首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agonist stimulation of the β2-adrenergic receptors (β2ARs) leads to their ubiquitination and lysosomal degradation. Inhibition of lysosomal proteases results in the stabilization and retention of internalized full-length β2ARs in the lysosomes, whereas inhibition of proteasomal proteases stabilizes newly synthesized β2ARs in nonlysosomal compartments. Additionally, a lysine-less β2AR (0K-β2AR) that is deficient in ubiquitination and degradation is not sorted to lysosomes unlike the WT β2AR, which is sorted to lysosomes. Thus, lysosomes are the primary sites for the degradation of agonist-activated, ubiquitinated β2ARs. To identify the specific site(s) of ubiquitination required for lysosomal sorting of the β2AR, four mutants, with lysines only in one intracellular domain, namely, loop 1, loop 2, loop 3, and carboxyl tail were generated. All of these receptor mutants coupled to G proteins, recruited β-arrestin2, and internalized just as the WT β2AR. However, only loop 3 and carboxyl tail β2ARs with lysines in the third intracellular loop or in the carboxyl tail were ubiquitinated and sorted for lysosomal degradation. As a complementary approach, we performed MS-based proteomic analyses to directly identify ubiquitination sites within the β2AR. We overexpressed and purified the β2AR from HEK-293 cells with or without prior agonist exposure and subjected trypsin-cleaved β2AR to LC-MS/MS analyses. We identified ubiquitinated lysines in the third intracellular loop (Lys-263 and Lys-270) and in the carboxyl tail (Lys-348, Lys-372, and Lys-375) of the β2AR. These findings introduce a new concept that two distinct domains in the β2AR are involved in ubiquitination and lysosomal degradation, contrary to the generalization that such regulatory mechanisms occur mainly at the carboxyl tails of GPCRs and other transmembrane receptors.  相似文献   

2.
3.
The ankyrin and SOCS (suppressor of cytokine signaling) box (ASB) family of proteins function as the substrate recognition subunit in a subset of Elongin-Cullin-SOCS (ECS) E3 ubiquitin ligases. Despite counting 18 members in humans, the identity of the physiological targets of the Asb proteins remains largely unexplored. To increase our understanding of the function of ASB proteins, we conducted a family-wide SILAC (stable isotope labeling by amino acids in cell culture)-based protein/protein interaction analysis. This investigation led to the identification of novel as well as known ASB-associated proteins like Cullin 5 and Elongins B/C. We observed that several proteins can be bound by more than one Asb protein. The additional exploration of this phenomenon demonstrated that ASB-Cullin 5 complexes can oligomerize and provides evidence that Cullin 5 forms heterodimeric complexes with the Cullin 4a-DDB1 complex. We also demonstrated that ASB11 is a novel endoplasmic reticulum-associated ubiquitin ligase with the ability to interact and promote the ubiquitination of Ribophorin 1, an integral protein of the oligosaccharyltransferase (OST) glycosylation complex. Moreover, expression of ASB11 can increase Ribophorin 1 protein turnover in vivo. In summary, we provide a comprehensive protein/protein interaction data resource that can aid the biological and functional characterization of ASB ubiquitin ligases.  相似文献   

4.
In this study, we report a detailed analysis of the different variants of amyloid-β (Aβ) peptides in the brains and the cerebrospinal fluid from APP23 transgenic mice, expressing amyloid precursor protein with the Swedish familial Alzheimer disease mutation, at different ages. Using one- and two-dimensional gel electrophoresis, immunoblotting, and mass spectrometry, we identified the Aβ peptides Aβ(1-40), -(1-42), -(1-39), -(1-38), -(1-37), -(2-40), and -(3-40) as well as minor amounts of pyroglutamate-modified Aβ (Aβ(N3pE)) and endogenous murine Aβ in brains from 24-month-old mice. Chemical modifications of the N-terminal amino group of Aβ were identified that had clearly been introduced during standard experimental procedures. To address this issue, we additionally applied amyloid extraction in ultrapure water. Clear differences between APP23 mice and Alzheimer disease (AD) brain samples were observed in terms of the relative abundance of specific variants of Aβ peptides, such as Aβ(N3pE), Aβ(1-42), and N-terminally truncated Aβ(2/3-42). These differences to human AD amyloid were also noticed in a related mouse line transgenic for human wild type amyloid precursor protein. Taken together, our findings suggest different underlying molecular mechanisms driving the amyloid deposition in transgenic mice and AD patients.  相似文献   

5.
Lipids are key regulators of brain function and have been increasingly implicated in neurodegenerative disorders including Alzheimer disease (AD). Here, a systems-based approach was employed to determine the lipidome of brain tissues affected by AD. Specifically, we used liquid chromatography-mass spectrometry to profile extracts from the prefrontal cortex, entorhinal cortex, and cerebellum of late-onset AD (LOAD) patients, as well as the forebrain of three transgenic familial AD (FAD) mouse models. Although the cerebellum lacked major alterations in lipid composition, we found an elevation of a signaling pool of diacylglycerol as well as sphingolipids in the prefrontal cortex of AD patients. Furthermore, the diseased entorhinal cortex showed specific enrichment of lysobisphosphatidic acid, sphingomyelin, the ganglioside GM3, and cholesterol esters, all of which suggest common pathogenic mechanisms associated with endolysosomal storage disorders. Importantly, a significant increase in cholesterol esters and GM3 was recapitulated in the transgenic FAD models, suggesting that these mice are relevant tools to study aberrant lipid metabolism of endolysosomal dysfunction associated with AD. Finally, genetic ablation of phospholipase D(2), which rescues the synaptic and behavioral deficits of an FAD mouse model, fully normalizes GM3 levels. These data thus unmask a cross-talk between the metabolism of phosphatidic acid, the product of phospholipase D(2), and gangliosides, and point to a central role of ganglioside anomalies in AD pathogenesis. Overall, our study highlights the hypothesis generating potential of lipidomics and identifies novel region-specific lipid anomalies potentially linked to AD pathogenesis.  相似文献   

6.
Differential cysteine oxidation within mitochondrial Complex I has been quantified in an in vivo oxidative stress model of Parkinson disease. We developed a strategy that incorporates rapid and efficient immunoaffinity purification of Complex I followed by differential alkylation and quantitative detection using sensitive mass spectrometry techniques. This method allowed us to quantify the reversible cysteine oxidation status of 34 distinct cysteine residues out of a total 130 present in murine Complex I. Six Complex I cysteine residues were found to display an increase in oxidation relative to controls in brains from mice undergoing in vivo glutathione depletion. Three of these residues were found to reside within iron-sulfur clusters of Complex I, suggesting that their redox state may affect electron transport function.  相似文献   

7.
Fragile X syndrome (FXS), the most common form of hereditary mental retardation, is caused by a loss-of-function mutation of the Fmr1 gene, which encodes fragile X mental retardation protein (FMRP). FMRP affects dendritic protein synthesis, thereby causing synaptic abnormalities. Here, we used a quantitative proteomics approach in an FXS mouse model to reveal changes in levels of hippocampal synapse proteins. Sixteen independent pools of Fmr1 knock-out mice and wild type mice were analyzed using two sets of 8-plex iTRAQ experiments. Of 205 proteins quantified with at least three distinct peptides in both iTRAQ series, the abundance of 23 proteins differed between Fmr1 knock-out and wild type synapses with a false discovery rate (q-value) <5%. Significant differences were confirmed by quantitative immunoblotting. A group of proteins that are known to be involved in cell differentiation and neurite outgrowth was regulated; they included Basp1 and Gap43, known PKC substrates, and Cend1. Basp1 and Gap43 are predominantly expressed in growth cones and presynaptic terminals. In line with this, ultrastructural analysis in developing hippocampal FXS synapses revealed smaller active zones with corresponding postsynaptic densities and smaller pools of clustered vesicles, indicative of immature presynaptic maturation. A second group of proteins involved in synaptic vesicle release was up-regulated in the FXS mouse model. In accordance, paired-pulse and short-term facilitation were significantly affected in these hippocampal synapses. Together, the altered regulation of presynaptically expressed proteins, immature synaptic ultrastructure, and compromised short-term plasticity points to presynaptic changes underlying glutamatergic transmission in FXS at this stage of development.  相似文献   

8.
Malaria is one of the deadliest infectious diseases worldwide. The most severe form is caused by the eukaryotic protozoan parasite Plasmodium falciparum. Recent studies have highlighted the importance of post-translational regulations for the parasite's progression throughout its life cycle, protein ubiquitylation being certainly one of the most abundant. The specificity of its components and the wide range of biological processes in which it is involved make the ubiquitylation pathway a promising source of suitable targets for anti-malarial drug development. Here, we combined immunofluorescent microscopy, biochemical assays, in silico prediction, and mass spectrometry analysis using the multidimensional protein identification technology, or MudPIT, to describe the P. falciparum ubiquitome. We found that ubiquitin conjugates are detected at every morphological stage of the parasite erythrocytic cycle. Furthermore, we detected that more than half of the parasite's proteome represents possible targets for ubiquitylation, especially proteins found to be present at the most replicative stage of the asexual cycle, the trophozoite stage. A large proportion of ubiquitin conjugates were also detected at the schizont stage, consistent with a cell activity slowdown to prepare for merozoite differentiation and invasion. Finally, for the first time in the human malaria parasite, our results strongly indicate the presence of heterologous mixed conjugations, SUMO/UB. This discovery suggests that sumoylated proteins may be regulated by ubiquitylation in P. falciparum. Altogether, our results present the first stepping stone toward a better understanding of ubiquitylation and its role(s) in the biology of the human malaria parasite.  相似文献   

9.
γ-Secretase plays a pivotal role in the production of neurotoxic amyloid β-peptides (Aβ) in Alzheimer disease (AD) and consists of a heterotetrameric core complex that includes the aspartyl intramembrane protease presenilin (PS). The human genome codes for two presenilin paralogs. To understand the causes for distinct phenotypes of PS paralog-deficient mice and elucidate whether PS mutations associated with early-onset AD affect the molecular environment of mature γ-secretase complexes, quantitative interactome comparisons were undertaken. Brains of mice engineered to express wild-type or mutant PS1, or HEK293 cells stably expressing PS paralogs with N-terminal tandem-affinity purification tags served as biological source materials. The analyses revealed novel interactions of the γ-secretase core complex with a molecular machinery that targets and fuses synaptic vesicles to cellular membranes and with the H+-transporting lysosomal ATPase macrocomplex but uncovered no differences in the interactomes of wild-type and mutant PS1. The catenin/cadherin network was almost exclusively found associated with PS1. Another intramembrane protease, signal peptide peptidase, predominantly co-purified with PS2-containing γ-secretase complexes and was observed to influence Aβ production.  相似文献   

10.
Voltage-gated sodium (Nav) channels initiate action potentials in brain neurons and are primary therapeutic targets for anti-epileptic drugs controlling neuronal hyperexcitability in epilepsy. The molecular mechanisms underlying abnormal Nav channel expression, localization, and function during development of epilepsy are poorly understood but can potentially result from altered posttranslational modifications (PTMs). For example, phosphorylation regulates Nav channel gating, and has been proposed to contribute to acquired insensitivity to anti-epileptic drugs exhibited by Nav channels in epileptic neurons. However, whether changes in specific brain Nav channel PTMs occur acutely in response to seizures has not been established. Here, we show changes in PTMs of the major brain Nav channel, Nav1.2, after acute kainate-induced seizures. Mass spectrometry-based proteomic analyses of Nav1.2 purified from the brains of control and seizure animals revealed a significant down-regulation of phosphorylation at nine sites, primarily located in the interdomain I-II linker, the region of Nav1.2 crucial for phosphorylation-dependent regulation of activity. Interestingly, Nav1.2 in the seizure samples contained methylated arginine (MeArg) at three sites. These MeArgs were adjacent to down-regulated sites of phosphorylation, and Nav1.2 methylation increased after seizure. Phosphorylation and MeArg were not found together on the same tryptic peptide, suggesting reciprocal regulation of these two PTMs. Coexpression of Nav1.2 with the primary brain arginine methyltransferase PRMT8 led to a surprising 3-fold increase in Nav1.2 current. Reciprocal regulation of phosphorylation and MeArg of Nav1.2 may underlie changes in neuronal Nav channel function in response to seizures and also contribute to physiological modulation of neuronal excitability.  相似文献   

11.
Mutations in the Park2 gene, encoding the RING-HECT hybrid E3 ubiquitin ligase parkin, are responsible for a common familial form of Parkinson disease. By mono- and polyubiquitinating target proteins, parkin regulates various cellular processes, including degradation of proteins within the 26 S proteasome, a large multimeric degradation machine. In our attempt to further elucidate the function of parkin, we have identified the proteasomal ubiquitin receptor Rpn13/ADRM1 as a parkin-interacting protein. We show that the N-terminal ubiquitin-like (Ubl) domain of parkin binds directly to the pleckstrin-like receptor for ubiquitin (Pru) domain within Rpn13. Using mutational analysis and NMR, we find that Pru binding involves the hydrophobic patch surrounding Ile-44 in the parkin Ubl, a region that is highly conserved between ubiquitin and Ubl domains. However, compared with ubiquitin, the parkin Ubl exhibits greater than 10-fold higher affinity for the Pru domain. Moreover, knockdown of Rpn13 in cells increases parkin levels and abrogates parkin recruitment to the 26 S proteasome, establishing Rpn13 as the major proteasomal receptor for parkin. In contrast, silencing Rpn13 did not impair parkin recruitment to mitochondria or parkin-mediated mitophagy upon carbonyl cyanide m-chlorophenyl hydrazone-induced mitochondrial depolarization. However, it did delay the clearance of mitochondrial proteins (TIM23, TIM44, and TOM20) and enhance parkin autoubiquitination. Taken together, these findings implicate Rpn13 in linking parkin to the 26 S proteasome and regulating the clearance of mitochondrial proteins during mitophagy.  相似文献   

12.
The type II secretion (T2S) system is responsible for extracellular secretion of a broad range of proteins, including toxins and degradative enzymes that play important roles in the pathogenesis and life cycle of many gram-negative bacteria. In Vibrio cholerae, the etiological agent of cholera, the T2S machinery transports cholera toxin, which induces profuse watery diarrhea, a hallmark of this life-threatening disease. Besides cholera toxin, four other proteins have been shown to be transported by the T2S machinery, including hemagglutinin protease, chitinase, GbpA, and lipase. Here, for the first time, we have applied proteomic approaches, including isotope tagging for relative and absolute quantification coupled with multidimensional liquid chromatography and tandem mass spectrometry, to perform an unbiased and comprehensive analysis of proteins secreted by the T2S apparatus of the V. cholerae El Tor strain N16961 under standard laboratory growth conditions. This analysis identified 16 new putative T2S substrates, including sialidase, several proteins participating in chitin utilization, two aminopeptidases, TagA-related protein, cytolysin, RbmC, three hypothetical proteins encoded by VCA0583, VCA0738, and VC2298, and three serine proteases VesA, VesB, and VesC. Focusing on the initial characterization of VesA, VesB, and VesC, we have confirmed enzymatic activities and T2S-dependent transport for each of these proteases. In addition, analysis of single, double, and triple protease knock-out strains indicated that VesA is the primary protease responsible for processing the A subunit of cholera toxin during in vitro growth of the V. cholerae strain N16961.  相似文献   

13.
Osmotic stress causes profound perturbations of cell functions. Although the adaptive responses required for cell survival upon osmotic stress are being unraveled, little is known about the effects of osmotic stress on ubiquitin-dependent proteolysis. We now report that hyperosmotic stress inhibits proteasome activity by activating p38 MAPK. Osmotic stress increased the level of polyubiquitinated proteins in the cell. The selective p38 inhibitor SB202190 decreased osmotic stress-associated accumulation of polyubiquitinated proteins, indicating that p38 MAPK plays an inhibitory role in the ubiquitin proteasome system. Activated p38 MAPK stabilized various substrates of the proteasome and increased polyubiquitinated proteins. Proteasome preparations purified from cells expressing activated p38 MAPK had substantially lower peptidase activities than control proteasome samples. Proteasome phosphorylation sites dependent on p38 were identified by measuring changes in the extent of proteasome phosphorylation in response to p38 MAPK activation. The residue Thr-273 of Rpn2 is the major phosphorylation site affected by p38 MAPK. The mutation T273A in Rpn2 blocked the proteasome inhibition that is mediated by p38 MAPK. These results suggest that p38 MAPK negatively regulates the proteasome activity by phosphorylating Thr-273 of Rpn2.  相似文献   

14.
Campylobacter jejuni is the major worldwide cause of bacterial gastroenteritis. C. jejuni possesses an extensive repertoire of carbohydrate structures that decorate both protein and non-protein surface-exposed structures. An N-linked glycosylation system encoded by the pgl gene cluster mediates the synthesis of a rigidly conserved heptasaccharide that is attached to protein substrates or released as free oligosaccharide in the periplasm. Removal of N-glycosylation results in reduced virulence and impeded host cell attachment. Since the N-glycan is conserved, the N-glycosylation system is also an attractive option for glycoengineering recombinant vaccines in Escherichia coli. To determine whether non-canonical N-glycans are present in C. jejuni, we utilized high throughput glycoproteomics to characterize C. jejuni JHH1 and identified 93 glycosylation sites, including 34 not previously reported. Interrogation of these data allowed the identification of a phosphoethanolamine (pEtN)-modified variant of the N-glycan that was attached to multiple proteins. The pEtN moiety was attached to the terminal GalNAc of the canonical N-glycan. Deletion of the pEtN transferase eptC removed all evidence of the pEtN-glycan but did not globally influence protein reactivity to patient sera, whereas deletion of the pglB oligosaccharyltransferase significantly reduced reactivity. Transfer of eptC and the pgl gene cluster to E. coli confirmed the addition of the pEtN-glycan to a target C. jejuni protein. Significantly reduced, yet above background levels of pEtN-glycan were also observed in E. coli not expressing eptC, suggesting that endogenous E. coli pEtN transferases can mediate the addition of pEtN to N-glycans. The addition of pEtN must be considered in the context of glycoengineering and may alter C. jejuni glycan-mediated structure-function interactions.  相似文献   

15.
MALDI-imaging MS is a new molecular imaging technology for direct in situ analysis of thin tissue sections. Multiple analytes can be monitored simultaneously without prior knowledge of their identities and without the need for target-specific reagents such as antibodies. Imaging MS provides important insights into biological processes because the native distributions of molecules are minimally disturbed, and histological features remain intact throughout the analysis. A wide variety of molecules can be imaged, including proteins, peptides, lipids, drugs, and metabolites. Several specific examples are presented to highlight the utility of the technology.  相似文献   

16.
The lysine methyltransferase (KMT) SETMAR is implicated in the response to and repair of DNA damage, but its molecular function is not clear. SETMAR has been associated with dimethylation of histone H3 lysine 36 (H3K36) at sites of DNA damage. However, SETMAR does not methylate H3K36 in vitro. This and the observation that SETMAR is not active on nucleosomes suggest that H3K36 methylation is not a physiologically relevant activity. To identify potential non-histone substrates, we utilized a strategy on the basis of quantitative proteomic analysis of methylated lysine. Our approach identified lysine 130 of the mRNA splicing factor snRNP70 as a SETMAR substrate in vitro, and we show that the enzyme primarily generates monomethylation at this position. Furthermore, we show that SETMAR methylates snRNP70 Lys-130 in cells. Because snRNP70 is a key early regulator of 5′ splice site selection, our results suggest a model in which methylation of snRNP70 by SETMAR regulates constitutive and/or alternative splicing. In addition, the proteomic strategy described here is broadly applicable and is a promising route for large-scale mapping of KMT substrates.  相似文献   

17.
To enhance understanding of the metabolic indicators of type 2 diabetes mellitus (T2DM) disease pathogenesis and progression, the urinary metabolomes of well characterized rhesus macaques (normal or spontaneously and naturally diabetic) were examined. High-resolution ultra-performance liquid chromatography coupled with the accurate mass determination of time-of-flight mass spectrometry was used to analyze spot urine samples from normal (n = 10) and T2DM (n = 11) male monkeys. The machine-learning algorithm random forests classified urine samples as either from normal or T2DM monkeys. The metabolites important for developing the classifier were further examined for their biological significance. Random forests models had a misclassification error of less than 5%. Metabolites were identified based on accurate masses (<10 ppm) and confirmed by tandem mass spectrometry of authentic compounds. Urinary compounds significantly increased (p < 0.05) in the T2DM when compared with the normal group included glycine betaine (9-fold), citric acid (2.8-fold), kynurenic acid (1.8-fold), glucose (68-fold), and pipecolic acid (6.5-fold). When compared with the conventional definition of T2DM, the metabolites were also useful in defining the T2DM condition, and the urinary elevations in glycine betaine and pipecolic acid (as well as proline) indicated defective re-absorption in the kidney proximal tubules by SLC6A20, a Na(+)-dependent transporter. The mRNA levels of SLC6A20 were significantly reduced in the kidneys of monkeys with T2DM. These observations were validated in the db/db mouse model of T2DM. This study provides convincing evidence of the power of metabolomics for identifying functional changes at many levels in the omics pipeline.  相似文献   

18.
We report that the production of hydrogen peroxide by radical chain reductions of molecular oxygen into water in buffers leads to hinge degradation of a human IgG1 under thermal incubation conditions. The production of the hydrogen peroxide can be accelerated by superoxide dismutase or redox active metal ions or inhibited by free radical scavengers. The hydrogen peroxide production rate correlates well with the hinge cleavage. In addition to radical reaction mechanisms described previously, new degradation pathways and products were observed. These products were determined to be generated via radical reactions initiated by electron transfer and addition to the interchain disulfide bond between Cys(215) of the light chain and Cys(225) of the heavy chain. Decomposition of the resulting disulfide bond radical anion breaks the C-S bond at the side chain of Cys, converting it into dehydroalanine and generating a sulfur radical adduct at its counterpart. The hydrolysis of the unsaturated dehydropeptides removes Cys and yields an amide at the C terminus of the new fragment. Meanwhile, the competition between the carbonyl (-C(α)ONH-) and the side chain of Cys allows an electron transfer to the α carbon, forming a new intermediate radical species (-(·)C(α)(O(-))NH-) at Cys(225). Dissociative deamidation occurs along the N-C(α) bond, resulting in backbone cleavage. Given that hydrogen peroxide is a commonly observed product of thermal stress and plays a role in mediating the unique degradation of an IgG1, strategies for improving stability of human antibody therapeutics are discussed.  相似文献   

19.
During inflammatory processes the extracellular matrix (ECM) is extensively remodeled, and many of the constituent components are released as proteolytically cleaved fragments. These degradative processes are better documented for inflammatory joint diseases than tendinopathy even though the pathogenesis has many similarities. The aims of this study were to investigate the proteomic composition of injured tendons during early and late disease stages to identify disease-specific cleavage patterns of the ECM protein cartilage oligomeric matrix protein (COMP). In addition to characterizing fragments released in naturally occurring disease, we hypothesized that stimulation of tendon explants with proinflammatory mediators in vitro would induce fragments of COMP analogous to natural disease. Therefore, normal tendon explants were stimulated with IL-1β and prostaglandin E2, and their effects on the release of COMP and its cleavage patterns were characterized. Analyses of injured tendons identified an altered proteomic composition of the ECM at all stages post injury, showing protein fragments that were specific to disease stage. IL-1β enhanced the proteolytic cleavage and release of COMP from tendon explants, whereas PGE2 had no catabolic effect. Of the cleavage fragments identified in early stage tendon disease, two fragments were generated by an IL-1-mediated mechanism. These fragments provide a platform for the development of neo-epitope assays specific to injury stage for tendon disease.  相似文献   

20.
Hyaluronan is a component of the extracellular matrix, which affects tissue homeostasis. In this study, we investigated the regulatory mechanisms of one of the hyaluronan-synthesizing enzymes, HAS2. Ectopic expression of Flag- and 6myc-HAS2 in COS-1 cells followed by immunoprecipitation and immunoblotting revealed homodimers; after co-transfection with Flag-HAS3, also heterodimers were seen. Furthermore, the expressed HAS2 was ubiquitinated. We identified one acceptor site for ubiquitin on lysine residue 190. Mutation of this residue led to inactivation of the enzymatic activity of HAS2. Interestingly, K190R-mutated HAS2 formed dimers with wt HAS2 and quenched the activity of wt HAS2, thus demonstrating a functional role of the dimeric configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号