded by the double envelope membrane, have been observed to emanate from all major types of plastid, though less common on chloroplasts. In some tissue types, stromules are highly dynamic, forming, shrinking, attaching, releasing and fragmenting. Stromule formation is negatively affected by treatment of tissue with cytoskeletal inhibitors. Plastids can be connected by stromules, through which green fluorescent protein (GFP) and fluorescently tagged chloroplast protein complexes have been observed to flow. Within the highly viscous stroma, proteins traffic by diffusion as well as by an active process of directional travel, whose mechanism is unknown. In addition to exchanging materials between plastids, stromules may also serve to increase the surface area of the envelope for import and export, reduce diffusion distance between plastids and other organelles for exchange of materials, and anchor the plastid onto attachment points for proper positioning with the plant cell. Future studies should reveal how these functions may affect plants in adapting to the challenges of a changing environment.  相似文献   

19.
Chloroplasts are unique organelles that are responsible for photosynthesis. Although chloroplasts contain their own genome, the majority of chloroplast proteins are encoded by the nuclear genome. These proteins are transported to the chloroplasts after translation in the cytosol. Chloroplasts contain three membrane systems (outer/inner envelope and thylakoid membranes) that subdivide the interior into three soluble compartments known as the intermembrane space, stroma, and thylakoid lumen. Several targeting mechanisms are required to deliver proteins to the correct chloroplast membrane or soluble compartment. These mechanisms have been extensively studied using purified chloroplasts in vitro. Prior to targeting these proteins to the various compartments of the chloroplast, they must be correctly sorted in the cytosol. To date, it is not clear how these proteins are sorted in the cytosol and then targeted to the chloroplasts. Recently, the cytosolic carrier protein AKR2 and its associated cofactor Hsp17.8 for outer envelope membrane proteins of chloroplasts were identified. Additionally, a mechanism for controlling unimported plastid precursors in the cytosol has been discovered. This review will mainly focus on recent findings concerning the possible cytosolic events that occur prior to protein targeting to the chloroplasts. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.  相似文献   

20.
Plastids are a diverse group of essential organelles in plants that include chloroplasts. The biogenesis and maintenance of these organelles relies on the import of thousands of nucleus-encoded proteins. The complexity of plastid structure has resulted in the evolution of at least four general import pathways that target proteins into and across the double membrane of the plastid envelope. Several of these pathways can be further divided into specialty pathways that mediate and regulate the import of specific classes of proteins. The co-ordination of import by these specialized pathways with changes in gene expression is critical for plastid and plant development. Moreover, protein import is acutely regulated in response to physiological and metabolic changes within the cell. In the present review we summarize the current knowledge of the mechanism of import via these pathways and highlight the regulatory mechanisms that integrate the plastid protein-trafficking pathways with the developmental and metabolic state of the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号