首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD1d-restricted invariant NKT (iNKT) cells play important regulatory roles in various immune responses, including antitumor immune responses. Previous studies have demonstrated quantitative and qualitative defects in iNKT cells of cancer patients, and these defects are clinically relevant as they are associated with poor prognosis. In this study we demonstrate that defects in the iNKT cell population can, at least in part, be attributed to defective interactions between iNKT cells and CD1d-expressing circulating myeloid dendritic cells (mDC), as mDC of patients with advanced melanoma and renal cell cancer reduced the activation and Th1 cytokine production of healthy donor-derived iNKT cells. Interestingly, this reduced activation of iNKT cells was restricted to patients with low circulating iNKT cell numbers and could be reversed by IL-12 and in part by the neutralization of TGF-beta, but it was further reduced by the neutralization of IL-10 in vitro. Additional experiments revealed discordant roles for TGF-beta and IL-10 on human iNKT cells, because TGF-beta suppressed iNKT cell activation and proliferation and IFN-gamma production while IL-10 was identified as a cytokine involved in stimulating the activation and expansion of iNKT cells that could subsequently suppress NK cell and T cell responses.  相似文献   

2.
Bone marrow-derived myeloid progenitor cells are dependent on the presence of cytokines such as interleukin-3 (IL-3) for their survival. The withdrawal of IL-3 from IL-3-dependent myeloid progenitors results in death via an apoptotic program. Previous studies have shown that IL-3 withdrawal induces the activities of caspase proteases. However, the molecular identities of myeloid progenitor caspases have not been determined. In this study, we used an affinity labeling reagent (biotin-YVAD-acyloxymethyl ketone) that binds to processed active caspase subunits, to study caspase activation in 32D and FDCP-1 myeloid progenitor cells. After IL-3 withdrawal, we detected affinity labeling of caspase subunits of 20, 17, and 16 kDa in both cell lines. Surprisingly, affinity labeling of the 20- and 17-kDa proteins, but not the 16-kDa protein, was also detected in healthy cells maintained in the presence of IL-3. By contrast, in cytokine-independent cell lines, affinity labeling of caspase subunits was detected only after treatment with an apoptotic stimulus. Immunoblotting experiments showed that caspase-3 constitutes at least a portion of the 20- and 17-kDa affinity-labeled proteins detected in the myeloid progenitor cell lines. Taken together, these data provide direct evidence of caspase activation in cytokine-dependent myeloid progenitors, and suggest that unique apoptotic pathways may exist in these cells.  相似文献   

3.
Invariant NKT (iNKT) cells play an effector/adjuvant function during antimicrobial and antitumoral immunity and a regulatory role to induce immune tolerance and prevent autoimmunity. iNKT cells that differentially modulate adaptive immunity do not bear a unique phenotype and/or specific cytokine secretion profile, thus opening questions on how a single T cell subset can exert opposite immunological tasks. In this study, we show that iNKT cells perform their dual roles through a single mechanism of action relying on the cognate interaction with myeloid dendritic cells (DCs) and leading to opposite effects depending on the presence of other maturation stimuli simultaneously acting on DCs. The contact of murine purified iNKT cells with immature autologous DCs directly triggers the tolerogenic maturation of DCs, rendering them able to induce regulatory T cell differentiation and prevent autoimmune diabetes in vivo. Conversely, the interaction of the same purified iNKT cells with DCs, in the presence of simultaneous TLR4 stimulation, significantly enhances proinflammatory DC maturation and IL-12 secretion. The different iNKT cell effects are mediated through distinct mechanisms and activation of different molecular pathways within the DC: CD1d signaling and activation of the ERK1/2 pathway for the tolerogenic action, and CD40-CD40L interaction and NF-κB activation for the adjuvant effect. Our data suggest that the DC decision to undergo proinflammatory or tolerogenic maturation results from the integration of different signals received at the time of iNKT cell contact and could have important therapeutic implications for exploiting iNKT cell adjuvant/regulatory properties in autoimmune diseases, infections, and cancer.  相似文献   

4.
Va14Ja18 natural T (iNKT) cells are innate, immunoregulatory lymphocytes that recognize CD1d-restricted lipid Ags such as alpha-galactosylceramide (alpha GalCer). The immunoregulatory functions of iNKT cells are dependent upon either IFN-gamma or IL-4 production by these cells. We hypothesized that alpha GalCer presentation by different CD1d-positive cell types elicits distinct iNKT cell functions. In this study we report that dendritic cells (DC) play a critical role in alpha GalCer-mediated activation of iNKT cells and subsequent transactivation of NK cells. Remarkably, B lymphocytes suppress DC-mediated iNKT and NK cell activation. Nevertheless, alpha GalCer presentation by B cells elicits low IL-4 responses from iNKT cells. This finding is particularly interesting because we demonstrate that NOD DC are defective in eliciting iNKT cell function, but their B cells preferentially activate this T cell subset to secrete low levels of IL-4. Thus, the differential immune outcome based on the type of APC that displays glycolipid Ags in vivo has implications for the design of therapies that harness the immunoregulatory functions of iNKT cells.  相似文献   

5.
It has been reported that costimulatory molecules, CD80/86-CD28 and CD154-CD40, critically contribute to activation of CD1d-restricted invariant NKT (iNKT) cells. Here we have demonstrated that ICOS, a new member of the CD28 family, plays a substantial role in iNKT cell activation. iNKT cells constitutively expressed ICOS as well as CD28 independently, and ICOS expression was further up-regulated 2-3 days after alpha-galactosylceramide (alpha-GalCer) treatment. Blockade of ICOS-mediated costimulation by administration of anti-ICOS ligand (B7RP-1) mAb or by ICOS gene knockout substantially inhibited alpha-GalCer-induced IFN-gamma and IL-4 production, cytotoxic activity, and anti-metastatic effect. Moreover, blockade of both B7RP-1-ICOS and CD80/86-CD28 interactions mostly abolished the alpha-GalCer-induced immune responses. These findings indicate that iNKT cell activation is regulated by CD28 and IOCS independently.  相似文献   

6.
The fate of invariant NKT (iNKT) cells following activation remains controversial and unclear. We systemically examined how iNKT cells are regulated following TCR-dependent and -independent activation with α-galactosylceramide (αGC) or IL-18 plus IL-12, respectively. Our studies reveal activation by αGC or IL-18 plus IL-12 induced transient depletion of iNKT cells exclusively in the liver that was independent of caspase 3-mediated apoptosis. The loss of iNKT cells was followed by repopulation and expansion of phenotypically distinct cells via different mechanisms. Liver iNKT cell expansion following αGC, but not IL-18 plus IL-12, treatment required an intact spleen and IFN-γ. Additionally, IL-18 plus IL-12 induced a more prolonged expansion of liver iNKT cells compared with αGC. iNKT cells that repopulate the liver following αGC had higher levels of suppressive receptors PD-1 and Lag3, whereas those that repopulate the liver following IL-18 plus IL-12 had increased levels of TCR and ICOS. In contrast to acute treatment that caused a transient loss of iNKT cells, chronic αGC or IL-18 plus IL-12 treatment caused long-term systemic loss requiring an intact thymus for repopulation of the liver. This report reveals a previously undefined role for the liver in the depletion of activated iNKT cells. Additionally, TCR-dependent and -independent activation differentially regulate iNKT cell distribution and phenotype. These results provide new insights for understanding how iNKT cells are systemically regulated following activation.  相似文献   

7.
Invariant CD1d-restricted NKT (iNKT) cells play important roles in generating protective immune responses against infections. In this study, we have investigated the role of human iNKT cells in HSV-1 infection and their interaction with epidermal keratinocytes. These cells express CD1d and are the primary target of the virus. Keratinocytes loaded with α-galactosyl ceramide (α-GalCer) could stimulate IFN-γ production and CD25 upregulation by iNKT cells. However, both α-GalCer-dependent and cytokine-dependent activation of iNKT cells was impaired after coculture with HSV-1-infected cells. Notably, CD1d downregulation was not observed on infected keratinocytes, which were also found to inhibit TCR-independent iNKT cell activation. Further examination of the cytokine profile of iNKT-keratinocyte cocultures showed inhibition of IFN-γ, IL-5, IL-10, IL-13, and IL-17 secretion but upregulation of IL-4 and TNF-α after the infection. Moreover, cell-to-cell contact between infected keratinocytes and iNKT cells was required for the inhibition of activation, as the cell-free supernatants containing virus did not affect activation. Productive infection of iNKT cells was however not required for the inhibitory effect. After coculture with infected cells, iNKT cells were no longer responsive to further stimulation with α-GalCer-loaded CD1d-expressing cells. We found that exposure to HSV-1-infected cells resulted in impaired TCR signaling downstream of ZAP70. Additionally, infected cells upregulated the expression of the negative T cell regulator, galectin-9; however, blocking experiments indicated that the impairment of iNKT cell responses was independent of galectin-9. Thus, interference with activation of human iNKT cells by HSV-1 may represent a novel immunoevasive strategy used by the virus to avoid immune clearance.  相似文献   

8.
The regulatory function of invariant NKT (iNKT) cells for tolerance induction and prevention of autoimmunity is linked to a specific cytokine profile that comprises the secretion of type 2 cytokines like IL-4 and IL-10 (NKT2 cytokine profile). The mechanism responsible for iNKT cell differentiation toward a type 2 phenotype is unknown. Herein we show that costimulatory signals provided by the surface receptor signaling lymphocytic activation molecule (SLAM) on myeloid dendritic cells (mDC) to iNKT cells is crucial for NKT2 orientation. Additionally, we demonstrate that the impaired acquisition of an NKT2 cytokine phenotype in nonobese diabetic (NOD) mice that spontaneously develop autoimmune diabetes is due to defective SLAM-induced signals generated by NOD mDC. Mature mDC of C57BL/6 mice express SLAM and induce C57BL/6 or NOD iNKT cells to acquire a predominant NKT2 cytokine phenotype in response to antigenic stimulation with the iNKT cell-specific Ag, the alpha-galactosylceramide. In contrast, mature NOD mDC express significantly lower levels of SLAM and are unable to promote GATA-3 (the SLAM-induced intracellular signal) up-regulation and IL-4/IL-10 production in iNKT cells from NOD or C57BL/6 mice. NOD mice carry a genetic defect of the Slamf1 gene that is associated with reduced SLAM expression on double-positive thymocytes and altered iNKT cell development in the thymus. Our data suggest that the genetic Slamf1 defect in NOD mice also affects SLAM expression on other immune cells such as the mDC, thus critically impairing the peripheral differentiation of iNKT cells toward a regulatory NKT2 type.  相似文献   

9.
Why clinicians should be interested in interleukin-3   总被引:2,自引:0,他引:2  
Interleukin-3 (IL-3), a product of activated immune cells has recently been cloned and introduced in preclinical and clinical trials. The biological target-cell spectrum of IL-3 is broad and includes progenitor cells of various hematopoietic lineages as well as multiple stages of stem cell differentiation. IL-3 also induces growth of most primitive hemopoietic progenitors (CFU-blast). Synergistic effects on growth of myeloid cells (i.e. macrophages, eosinophils and blood basophils) are obtained by sequential use of IL-3 and later-acting myelopoietic cytokines. In addition, IL-3 supports terminal maturation, prolongs survival and enhances the functional properties of myeloid cells through high-affinity binding sites. In vivo administration of IL-3 is followed by an increase in peripheral white blood cell counts as well as by an increase in the number of circulating progenitor cells giving rise to mature hemopoietic cells in response to more lineage-restricted growth factors. IL-3 also regulates growth of leukemic cells and primes them to become more sensitive to cell cycle specific cytotoxic drugs. IL-3 apparently represents a novel and unique hemopoietic growth factor. Its clinical use should offer new strategies in the treatment of cytopenia, leukemic disease and in stem cell transplantation.  相似文献   

10.
Hemopoiesis is regulated in part by survival/apoptosis of hemopoietic stem/progenitor cells. Exogenously added stromal cell-derived factor-1 ((SDF-1)/CXC chemokine ligand (CXCL)12) enhances survival/antiapoptosis of myeloid progenitor cells in vitro. To further evaluate SDF-1/CXCL12 effects on progenitor cell survival, transgenic mice endogenously expressing SDF-1/CXCL12 under a Rous sarcoma virus promoter were produced. Myeloid progenitors (CFU-granulocyte-macrophage, burst-forming unit-erythroid, CFU-granulocyte-erythrocyte-megakaryocyte-monocyte) from transgenic mice were studied for in vitro survival in the context of delayed addition of growth factors. SDF-1-expressing transgenic myeloid progenitors were enhanced in survival and antiapoptosis compared with their wild-type littermate counterparts. Survival-enhancing effects were due to release of low levels of SDF-1/CXCL12 and mediated through CXCR4 and G(alpha)i proteins as determined by ELISA, an antagonist to CXCR4, Abs to CXCR4 and SDF-1, and pertussis toxin. Transgenic effects of low SDF-1/CXCR4 may be due to synergy of SDF-1/CXCL12 with other cytokines; low SDF-1/CXCL12 synergizes with low concentrations of other cytokines to enhance survival of normal mouse myeloid progenitors. Consistent with in vitro results, progenitors from SDF-1/CXCL12 transgenic mice displayed enhanced marrow and splenic myelopoiesis: greatly increased progenitor cell cycling and significant increases in progenitor cell numbers. These results substantiate survival effects of SDF-1/CXCL12, now extended to progenitors engineered to endogenously produce low levels of this cytokine, and demonstrate activity in vivo for SDF-1/CXCL12 in addition to cell trafficking.  相似文献   

11.
12.
13.
Although invariant NKT (iNKT) cells play a regulatory role in the pathogenesis of autoimmune diseases and allergy, an initial trigger for their regulatory responses remains elusive. In this study, we report that a proportion of human CD4+ iNKT cell clones produce enormous amounts of IL-5 and IL-13 when cocultured with CD1d+ APC in the presence of IL-2. Such IL-5 bias was never observed when we stimulated the same clones with alpha-galactosylceramide or anti-CD3 Ab. Suboptimal TCR stimulation by plate-bound anti-CD3 Ab was found to mimic the effect of CD1d+ APC, indicating the role of TCR signaling for selective induction of IL-5. Interestingly, DNA microarray analysis identified IL-5 and IL-13 as the most highly up-regulated genes, whereas other cytokines produced by iNKT cells, such as IL-4 and IL-10, were not significantly induced. Moreover, iNKT cells from BALB/c mice showed similar IL-5 responses after stimulation with IL-2 ex vivo or in vivo. The iNKT cell subset producing IL-5 and IL-13 could play a major role in the development of allergic disease or asthma and also in the immune regulation of Th1 inflammation.  相似文献   

14.
CD1d-restricted invariant NKT (iNKT) cells can enhance immunity to cancer or prevent autoimmunity, depending on the cytokine profile secreted. Antitumor effects of the iNKT cell ligand alpha-galactosylceramide (alphaGC) and iNKT cell adoptive transfer have been demonstrated in various tumor models. Together with reduced numbers of iNKT cells in cancer patients, which have been linked to poor clinical outcome, these data suggest that cancer patients may benefit from therapy aiming at iNKT cell proliferation and activation. Herein we present results of investigations on the effects of human iNKT cells on Ag-specific CTL responses. iNKT cells were expanded using alphaGC-pulsed allogeneic DC derived from the acute myeloid leukemia cell line MUTZ-3, transduced with CD1d to enhance iNKT cell stimulation, and with IL-12 to stimulate type 1 cytokine production. Enhanced activation and increased IFN-gamma production was observed in iNKT cells, irrespective of CD4 expression, upon stimulation with IL-12-overexpressing dendritic cells. IL-12-stimulated iNKT cells strongly enhanced the MART-1 (melanoma Ag recognized by T cell 1)-specific CD8(+) CTL response, which was dependent on iNKT cell-derived IFN-gamma. Furthermore, autologous IL-12-overexpressing dendritic cells, loaded with Ag as well as alphaGC, was superior in stimulating both iNKT cells and Ag-specific CTL. This study shows that IL-12-overexpressing allogeneic dendritic cells expand IFN-gamma-producing iNKT cells, which may be more effective against tumors in vivo. Furthermore, the efficacy of autologous Ag-loaded DC vaccines may well be enhanced by IL-12 overexpression and loading with alphaGC.  相似文献   

15.
Osteoclasts (OCs) are large, multinucleated bone resorbing cells originating from the bone marrow myeloid lineage, and share a common progenitor with macrophages and dendritic cells. Bone marrow cells (BMCs) are a common source for in vitro osteoclastogenesis assays but are a highly heterogeneous mixture of cells. Protocols for in vitro osteoclastogenesis vary considerably thus hindering interpretation and comparison of results between studies. Macrophage colony-stimulating factor (M-CSF) pretreatment is commonly used to expand OC progenitors (OCPs) in BMC cultures before in vitro differentiation. However, the failure of osteoclastogenesis of M-CSF primed bone marrow myeloid blasts has been reported. In this study, we used a simple method of differential adherence to plastic to enrich OCP from mouse BMCs. We found that M-CSF pretreatment of plastic-adherent BMCs (adBMCs) increased the number of CD11b-F4/80+ macrophages and decreased the number of CD11b+ monocytes resulting in decreased OC formation. M-CSF pretreatment of purified c-Kit+ progenitors weakly inhibited OC formation, whereas M-CSF pretreatment of purified c-Kit-CD11b+ progenitors promoted the formation of large OC. M-CSF pretreatment increased the proliferation of both purified c-Kit+ and c-Kit-CD11b+ cells and increased the percentage of CD11b-F4/80+ cells from c-Kit+ progenitors. In addition, M-CSF pretreatment increased the percentage of CD11b+ F4/80− cells from purified c-Kit-CD11b+ cells. M-CSF pretreatment increased the percentage of CD14 + CD16 + intermediate monocytes and subsequent OC formation from human 2adBMCs, and increased OC formation of purified CD14 + cells. Together, these results indicate that in vitro OCP expansion in the presence of M-CSF and bone marrow stromal cells is dependent upon the developmental stage of myeloid cells, in which M-CSF favors macrophage differentiation of multipotent progenitors, promotes monocyte maturation and supports differentiation of late-stage OCP cells.  相似文献   

16.
Invariant natural killer T (iNKT) cells are activated during infection, but how they limit microbial growth is unknown in most cases. We investigated how iNKT cells suppress intracellular Mycobacterium tuberculosis (Mtb) replication. When co-cultured with infected macrophages, iNKT cell activation, as measured by CD25 upregulation and IFNγ production, was primarily driven by IL-12 and IL-18. In contrast, iNKT cell control of Mtb growth was CD1d-dependent, and did not require IL-12, IL-18, or IFNγ. This demonstrated that conventional activation markers did not correlate with iNKT cell effector function during Mtb infection. iNKT cell control of Mtb replication was also independent of TNF and cell-mediated cytotoxicity. By dissociating cytokine-driven activation and CD1d-restricted effector function, we uncovered a novel mediator of iNKT cell antimicrobial activity: GM-CSF. iNKT cells produced GM-CSF in vitro and in vivo in a CD1d-dependent manner during Mtb infection, and GM-CSF was both necessary and sufficient to control Mtb growth. Here, we have identified GM-CSF production as a novel iNKT cell antimicrobial effector function and uncovered a potential role for GM-CSF in T cell immunity against Mtb.  相似文献   

17.
IL-10 is well known to be a potent inhibitor of the synthesis of proinflammatory cytokines, but noninflammatory hemopoietic cells also express IL-10Rs. Here we show that IL-10 directly affects progenitor myeloid cells by protecting them from death following the removal of growth factors. Murine factor-dependent cell progenitors cultured in the absence of growth factors were 43 +/- 1% apoptotic after 12 h. Addition of IL-10 at a concentration as low as 100 pg/ml significantly reduced the apoptotic population to 32 +/- 3%. At 10 ng/ml, IL-10 caused a 4-fold reduction in the apoptotic population (11 +/- 1%). The anti-apoptotic activity of IL-10 was significantly inhibited with a neutralizing IL-10R Ab. Factor-dependent cell progenitor promyeloid cells expressed functional IL-10Rs, as assessed by precipitation of a 110-kDa protein with an Ab to the IL-10R and by the ability of IL-10 to activate Jak1 and Tyk2 and to phosphorylate tyrosine 705 on Stat-3. IL-10 increased tyrosyl phosphorylation of insulin receptor substrate-2 and stimulated the enzymatic activity of both phosphatidylinositol 3'-kinase and Akt. The anti-apoptotic activity of IL-10 was blocked by inhibition of phosphatidylinositol 3'-kinase. Wortmannin and LY294002 also totally inhibited activation of extracellular signal-related kinase (ERK)1/2 by IL-10. Direct inhibition of ERK1/2 with the mitogen-activated protein kinase/ERK kinase inhibitor PD98059 partially, but significantly, impaired the anti-apoptotic activity of IL-10. These data establish that activation of the IL-10R promotes survival of progenitor myeloid cells. This survival-promoting activity is totally due to IL-10 stimulating the insulin receptor substrate-2/PI 3-kinase/Akt pathway, which increases the anti-apoptotic activity of ERK1/2.  相似文献   

18.
Invariant NK T (iNKT) cells are a subset of innate/memory lymphocytes that recognize lipid Ags presented by CD1d-expressing APCs such as dendritic cells (DCs). Upon primary stimulation through their TCR, iNKT cells promptly produce large amounts of IFN-gamma and/or IL-4 that play critical roles in the regulation of innate and adaptive immune responses. To date, the role of environmental factors on iNKT cell functions has been poorly investigated. In this study, we addressed the question of whether PGD2, a potent eicosanoid lipid mediator involved in immune responses and inflammation, could be important in DC/iNKT cell cross-talk. We show that PGD2 dramatically reduced the production of IFN-gamma, but not IL-4, by iNKT cells in response to the superagonist alpha-galactosylceramide (alpha-GalCer) both in vitro and in vivo. This effect is mediated by the D prostanoid receptor 1 (DP1) expressed by DCs and iNKT cells and requires protein kinase A activation. We also report that PGD2 and BW245C (a selective DP1 agonist) reduce the protective effects of alpha-GalCer in B16F10-induced melanoma metastasis, an effect that depends on IFN-gamma production by iNKT cells. As a whole, these data reveal novel pathways regulating iNKT cell biologic functions and confirm the immunoregulatory roles of PGD2 on the innate response.  相似文献   

19.
IL-6 is a differentiation factor for M1 and WEHI-3B myeloid leukemic cells   总被引:3,自引:0,他引:3  
IL-6 has multiple biologic activities in different cell systems including both the ability to support cell proliferation and to induce differentiation. We reported previously the isolation and functional expression of a mouse IL-6 (mIL-6) cDNA clone derived from bone marrow stromal cells. In this paper, we show that mIL-6 is a potent inducer of terminal macrophage differentiation for a mouse myeloid leukemic cell line, M1. Addition of mIL-6 to cultures of M1 cells rapidly inhibits their proliferation and induces phagocytic activity and morphologic changes characteristic of mature macrophages. These phenotypic changes are accompanied at the molecular level by a decrease in proto-oncogene c-myc mRNA accumulation and increases in Fc gamma R, proto-oncogenes c-fos and c-fms (CSF-1R) mRNA expression. Furthermore, IL-6 enhances the expression of Fc gamma R and c-fms in differentiation-responsive D+, but not unresponsive D- sublines of mouse myelomonocytic leukemic WEHI-3B cells. Together with our previous observation that IL-6 stimulates colony formation by normal myeloid progenitors, these results strongly suggest an important regulatory role for IL-6 in myeloid cell growth and differentiation.  相似文献   

20.
IL-12 is essential for invariant NKT (iNKT) cells because it can maintain a functionally active population and promote a cytokine profile that is assumed to be mainly of the pro-Th1 type. We used the murine concanavalin A (Con A)-induced hepatitis model, in which iNKT cells, IL-12, IL-4, and IFN-gamma are equally requisite, to reevaluate this issue. We demonstrate that IL-12 interacts directly with iNKT cells, contributes to their recruitment to the liver, and enhances their IL-4 production, which is essential for disease onset. IL-12-deficient mice were less susceptible to experimental hepatitis and their iNKT cells produced less IL-4 than their wild-type counterpart. A normal response could be restored by IL-12 injection, revealing its importance as endogenous mediator. In accordance with this observation, we found that iNKT cells expressed the IL-12R constitutively, in contrast to conventional T cells. Furthermore, the physiological relevance of our data is supported by the lower susceptibility to disease induction of NOD mice, known for their inherent functional and numerical abnormalities of iNKT cells associated with decreased iNKT cell-derived IL-4 production and low IL-12 secretion. Taken together, our findings provide the first evidence that IL-12 can enhance the immune response through increased IL-4 production by iNKT cells, underscoring once more the functional plasticity of this subset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号