首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used a green fluorescent kidney line, Tg(wt1b:GFP), as a model to access the acetaminophen (AAP)-induced nephrotoxicity dynamically. Zebrafish (Danio rerio) embryos at different developmental stages (12–60 hpf) were treated with different dosages of AAP (0–45 mM) for different time courses (12–60 h). Results showed that zebrafish embryos exhibited no evident differences in survival rates and morphological changes between the mock-treated control (0 mM) and 2.25 mM AAP-exposure (12–72 hpf) groups. In contrast, after higher doses (22.5 and 45 mM) of exposure, embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tube, pronephric duct, and a cystic and atrophic glomerulus. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AAP increased. Interestingly, under the same exposure time course (12 h) and dose (22.5 mM), embryos displayed higher percentages of severe defects at earlier developmental stage of exposure (12–24 hpf), whereas embryos displayed higher percentages of mild defects at later exposure (60–72 hpf). With an exposure time course less than 24 h of 45 mM AAP, no embryo survived by the developmental stage of 72 hpf. These results indicated that AAP-induced nephrotoxicity depended on the exposure dose, time course and developmental stages. Immunohistochemical experiments showed that the cells' morphologies of the pronephric tube, pronephric duct and glomerulus were disrupted by AAP, and consequently caused cell death. Real-time RT-PCR revealed embryos after AAP treatment decreased the expression of cox2 and bcl2, but increased p53 expression. In conclusion, AAP-induced defects on glomerulus, pronephric tube and pronephric duct could be easily and dynamically observed in vivo during kidney development in this present model.  相似文献   

2.
This study is an adaptation of the nicotine-evoked locomotor response (NLR) assay, which was originally utilized for phenotype-based neurotoxicity screening in zebrafish embryos. Zebrafish embryos do not exhibit spontaneous swimming until roughly 4 days post-fertilization (dpf), however, a robust swimming response can be induced as early as 36 hours post-fertilization (hpf) by means of acute nicotine exposure (30–240μM). Here, the NLR was tested as a tool for early detection of locomotor phenotypes in 36, 48 and 72 hpf mutant zebrafish embryos of the non-touch-responsive maco strain; this assay successfully discriminated mutant embryos from their non-mutant siblings. Then, methylmercury (MeHg) was used as a proof-of-concept neurotoxicant to test the effectiveness of the NLR assay as a screening tool in toxicology. The locomotor effects of MeHg were evaluated in 6 dpf wild type eleutheroembryos exposed to waterborne MeHg (0, 0.01, 0.03 and 0.1μM). Afterwards, the NLR assay was tested in 48 hpf embryos subjected to the same MeHg exposure regimes. Embryos exposed to 0.01 and 0.03μM of MeHg exhibited significant increases in locomotion in both scenarios. These findings suggest that similar locomotor phenotypes observed in free swimming fish can be detected as early as 48 hpf, when locomotion is induced with nicotine.  相似文献   

3.
目的:探索马兜铃水提液对斑马鱼胚胎的致畸作用和心脏毒性.方法:分别用不同浓度的马兜铃水提液和马兜铃酸A(AA)处理斑马鱼胚胎,观察致畸作用和对心脏发育影响.结果:给药组的斑马鱼胚胎出现畸形和死亡;当水提液中AA含量为0.5 μg/mL时,胚胎心率明显减慢;AA含量为5μg/mL时,胚胎在24~48 hpf之间全部死亡;水提液的LC50为1.43 μg/mL.结论:与AA相比,马兜铃水提液对斑马鱼胚胎有着更强的致畸和心脏毒性,且毒性作用具有时间和浓度依赖性.  相似文献   

4.
We isolated cDNA clones for zebrafish Ca(2+)/calmodulin-dependent protein kinase I (zCaMKI) δ isoforms by expression screening using cDNA library from embryos at 72-h post-fertilization (hpf). There are two splice variants with different C-terminal sequences, comprising of 392 and 368 amino acids, and they are designated zCaMKIδ-L (long form) and zCaMKIδ-S (short form), respectively. Although recombinant zCaMKIδ-L and zCaMKIδ-S expressed in Escherichia coli showed essentially the same catalytic properties including substrate specificities, they showed different spatial and temporal expression. Western blotting analysis using the isoform-specific antibodies revealed that zCaMKIδ-L clearly appeared from 36hpf but zCaMKIδ-S began to appear at 60hpf and thereafter. zCaMKIδ-S was predominantly expressed in brain, while zCaMKIδ-L was widely distributed in brain, eye, ovary and especially abundantly expressed in skeletal muscle. The gene knockdown of zCaMKIδ using morpholino-based antisense oligonucleotides induced significant morphological abnormalities in zebrafish embryos. Severe phenotype of embryos exhibited short trunk, kinked tail and small heads. These phenotypes could be rescued by coinjection with the recombinant zCaMKIδ, but not with the kinase-dead mutant. These results clearly indicate that the kinase activity of zCaMKIδ plays a crucial role in the early stages in the embryogenesis of zebrafish.  相似文献   

5.
Morphology and physiology of fish embryos undergo dramatic changes during their development until the onset of feeding, supplied only by endogenous yolk reserves. For obtaining an insight how these restructuring processes are reflected by body mass related parameters, dry weights (dw), contents of the elements carbon and nitrogen and lipid and protein levels were quantified in different stages within the first four days of embryo development of the zebrafish (Danio rerio). The data show age dependent changes in tissue composition. Dry weights decreased significantly from 79μgdw/egg at 0hours post fertilization (hpf) to 61 μgdw/egg after 96 hpf. The amounts of total carbon fluctuated between 460 mg g-1 and 540 mg g-1 dw, nitrogen was at about 100 mg g-1 dw and total fatty acids were between 48–73 mg g-1 dw. In contrast to these parameters that remained relatively constant, the protein content, which was 240 mg g-1 at 0 hpf, showed an overall increase of about 40%. Comparisons of intact eggs and dechorionated embryos at stages prior to hatching (24, 30, 48 hpf) showed that the differences seen for dry weight and for carbon and nitrogen contents became smaller at more advanced stages, consistent with transition of material from the chorion to embryo tissue. Further, we determined the effect of 2,4-dinitrophenol at a subacutely toxic concentration (14 μM, LC10) as a model chemical challenge on the examined body mass related parameters. The compound caused significant decreases in phospholipid and glycolipid fatty acid contents along with a decrease in the phospholipid fatty acid unsaturation index. No major changes were observed for the other examined parameters. Lipidomic studies as performed here may thus be useful for determining subacute effects of lipophilic organic compounds on lipid metabolism and on cellular membranes of zebrafish embryos.  相似文献   

6.
Transient receptor potential channels function in a wide spectrum of tissues and transduce sensory stimuli. The vanilloid (capsaicin) channel TRPV4 is sensitive to osmotic changes and plays a central role in osmoregulatory responses in a variety of organisms. We cloned a zebrafish trpv4 cDNA and assayed its expression during embryogenesis. trpv4 is expressed as maternal mRNA in 4-cell embryos and later zygotic expression is first observed in the forming notochord at the one somite stage. Notochord expression persists to 24 hpf when broad expression in the brain is observed. At 32 hpf trpv4 expression is observed in the endocardium, restricted primarily to the ventricular endothelium. Low level expression of trpv4 is also seen from 32-48 hpf in the pronephric kidney with strongest expression in the most distal nephron segment and in the cloaca. Expression is also observed in lateral line organs starting at 32 hpf, primarily in the hair cells. At 72 hpf, expression of trpv4 in heart, kidney, brain, and lateral line organs persists while expression in the notochord is down-regulated.  相似文献   

7.
Pitt JA  Carney EW 《Teratology》1999,59(2):102-109
In an effort to advance the use of whole-embryo culture (WEC) techniques in the rabbit, we recently developed a gestational-age-based quantitative morphologic evaluation system for rabbit embryos. In the current study, we applied this new morphological scoring system to assess the development of rabbit gestational day (gd) 9 embryos exposed for 48 hr in WEC to the teratogens ethanol (EtOH, 154 mM), 6-aminonicotinamide (6AN, 0.15 mM), and methoxyacetic acid (MAA, 5.0 mM), and the nonteratogen penicillin G (PG, 2.0 mM). Each teratogen at the concentration tested markedly inhibited morphological development, as indicated by significantly lower morphologic scores (10.1+/-0.05, EtOH; 10.2+/-0.05, 6AN; and 9.8, MAA) relative to controls (10.6+/-0.04), and resulted in an increased percentage of malformed embryos (53%, EtOH; 57%, 6AN; 90%, MAA; and 3%, control). Embryonic growth, as measured by head length, somite number, and total embryonic protein, was significantly decreased by each teratogen. The abnormalities produced by teratogen exposure, which included brain, somite, and facial defects, were often similar to those produced following in vivo exposure in rabbits and rodents, and/or in vitro exposure in rodents. In contrast to the teratogen exposure groups, PG had no effect on embryo growth parameters, or on malformation rate (6%), although a slight but statistically significant decrease in morphology score (10.5+/-0.03) was noted. Our preliminary studies demonstrate the usefulness of the morphology evaluation system by quantifying graded differences in development, and indicate that rabbit WEC may be a useful adjunct to rodent WEC in gaining insights regarding differential interspecies sensitivity.  相似文献   

8.
Mounting evidence supports the notion that Myf-5 and MyoD play unique roles in the development of epaxial (originating in the dorso-medial half of the somite, e.g. back muscles) and hypaxial (originating in the ventro-lateral half of the somite, e.g. limb and body wall muscles) musculature. To further understand how Myf-5 and MyoD genes cooperate during skeletal muscle specification, we examined and compared the expression pattern of MyoD-lacZ (258/2.5lacZ and MD6.0-lacZ) transgenes in wild-type, Myf-5, and MyoD mutant embryos. We found that the delayed onset of muscle differentiation in the branchial arches, tongue, limbs, and diaphragm of MyoD-/- embryos was a consequence of a reduced ability of myogenic precursor cells to progress through their normal developmental program and not because of a defect in migration of muscle progenitor cells into these regions. We also found that myogenic precursor cells for back, intercostal, and abdominal wall musculature in Myf-54-/- embryos failed to undergo normal translocation or differentiation. By contrast, the myogenic precursors of intercostal and abdominal wall musculature in MyoD-/- embryos underwent normal translocation but failed to undergo timely differentiation. In conclusion, these observations strongly support the hypothesis that Myf-5 plays a unique role in the development of muscles arising after translocation of epithelial dermamyotome cells along the medial edge of the somite to the subjacent myotome (e.g., back or epaxial muscle) and that MyoD plays a unique role in the development of muscles arising from migratory precursor cells (e.g., limb and branchial arch muscles, tongue, and diaphragm). In addition, the expression pattern of MyoD-lacZ transgenes in the intercostal and abdominal wall muscles of Myf-5-/- and MyoD-/- embryos suggests that appropriate development of these muscles is dependent on both genes and, therefore, these muscles have a dual embryonic origin (epaxial and hypaxial).  相似文献   

9.
研究通过cDNA末端快速扩增法(RACE)克隆得到团头鲂生长抑制素(MSTN)基因的cDNA全长并分析了MSTN基因在团头鲂胚胎、成鱼组织中表达以及MSTN基因在胚胎中过表达情况。结果表明团头鲂MSTN基因的cDNA全长为2187 bp, ORF(开放阅读框)大小为1128 bp, 编码376个氨基酸。组织逆转录PCR (RT-PCR)结果显示, MSTN基因在肌肉、脑和精巢组织中大量表达, 肝脏、脾脏和卵巢组织中的少量表达, 肠、腮、心、眼和肾组织中的微量表达。胚胎逆转录PCR (RT-PCR)结果显示, 在0—44 hpf胚胎发育阶段, MSTN基因表达量较低; 而在48—52 hpf胚胎发育阶段, MSTN基因表达量逐渐升高。整胚原位杂交(WISH)结果显示, 胚胎发育的16 hpf时期MSTN基因主要在脊索中表达, 胚胎发育的28 hpf和55 hpf时期MSTN基因在脑中表达。MSTN基因过表达结果显示, 胚胎在体节发生期出现前-后轴拉长, 背-腹轴变短; 脊索发生扭曲, 强烈抑制体节发育而导致不分化等现象。研究为后续团头鲂MSTN基因的功能研究及团头鲂分子育种提供相关参考依据。  相似文献   

10.
Exposure of postimplantation rat embryos on days 9, 10, 11, and 12 of gestation to an in vitro heat shock of 43 degrees C for 30 min results in the induction of heat shock proteins (HSPs) in day 9 and 10 embryos, a severely attenuated response in day 11 embryos, and no detectable response in day 12 embryos. The heat shock response in day 9 embryos (presomite stage) is characterized by the synthesis of HSPs with molecular weights of 28-78 kDa. In heat shocked day 10 embryos, two additional HSPs are induced (34 and 82 kDa). In addition, two HSPs present on day 9 are absent on day 10. In day 11 heat shocked embryos, only three HSPs (31, 39, and 69 kDa) are induced, while in day 12 embryos no detectable HSPs are induced. Northern blot analysis of HSP 70 RNA levels indicates that the accumulation of this RNA, but not actin RNA, varies depending on developmental stage at the time of exposure to heat as well as the duration of the heat shock. Day 9 embryos exhibit the most pronounced accumulation of HSP 70 RNA while embryos on days 10-12 exhibit an increasingly attenuated accumulation of HSP 70 RNA, particularly after the more acute exposures (43 degrees C for 30 or 60 min). Thus, the ability to synthesize HSP 70 and to accumulate HSP 70 RNA changes dramatically as rat embryos develop from day 9 to day 12 (presomite to 31-35 somite stages).  相似文献   

11.
It is well known that slow and fast muscles are used for long-term sustained movement and short bursts of activity, respectively, in adult animal behaviors. However, the contribution of the slow and fast muscles in early animal movement has not been thoroughly explored. In wild-type zebrafish embryos, tactile stimulation induces coilings consisting of 1–3 alternating contractions of the trunk and tail at 24 hours postfertilization (hpf) and burst swimming at 48 hpf. But, embryos defective in flightless I homolog (flii), which encodes for an actin-regulating protein, exhibit normal coilings at 24 hpf that is followed by significantly slower burst swimming at 48 hpf. Interestingly, actin fibers are disorganized in mutant fast muscle but not in mutant slow muscle, suggesting that slower swimming at 48 hpf is attributable to defects of the fast muscle tissue. In fact, perturbation of the fast muscle contractions by eliminating Ca2+ release only in fast muscle resulted in normal coilings at 24 hpf and slower burst swimming at 48 hpf, just as flii mutants exhibited. In contrast, specific inactivation of slow muscle by knockdown of the slow muscle myosin genes led to complete loss of coilings at 24 hpf, although normal burst swimming was retained by 48 hpf. These findings indicate that coilings at 24 hpf is mediated by slow muscle only, whereas burst swimming at 48 hpf is executed primarily by fast muscle. It is consistent with the fact that differentiation of fast muscle follows that of slow muscle. This is the first direct demonstration that slow and fast muscles have distinct physiologically relevant contribution in early motor development at different stages.  相似文献   

12.

Background

STARS (STriated muscle Activator of Rho Signaling) is a sarcomeric protein expressed early in cardiac development that acts as an acute stress sensor for pathological remodeling. However the role of STARS in cardiac development and function is incompletely understood. Here, we investigated the role of STARS in heart development and function in the zebrafish model and in vitro.

Methodology and Principal Findings

Expression of zebrafish STARS (zSTARS) first occurs in the somites by the 16 somite stage [17 hours post fertilization (hpf)]. zSTARS is expressed in both chambers of the heart by 48 hpf, and also in the developing brain, jaw structures and pectoral fins. Morpholino-induced knockdown of zSTARS alters atrial and ventricular dimensions and decreases ventricular fractional shortening (measured by high-speed video microscopy), with pericardial edema and decreased or absent circulation [abnormal cardiac phenotypes in 126/164 (77%) of morpholino-injected embryos vs. 0/152 (0%) of control morpholino embryos]. Co-injection of zsrf (serum response factor) mRNA rescues the cardiac phenotype of zSTARS knockdown, resulting in improved fractional shortening and ventricular end-diastolic dimensions. Ectopic over-expression of STARS in vitro activates the STARS proximal promoter, which contains a conserved SRF site. Chromatin immunoprecipitation demonstrates that SRF binds to this site in vivo and the SRF inhibitor CCG-1423 completely blocks STARS proximal reporter activity in H9c2 cells.

Conclusions/Significance

This study demonstrates for the first time that STARS deficiency severely disrupts cardiac development and function in vivo and revealed a novel STARS-SRF feed-forward autoregulatory loop that could play an essential role in STARS regulation and cardiac function.  相似文献   

13.
The most obvious segmental structures in the vertebrate embryo are somites: transient structures that give rise to vertebrae and much of the musculature. In zebrafish, most somitic cells give rise to long muscle fibers that are anchored to intersegmental boundaries. Therefore, this boundary is analogous to the mammalian tendon in that it transduces muscle-generated force to the skeletal system. We have investigated interactions between somite boundaries and muscle fibers. We define three stages of segment boundary formation. The first stage is the formation of the initial epithelial somite boundary. The second "transition" stage involves both the elongation of initially round muscle precursor cells and somite boundary maturation. The third stage is myotome boundary formation, where the boundary becomes rich in extracellular matrix and all muscle precursor cells have elongated to form long muscle fibers. It is known that formation of the initial epithelial somite boundary requires Notch signaling; vertebrate Notch pathway mutants show severe defects in somitogenesis. However, many zebrafish Notch pathway mutants are homozygous viable suggesting that segmentation of their larval and adult body plans at least partially recovers. We show that epithelial somite boundary formation and slow-twitch muscle morphogenesis are initially disrupted in after eight (aei) mutant embryos (which lack function of the Notch ligand, DeltaD); however, myotome boundaries form later ("recover") in a Hedgehog-dependent fashion. Inhibition of Hedgehog-induced slow muscle induction in aei/deltaD and deadly seven (des)/notch1a mutant embryos suggests that slow muscle is necessary for myotome boundary recovery in the absence of initial epithelial somite boundary formation. Because we have previously demonstrated that slow muscle migration triggers fast muscle cell elongation in zebrafish, we hypothesize that migrating slow muscle facilitates myotome boundary formation in aei/deltaD mutant embryos by patterning coordinated fast muscle cell elongation. In addition, we utilized genetic mosaic analysis to show that somite boundaries also function to limit the extent to which fast muscle cells can elongate. Combined, our results indicate that multiple interactions between somite boundaries and muscle fibers mediate zebrafish segmentation.  相似文献   

14.
15.
Stages of embryonic development in the Atlantic cod Gadus morhua   总被引:1,自引:0,他引:1  
The early development of the Atlantic cod, Gadus morhua was studied from fertilization until first-feeding. Multiple families were reared at 7 degrees C and a developmental staging series was prepared using morphological landmarks visible with the light microscope. Stages were named rather than numbered to allow for future additions and broadly grouped into larger time intervals called periods. The most useful staging features were found to be initially cell number, and later in development, somite number. The mean cell cycle time for the first six cleavages was 135 min and the linear regression equation for development of somites(s) over time (t) was s = 0.29t - 18.14. The segmentation period began at 220 h postfertilization (hpf), and unlike some other teleosts, the addition of new somites continued throughout the majority of embryonic development, until just prior to hatching. Hatching occurred at 256 hpf, after which individuals remained motionless at the water's surface, undergoing negative phototaxis only after the first day posthatch. The first-feeding stage was reached at the end of the third day posthatch, subsequent to development of a functional jaw and hindgut. This staging series provides an essential baseline reference for future experiments involving developing cod embryos and for the aquaculture industry.  相似文献   

16.
Patterning events along the anterior-posterior (AP) axis of vertebrate embryos result in the distribution of muscle and bone forming a highly effective functional system. A key aspect of regionalized AP patterning results from variation in the migratory pattern of somite cells along the dorsal-ventral (DV) axis of the body. This occurs as somite cell populations expand around the axis or migrate away from the dorsal midline and cross into the lateral plate. The fate of somitic cells has been intensely studied and many details have been reported about inductive signaling from other tissues that influence somite cell fate and behavior. We are interested in understanding the specific differences between somites in particular AP regions and how these differences contribute to the global pattern of the organism. Using orthotopic transplants of segmental plate between quail and chick embryos, we have mapped the interface of the somitic and lateral plate mesoderm during the formation of the body wall in cervical and thoracic regions. This interface does not change dramatically in the mid-cervical region, but undergoes extensive changes in the thoracic region. Based on this regional mapping and consistent with the extensive literature, we suggest a revised method of classifying regions of the body wall that relies on embryonic cell lineages rather than adult functional criteria.  相似文献   

17.
BACKGROUND: The phenotype of embryos exposed to ethanol is complex and likely due to multiple alterations in developmental pathways. We have previously demonstrated that Sonic hedgehog signaling (Shh‐s) was reduced in both chicken and zebrafish embryos when exposed to ethanol. METHODS: There are many tissues affected by embryonic ethanol exposure, and in this article we explore the development of axial tissues, using zebrafish embryos. We then compare these effects to the phenotypes produced by exposure to two drugs that also inhibit Shh‐s: cyclopamine and forskolin. RESULTS: We found alterations in the development of the notochord and somites produced by all three compounds, although only ethanol produced developmental delay of epiboly. Upon observation of early developing embryos, muscle pioneer cells were completely lost in cyclopamine‐treated embryos, and reduced, but less so, in embryos treated with forskolin and ethanol. Ethanol treatment produced a dose‐dependent reduction in total body length that may be linked to epiboly delay seen earlier during development. Despite the differences between cyclopamine and forskolin, we found that shh mRNA injection rescued the short body length, the alteration in somite shape, and the cyclopia produced by ethanol exposure. CONCLUSIONS: Taken together, each teratogen produced a unique set of phenotypic changes in the body axis, suggesting that each compound affects Shh‐s and also produces a distinctive set of molecular alterations. However, addition of exogenous Shh to ethanol treated zebrafish prevented many of the gross physical phenotypes, suggesting that the suppression of Shh‐s is one of the major effects of ethanol exposure. Birth Defects Research (Part A), 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
I Zusman  A Zimber 《Acta anatomica》1990,138(2):144-149
Effects of secondary bile acids--lithocholic (LCA) and deoxycholic (DCA)--on the in vitro development of early somite (10.5 days old) rat embryos were studied. It was shown that an addition to the culture medium of 0.1 mM LCA (final concentration) resulted in 9% growth-retarded and 12% malformed embryos when the duration of exposure was 24 h. When treatment with LCA was prolonged to 48 h, the rate of growth retardation increased to 18% and that of malformations to 40% versus 0.5% for both parameters observed in controls. This could be interpreted as a reversible or time-dependent effect of LCA on the in vitro development of the mammalian embryo. Culture of embryos in medium with 0.5 mM DCA resulted in 22% of growth retardation and 50% of malformations. DCA in 0.1 mM final concentration had only slight and statistically nonsignificant effects. Retardation of growth development could be demonstrated by a decrease in crown-rump length and the number of somites. Among malformed embryos, abnormalities in the development of the neural tube and exencephaly were the most common types of malformations. Abnormalities as well as growth retardation were accompanied by significant pathological changes in structure and perhaps in function of the endodermal visceral yolk sac cells. It could be suggested that secondary bile acids when present in pathophysiological concentrations can affect the embryonic development by direct inhibitory effects and that these effects may be time and dose dependent.  相似文献   

19.
20.
Induction,germination and shoot development of somatic embryos in cassava   总被引:3,自引:0,他引:3  
Four Indonesian and two Latin-American cassava genotypes (Manihot esculenta Crantz), were evaluated for their ability to develop somatic embryos from young leaf lobes. All genotypes formed somatic embryos but they differed in the frequency of embryos induced. The best genotypes, M. Col 22 and Tjurug, produced germinating embryos (GE) on 81% (22.1 GE/initial leaf lobe) and 46% (4.3 GE/initial leaf lobe) of the cultured leaf lobes, respectively. Up to 57% of the germinating embryos of M. Col 22 and 12% of Tjurug produced either normal or malformed shoots. Most malformed shoots developed into shoots with normal morphology after prolonged culture. All shoots formed roots after transfer to medium without BAP. Roots of all normal and most malformed regenerants had the original ploidy level (2n=36). Regardless of whether the plants were multipliedin vitro (150 plants) or in the greenhouse (30 plants) there were no morphological differences compared to parent plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号