首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian-regulated secretion is absolutely dependent on four evolutionarily conserved proteins: three SNARE proteins and munc18. Dissecting the functional outcomes of the spatially organized protein interactions between these factors has been difficult because of the close interrelationship between different binding modes. Here, we investigated the spatial distribution of single munc18 molecules at the plasma membrane of cells and the underlying interactions between syntaxin and munc18. Disruption of munc18 binding to the N-terminal peptide motif of syntaxin did not alter munc18 localization on the plasma membrane but had a pronounced influence on the behavior of secretory vesicles and their likelihood to undergo fusion. We therefore conclude that interaction with the syntaxin N-peptide can confer differential release probabilities to secretory vesicles and may contribute to the delineation of secretory vesicle pools.  相似文献   

2.
The Q-SNARE syntaxin 1 is a central component of the synaptic membrane fusion machinery. Syntaxin probably interacts with multiple proteins during synaptic vesicle exocytosis. In vitro, the tightest binding partners for syntaxin 1 are other SNAREs (synaptobrevin/VAMP and SNAP-25) and munc18-1 (also known as rbsec1/nsec1). Recent studies on Drosophila syntaxin led to the surprising finding that a syntaxin mutant which does not bind the munc18-homolog Rop nevertheless functionally substitutes for wild-type syntaxin in membrane fusion (Wu et al., Neuron 23, 593-605, 1999). This observation suggested that syntaxin 1 binding to munc18-1 is not essential for fusion, a puzzling conclusion in view of the tight binding of munc18 and syntaxin homologs in all organisms. To address this issue, we have now reinvestigated the interaction of syntaxin with munc18 and Rop. We find that the syntaxin sequence that was mutated in the Drosophila studies is not essential for munc18/Rop binding, and that the mutant is in fact able to bind to munc18/Rop. Thus the fact that the mutant syntaxin rescues release cannot be used as an argument that munc18 binding is not essential. In addition to munc18 and SNAREs, several other proteins have been suggested to interact with various domains of syntaxin 1, notably the calcium-sensor synaptotagmin and the vesicle protein CSP. Our results confirm that the SNARE motif in syntaxin binds to synaptotagmin, but this interaction does not require the very C-terminus of the motif. Interestingly, binding of synaptotagmin appears to be decreased in the closed conformation of syntaxin. In contrast, no interaction of CSP with syntaxin was detected even under low-stringency conditions. Our data suggest 1., that assays measuring protein/protein interactions that involve syntaxin may be more difficult to evaluate than is often assumed because of the sticky nature of the proteins involved, and 2., that it is currently not possible to draw conclusions about the importance of the various interactions with the available data from Drosophila or vertebrates.  相似文献   

3.
Generation of epithelial cell polarity requires mechanisms to sort plasma membrane proteins to the apical and basolateral domains. Sorting involves incorporation into specific vesicular carriers and subsequent fusion to the correct target membranes mediated by specific SNARE proteins. In polarized epithelial cells, the SNARE protein syntaxin 4 localizes exclusively to the basolateral plasma membrane and plays an important role in basolateral trafficking pathways. However, the mechanism of basolateral targeting of syntaxin 4 itself has remained poorly understood. Here we show that newly synthesized syntaxin 4 is directly targeted to the basolateral plasma membrane in polarized Madin-Darby canine kidney (MDCK) cells. Basolateral targeting depends on a signal that is centered around residues 24-29 in the N-terminal domain of syntaxin 4. Furthermore, basolateral targeting of syntaxin 4 is dependent on the epithelial cell-specific clathrin adaptor AP1B. Disruption of the basolateral targeting signal of syntaxin 4 leads to non-polarized delivery to both the apical and basolateral surface, as well as partial intercellular retention in the trans-Golgi network. Importantly, disruption of the basolateral targeting signal of syntaxin 4 leads to the inability of MDCK cells to establish a polarized morphology which suggests that restriction of syntaxin 4 to the basolateral domain is required for epithelial cell polarity.  相似文献   

4.
In polarized epithelial cells syntaxin 3 is at the apical plasma membrane and is involved in delivery of proteins from the trans-Golgi network to the apical surface. The highly related syntaxin 4 is at the basolateral surface. The complementary distribution of these syntaxins suggests that they play a role in the specificity of membrane traffic to the two surfaces. We constructed a chimeric syntaxin where we removed the N-terminal 29 residues of syntaxin 3 and replaced it with the corresponding portion of syntaxin 4. When expressed in polarized epithelial cells, this chimera was exclusively localized to the basolateral surface. This indicates that the N-terminal domain of syntaxin 3 contains information for its polarized localization. In contrast to the apical localization of syntaxin 3, the basolateral localization of syntaxin 4 was not dependent on its N-terminal domain. Syntaxin 3 normally binds to Munc18b, but not to the related Munc18c. Overexpression of the chimera together with overexpression of Munc18b caused membrane and secretory proteins that are normally sent primarily to the apical surface to exhibit increased delivery to the basolateral surface. We suggest that syntaxins may play a role in determining the specificity of membrane targeting by permitting fusion with only certain target membranes.  相似文献   

5.
Sec1/munc18-like proteins (SM proteins) and SNARE complexes are probably universally required for membrane fusion. However, the molecular mechanism by which they interact has only been defined for synaptic vesicle fusion where munc18 binds to syntaxin in a closed conformation that is incompatible with SNARE complex assembly. We now show that Sly1, an SM protein involved in Golgi and ER fusion, binds to a short, evolutionarily conserved N-terminal peptide of Sed5p and Ufe1p in yeast and of syntaxins 5 and 18 in vertebrates. In these syntaxins, the Sly1 binding peptide is upstream of a separate, autonomously folded N-terminal domain. These data suggest a potentially general mechanism by which SM proteins could interact with peptides in target proteins independent of core complex assembly and suggest that munc18 binding to syntaxin is an exception.  相似文献   

6.
Syntaxins, integral membrane proteins that are part of the ubiquitous membrane fusion machinery, are thought to act as target membrane receptors during the process of vesicle docking and fusion. Several isoforms of the syntaxin family have been previously identified in mammalian cells, some of which are localized to the plasma membrane. We investigated the subcellular localization of these putative plasma membrane syntaxins in polarized epithelial cells, which are characterized by the presence of distinct apical and basolateral plasma membrane domains. Syntaxins 2, 3, and 4 were found to be endogenously present in Madin-Darby canine kidney cells. The localization of syntaxins 1A, 1B, 2, 3, and 4 in stably transfected Madin-Darby canine kidney cell lines was studied with confocal immunofluorescence microscopy. Each syntaxin isoform was found to have a unique pattern of localization. Syntaxins 1A and 1B were present only in intracellular structures, with little or no apparent plasma membrane staining. In contrast, syntaxin 2 was found on both the apical and basolateral surface, whereas the plasma membrane localization of syntaxins 3 and 4 were restricted to the apical or basolateral domains, respectively. Syntaxins are therefore the first known components of the plasma membrane fusion machinery that are differentially localized in polarized cells, suggesting that they may play a central role in targeting specificity.  相似文献   

7.
Munc18-1, a member of the Sec1/Munc18 (SM) protein family, is essential for synaptic vesicle exocytosis. Munc18-1 binds tightly to the SNARE protein syntaxin 1, but the physiological significance and functional role of this interaction remain unclear. Here we show that syntaxin 1 levels are reduced by 70% in munc18-1 knockout mice. Pulse-chase analysis in transfected HEK293 cells revealed that Munc18-1 directly promotes the stability of syntaxin 1, consistent with a chaperone function. However, the residual syntaxin 1 in munc18-1 knockout mice is still correctly targeted to synapses and efficiently forms SDS-resistant SNARE complexes, demonstrating that Munc18-1 is not required for syntaxin 1 function as such. These data demonstrate that the Munc18-1 interaction with syntaxin 1 is physiologically important, but does not represent a classical chaperone-substrate relationship. Instead, the presence of SNARE complexes in the absence of membrane fusion in munc18-1 knockout mice indicates that Munc18-1 either controls the spatially correct assembly of core complexes for SNARE-dependent fusion, or acts as a direct component of the fusion machinery itself.  相似文献   

8.
Syntaxins 3 and 4 localize to the apical and basolateral plasma membrane, respectively, of epithelial cells where they mediate vesicle fusion. Here, we report that before establishment of cell polarity, syntaxins 3 and 4 are confined to mutually exclusive, submicron-sized clusters. Syntaxin clusters are remarkably uniform in size, independent of expression levels, and are distinct from caveolae and clathrin-coated pits. SNAP-23 partially colocalizes with both syntaxin 3 and 4 clusters. Deletion of the apical targeting signal of syntaxin 3 does not prevent sorting into clusters away from syntaxin 4. Syntaxin 3 and 4 cluster formation depends on different mechanisms because the integrity of syntaxin 3 clusters depends on intact microtubules, whereas syntaxin 4 clusters depend on intact actin filaments. Cholesterol depletion causes dispersion of syntaxin 3 but not syntaxin 4 clusters. In migrating cells, syntaxin clusters polarize to the leading edge, suggesting a role in polarized exocytosis. These results suggest that exocytosis occurs at small fusion sites exhibiting high local concentrations of SNARE proteins that may be required for efficient membrane fusion. The establishment of separate clusters for each syntaxin suggests that the plasma membrane is inherently polarized on an ultrastructural level even before the establishment of true cell polarity.  相似文献   

9.
In epithelial cells the plasma membrane is divided into domains that are biochemically and functionally different. In intestinal cells for example the apical domain is facing the intestinal lumen and is involved in the uptake of nutriments while the basolateral domain is mediating cell-cell adhesion and signalisation. We are interested in deciphering the mechanisms underlying the creation and maintenance of such specialized domains. As an epithelial model we have used the intestinal cell line Caco-2 and we have studied the transport and sorting of the human neurotrophin receptor (p75 NTR) in these cells. Newly synthesized p75 NTR is first transported to the basolateral membrane and then is accumulated on the apical membrane after transcytosis. This final apical localization is controlled by the presence of a membrane anchor and a cluster of O-glycosylation sites located in the part of the ectodomain close to the membrane. Among the mechanisms likely to be involved in the sorting of apical components we have looked for a role of lipid-protein microdomain formation in the Golgi apparatus. These membrane microdomains are highly enriched in glycosylphosphatidyl inositol (GPI) anchored proteins, glycosphingolipids and apical proteins such as sucrase isomaltase (SI). Such a composition is also found for endocytic structures called caveolae which are made of caveolin 1. We have expressed caveolin 1 in Caco-2 cells which do not express it and also caveolin 2, a related protein of unknown function. Expression of caveolin 1 led to formation of caveolae indicating that this protein is necessary for caveolae formation while caveolin 2 is restricted to the Golgi apparatus and has no effect on caveolae formation. However Caveolin 2 increased the amount of SI incorporated in microdomains suggesting a role in recruitment into the apical pathway. The choice for a site of fusion for transport vesicles is the last step of control during exocytosis. To identify proteins involved in that step we have cloned and characterized two members of the t-SNARE family, namely syntaxin 3 and SNAP23. Syntaxin 3 is present on the apical membrane and forms a complex with SNAP23 which is also localized on the basolateral membrane where it forms a complex with syntaxin 4. Overexpression of syntaxin 3 in Caco-2 led to a decrease of SI exocytosis towards the apical membrane confirming that syntaxin 3 is involved in targeting the fusion of apical transport vesicles to the apical pole of the cells.  相似文献   

10.
SNARE protein trafficking in polarized MDCK cells   总被引:3,自引:0,他引:3  
A key feature of polarized epithelial cells is the ability to maintain the specific biochemical composition of the apical and basolateral plasma membrane domains. This polarity is generated and maintained by the continuous sorting of apical and basolateral components in the secretory and endocytic pathways. Soluble N-ethyl maleimide-sensitive factor attachment protein receptors (SNARE) proteins of vesicle-associated membrane protein (VAMP) and syntaxin families have been suggested to play a role in the biosynthetic transport to the apical and basolateral plasma membranes of polarized cells, where they likely mediate membrane fusion. To investigate the involvement of SNARE proteins in membrane trafficking to the apical and basolateral plasma membrane in the endocytic pathway we have monitored the recycling of various VAMP and syntaxin molecules between intracellular compartments and the two plasma membrane domains in Madin–Darby canine kidney (MDCK) cells. Here we show that VAMP8/endobrevin cycles through the apical but not through the basolateral plasma membrane. Furthermore, we found that VAMP8 localizes to apical endosomal membranes in nephric tubule epithelium and in MDCK cells. This asymmetry in localization and cycling behavior suggests that VAMP8/endobrevin may play a role in apical endosomal trafficking in polarized epithelium cells.  相似文献   

11.
The plasma membranes of epithelial cells plasma membranes contain distinct apical and basolateral domains that are critical for their polarized functions. However, both domains are continuously internalized, with proteins and lipids from each intermixing in supranuclear recycling endosomes (REs). To maintain polarity, REs must faithfully recycle membrane proteins back to the correct plasma membrane domains. We examined sorting within REs and found that apical and basolateral proteins were laterally segregated into subdomains of individual REs. Subdomains were absent in unpolarized cells and developed along with polarization. Subdomains were formed by an active sorting process within REs, which precedes the formation of AP-1B-dependent basolateral transport vesicles. Both the formation of subdomains and the fidelity of basolateral trafficking were dependent on PI3 kinase activity. This suggests that subdomain and transport vesicle formation occur as separate sorting steps and that both processes may contribute to sorting fidelity.  相似文献   

12.
In polarized Madin-Darby canine kidney epithelial cells, components of the plasma membrane fusion machinery, the t-SNAREs syntaxin 2, 3, and 4 and SNAP-23, are differentially localized at the apical and/or basolateral plasma membrane domains. Here we identify syntaxin 11 as a novel apical and basolateral plasma membrane t-SNARE. Surprisingly, all of these t-SNAREs redistribute to intracellular locations when Madin-Darby canine kidney cells lose their cellular polarity. Apical SNAREs relocalize to the previously characterized vacuolar apical compartment, whereas basolateral SNAREs redistribute to a novel organelle that appears to be the basolateral equivalent of the vacuolar apical compartment. Both intracellular plasma membrane compartments have an associated prominent actin cytoskeleton and receive membrane traffic from cognate apical or basolateral pathways, respectively. These findings demonstrate a fundamental shift in plasma membrane traffic toward intracellular compartments while protein sorting is preserved when epithelial cells lose their cell polarity.  相似文献   

13.
Epithelial cells display distinct apical and basolateral membrane domains, and maintenance of this asymmetry is essential to the function of epithelial tissues. Polarized delivery of apical and basolateral membrane proteins from the trans Golgi network (TGN) and/or endosomes to the correct domain requires specific cytoplasmic machinery to control the sorting, budding and fission of vesicles. However, the molecular machinery that regulates polarized delivery of apical proteins remains poorly understood. In this study, we show that the small guanosine triphosphatase Rab14 is involved in the apical targeting pathway. Using yeast two-hybrid analysis and glutathione S-transferase pull down, we show that Rab14 interacts with apical membrane proteins and localizes to the TGN and apical endosomes. Overexpression of the GDP mutant form of Rab14 (S25N) induces an enlargement of the TGN and vesicle accumulation around Golgi membranes. Moreover, expression of Rab14-S25N results in mislocalization of the apical raft-associated protein vasoactive intestinal peptide/MAL to the basolateral domain but does not disrupt basolateral targeting or recycling. These data suggest that Rab14 specifically regulates delivery of cargo from the TGN to the apical domain.  相似文献   

14.
Syntaxins are cytoplasmically oriented integral membrane soluble NEM-sensitive factor receptors (SNAREs; soluble NEM-sensitive factor attachment protein receptors) thought to serve as targets for the assembly of protein complexes important in regulating membrane fusion. The SNARE hypothesis predicts that the fidelity of vesicle traffic is controlled in part by the correct recognition of vesicle SNAREs with their cognate target SNARE partner. Here, we show that in the exocrine acinar cell of the pancreas, multiple syntaxin isoforms are expressed and that they appear to reside in distinct membrane compartments. Syntaxin 2 is restricted to the apical plasma membrane whereas syntaxin 4 is found most abundantly on the basolateral membranes. Surprisingly, syntaxin 3 was found to be localized to a vesicular compartment, the zymogen granule membrane. In addition, we show that these proteins are capable of specific interaction with vesicle SNARE proteins. Their nonoverlapping locations support the general principle of the SNARE hypothesis and provide new insights into the mechanisms of polarized secretion in epithelial cells.  相似文献   

15.
The central aspect of epithelial cells is their polarized structure, characterized by two distinct domains of the plasma membrane, the apical and the basolateral membrane. Apical protein sorting requires various signals and different intracellular routes to the cell surface. The first apical targeting motif identified is the membrane anchoring of a polypeptide by glycosyl-phosphatidyl-inositol (GPI). A second group of apical signals involves N- and O-glycans, which are exposed to the luminal side of the sorting organelle. Sucrase-isomaltase (SI) and lactase-phlorizin hydrolase (LPH), which use separate transport platforms for trafficking, are two model proteins for the study of apical protein sorting. In contrast to LPH, SI associates with sphingolipid/cholesterol-enriched membrane microdomains or "lipid rafts". After exit form the trans-Golgi network (TGN), the two proteins travel in distinct vesicle populations, SAVs (SI-associated vesicles) and LAVs (LPH-associated vesicles) . Here, we report the identification of the lectin galectin-3 delivering non-raft-dependent glycoproteins in the lumen of LAVs in a carbohydrate-dependent manner. Depletion of galectin-3 from MDCK cells results in missorting of non-raft-dependent apical membrane proteins to the basolateral cell pole. This suggests a direct role of galectin-3 in apical sorting as a sorting receptor.  相似文献   

16.
Syntaxins and Sec1/munc18 proteins are central to intracellular membrane fusion. All syntaxins comprise a variable N-terminal region, a conserved SNARE motif that is critical for SNARE complex formation, and a transmembrane region. The N-terminal region of neuronal syntaxin 1A contains a three-helix domain that folds back onto the SNARE motif forming a 'closed' conformation; this conformation is required for munc18-1 binding. We have examined the generality of the structural properties of syntaxins by NMR analysis of Vam3p, a yeast syntaxin essential for vacuolar fusion. Surprisingly, Vam3p also has an N-terminal three-helical domain despite lacking apparent sequence homology with syntaxin 1A in this region. However, Vam3p does not form a closed conformation and its N-terminal domain is not required for binding to the Sec1/munc18 protein Vps33p, suggesting that critical distinctions exist in the mechanisms used by syntaxins to govern different types of membrane fusion.  相似文献   

17.
The Sec1/munc18 protein family is essential for vesicle fusion in eukaryotic cells via binding to SNARE proteins. Protein kinase C modulates these interactions by phosphorylating munc18a thereby reducing its affinity to one of the central SNARE members, syntaxin-1a. The established hypothesis is that the reduced affinity of the phosphorylated munc18a to syntaxin-1a is a result of local electrostatic repulsion between the two proteins, which interferes with their compatibility. The current study challenges this paradigm and offers a novel mechanistic explanation by revealing a syntaxin-non-binding conformation of munc18a that is induced by the phosphomimetic mutations. In the present study, using molecular dynamics simulations, we explored the dynamics of the wild-type munc18a versus phosphomimetic mutant munc18a. We focused on the structural changes that occur in the cavity between domains 3a and 1, which serves as the main syntaxin-binding site. The results of the simulations suggest that the free wild-type munc18a exhibits a dynamic equilibrium between several conformations differing in the size of its cavity (the main syntaxin-binding site). The flexibility of the cavity's size might facilitate the binding or unbinding of syntaxin. In silico insertion of phosphomimetic mutations into the munc18a structure induces the formation of a conformation where the syntaxin-binding area is rigid and blocked as a result of interactions between residues located on both sides of the cavity. Therefore, we suggest that the reduced affinity of the phosphomimetic mutant/phosphorylated munc18a is a result of the closed-cavity conformation, which makes syntaxin binding energetically and sterically unfavorable. The current study demonstrates the potential of phosphorylation, an essential biological process, to serve as a driving force for dramatic conformational changes of proteins modulating their affinity to target proteins.  相似文献   

18.
Although epithelial cells are known to exhibit a polarized distribution of membrane components, the pathways responsible for delivering membrane proteins to their appropriate domains remain unclear. Using an optimized approach to three-dimensional live cell imaging, we have visualized the transport of newly synthesized apical and basolateral membrane proteins in fully polarized filter-grown Madin-Darby canine kidney cells. We performed a detailed quantitative kinetic analysis of trans-Golgi network (TGN) exit, passage through transport intermediates, and arrival at the plasma membrane using cyan/yellow fluorescent protein-tagged glycosylphosphatidylinositol-anchored protein and vesicular stomatitis virus glycoprotein as apical and basolateral reporters, respectively. For both pathways, exit from the TGN was rate limiting. Furthermore, apical and basolateral proteins were targeted directly to their respective membranes, resolving current confusion as to whether sorting occurs on the secretory pathway or only after endocytosis. However, a transcytotic protein did reach the apical surface after a prior appearance basolaterally. Finally, newly synthesized proteins appeared to be delivered to the entire lateral or apical surface, suggesting-contrary to expectations-that there is not a restricted site for vesicle docking or fusion adjacent to the junctional complex.  相似文献   

19.
In epithelial cells, polarized growth and maintenance of apical and basolateral plasma membrane domains depend on protein sorting from the trans-Golgi network (TGN) and vesicle delivery to the plasma membrane. Septins are filamentous GTPases required for polarized membrane growth in budding yeast, but whether they function in epithelial polarity is unknown. Here, we show that in epithelial cells septin 2 (SEPT2) fibers colocalize with a subset of microtubule tracks composed of polyglutamylated (polyGlu) tubulin, and that vesicles containing apical or basolateral proteins exit the TGN along these SEPT2/polyGlu microtubule tracks. Tubulin-associated SEPT2 facilitates vesicle transport by maintaining polyGlu microtubule tracks and impeding tubulin binding of microtubule-associated protein 4 (MAP4). Significantly, this regulatory step is required for polarized, columnar-shaped epithelia biogenesis; upon SEPT2 depletion, cells become short and fibroblast-shaped due to intracellular accumulation of apical and basolateral membrane proteins, and loss of vertically oriented polyGlu microtubules. We suggest that septin coupling of the microtubule cytoskeleton to post-Golgi vesicle transport is required for the morphogenesis of polarized epithelia.  相似文献   

20.
SNARE proteins are widely accepted to be involved in the docking and fusion process of intracellular vesicle trafficking. VAMP-2, syntaxin-4, and SNAP-23 are plausible candidate SNARE proteins for non-neuronal exocytosis. Thus, we examined the localization, protein-protein interaction, and intracellular trafficking of these proteins by expressing them as green fluorescent protein (GFP)- and FLAG-tagged fusion proteins in various cells, including HSY cells, a human parotid epithelial cell line. GFP-VAMP-2 was ex-pressed strongly in the Golgi area and weakly on the plasma membrane. Although GFP-SNAP-23 seemed to be expressed universally in the cytosol, the GFP signal was clearly seen on the plasma membrane, when soluble GFP-SNAP-23 was removed by treatment with saponin. GFP-syntaxin-4 was undetectable on the plasma membrane but was strongly expressed on unidentified unusually large vesicles. GFP-syntaxin-4 without its transmembrane domain was still incompletely soluble and observed as aggregates. When syntaxin-4 and munc18c were coexpressed, syntaxin-4 was translocated at least in part to the plasma membrane. The protein-protein interaction between syntaxin-4 and VAMP-2 with their transmembrane domains was markedly inhibited on coexpression of munc18c. These results suggest that munc18c plays an important role in the trafficking of syntaxin-4 to its proper destination by preventing premature interactions with other proteins, including SNARE proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号