首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Interferons (IFNs) play a major role in orchestrating the innate immune response toward viruses in vertebrates, and their defining characteristic is their ability to induce an antiviral state in responsive cells. Interferons have been reported in a multitude of species, from bony fish to mammals. However, our current knowledge about the molecular function of fish IFNs as well as their evolutionary relationship to tetrapod IFNs is limited. Here we establish the three-dimensional (3D) structure of zebrafish IFN?1 and IFN?2 by crystallography. These high-resolution structures offer the first structural insight into fish cytokines. Tetrapods possess two types of IFNs that play an immediate antiviral role: type I IFNs (e.g., alpha interferon [IFN-α] and beta interferon [IFN-β]) and type III IFNs (lambda interferon [IFN-λ]), and each type is characterized by its specific receptor usage. Similarly, two groups of antiviral IFNs with distinct receptors exist in fish, including zebrafish. IFN?1 and IFN?2 represent group I and group II IFNs, respectively. Nevertheless, both structures reported here reveal a characteristic type I IFN architecture with a straight F helix, as opposed to the remaining class II cytokines, including IFN-λ, where helix F contains a characteristic bend. Phylogenetic trees derived from structure-guided multiple alignments confirmed that both groups of fish IFNs are evolutionarily closer to type I than to type III tetrapod IFNs. Thus, these fish IFNs belong to the type I IFN family. Our results also imply that a dual antiviral IFN system has arisen twice during vertebrate evolution.  相似文献   

3.
Kang D  Ryoo S  Chung B  Lee J  Park S  Han J  Jeong S  Rho G  Hong J  Bae S  Kang T  Kim S  Kim S 《Cytokine》2012,59(2):273-279
Interferons (IFNs) are commonly grouped into type I and type II IFN. Type I IFNs are known as antiviral IFNs including IFN-α, IFN-β, and IFN-ω whereas type II IFN is referred to immune IFN and IFN-γ is only member of the type II IFN. Type I IFNs are induced by virus invading however type II IFN is produced by mitogenic or antigenic stimuli. IFN-τ was first identified in ruminant ungulates as a pregnancy recognition hormone, trophoblastin. IFN-τ constitutes a new class of type I IFN, which possesses the common features of type I IFN, such as the ability to prevent viral infection and to limit cell proliferation. In addition, IFN-τ is unique in that it is induced by pregnancy unlike other type I IFNs. We cloned Bos taurus (B. T.) Coreanae IFN-τ from peripheral blood mononuclear cells. The amino acid sequence of B. T. Coreanae IFN-τ shares only 90.3% identity with that of Holstein dairy cow. Recombinant B. T. Coreanae and Holstein IFN-τ proteins were expressed in Escherichia coli and the antiviral activity of IFN-τ proteins were examined. Both recombinant proteins were active and protected human WISH and bovine MDBK cells from the cytopathic effect of vesicular stomatitis virus. The recombinant IFN-τ protein of B. T. Coreanae and Holstein properly induced the expression of antiviral genes including 2',5'-oligoadenylate synthetase (OAS) and Mx GTPase 1 (Mx-1).  相似文献   

4.
Innate antiviral responses in bronchial epithelial cells (BECs) provide the first line of defense against respiratory viral infection and the effectiveness of this response is critically dependent on the type I interferons (IFNs). However the importance of the antiviral responses in BECs during influenza infection is not well understood. We profiled the innate immune response to infection with H3N2 and H5N1 virus using Calu-3 cells and primary BECs to model proximal airway cells. The susceptibility of BECs to influenza infection was not solely dependent on the sialic acid-bearing glycoprotein, and antiviral responses that occurred after viral endocytosis was more important in limiting viral replication. The early antiviral response and apoptosis correlated with the ability to limit viral replication. Both viruses reduced RIG-I associated antiviral responses and subsequent induction of IFN-β. However it was found that there was constitutive release of IFN-β by BECs and this was critical in inducing late antiviral signaling via type I IFN receptors, and was crucial in limiting viral infection. This study characterizes anti-influenza virus responses in airway epithelial cells and shows that constitutive IFN-β release plays a more important role in initiating protective late IFN-stimulated responses during human influenza infection in bronchial epithelial cells.  相似文献   

5.
As the only flying mammal, bats harbor a number of emerging and re-emerging viruses, many of which cause severe diseases in humans and other mammals yet result in no clinical symptoms in bats. As the master regulator of the interferon (IFN)-dependent immune response, IFN regulatory factor 7 (IRF7) plays a central role in innate antiviral immunity. To explore the role of bat IRF7 in the regulation of the IFN response, we performed sequence and functional analysis of IRF7 from the pteropid bat, Pteropus alecto. Our results demonstrate that bat IRF7 retains the ability to bind to MyD88 and activate the IFN response despite unique changes in the MyD88 binding domain. We also demonstrate that bat IRF7 has a unique expression pattern across both immune and non-immune related tissues and is inducible by double-strand RNA. The broad tissue distribution of IRF7 may provide bats with an enhanced ability to rapidly activate the IFN response in a wider range of tissues compared to other mammals. The importance of IRF7 in antiviral activity against the bat reovirus, Pulau virus was confirmed by siRNA knockdown of IRF7 in bat cells resulting in enhanced viral replication. Our results highlight the importance of IRF7 in innate antiviral immunity in bats.  相似文献   

6.
Activated macrophages play a central role in controlling inflammatory responses to infection and are tightly regulated to rapidly mount responses to infectious challenge. Type I interferon (alpha/beta interferon [IFN-α/β]) and type II interferon (IFN-γ) play a crucial role in activating macrophages and subsequently restricting viral infections. Both types of IFNs signal through related but distinct signaling pathways, inducing a vast number of interferon-stimulated genes that are overlapping but distinguishable. The exact mechanism by which IFNs, particularly IFN-γ, inhibit DNA viruses such as cytomegalovirus (CMV) is still not fully understood. Here, we investigate the antiviral state developed in macrophages upon reversible inhibition of murine CMV by IFN-γ. On the basis of molecular profiling of the reversible inhibition, we identify a significant contribution of a restricted type I IFN subnetwork linked with IFN-γ activation. Genetic knockout of the type I-signaling pathway, in the context of IFN-γ stimulation, revealed an essential requirement for a primed type I-signaling process in developing a full refractory state in macrophages. A minimal transient induction of IFN-β upon macrophage activation with IFN-γ is also detectable. In dose and kinetic viral replication inhibition experiments with IFN-γ, the establishment of an antiviral effect is demonstrated to occur within the first hours of infection. We show that the inhibitory mechanisms at these very early times involve a blockade of the viral major immediate-early promoter activity. Altogether our results show that a primed type I IFN subnetwork contributes to an immediate-early antiviral state induced by type II IFN activation of macrophages, with a potential further amplification loop contributed by transient induction of IFN-β.  相似文献   

7.
杨祎  侯炜 《生命科学》2011,(8):749-752
干扰素(IFN)是抗病毒感染的第一道防线,Ⅰ型和Ⅱ型干扰素不仅可抑制病毒,而且还能参与天然免疫反应和获得性免疫反应。最近干扰素家族增添一位新成员:Ⅲ型干扰素,即IFN-λ,因其具有类似干扰素的抗病毒活性且能诱导干扰素相关基因的表达而命名。IFN-λ受体与Ⅰ型干扰素的受体不同,但具有与Ⅰ型干扰素类似的诱导表达方式和信号转导通路,并能激活一系列相似的干扰素刺激基因。就IFN-λ家族及其受体、基因表达和信号转导机制、抗病毒作用等进行综述。  相似文献   

8.
Type I interferons (IFNs) are produced by leukocytes in reaction to pathogenic infection and function as positive mediators in antiviral pathways. Among IFNs, IFN alpha (IFNA) has the largest number of family members and plays an important role against the invasion of pathogens. Bats are putative and proven vectors for numerous viruses; however, the evolution of the IFNA family in bats has not been addressed. Here, we construct a phylogeny of IFNA families, including one fruit bat (Dobsonia viridis), with other vertebrates as references. Site-model estimation reveals that positive selection has shaped bat IFNA genes, showing that positive selection drives the evolution of bat IFNA genes.  相似文献   

9.
Type III IFNs (IFN-lambda/IL-28/29) are cytokines with type I IFN-like antiviral activities, which remain poorly characterized. We herein show that most cell types expressed both types I and III IFNs after TLR stimulation or virus infection, whereas the ability of cells to respond to IFN-lambda was restricted to a narrow subset of cells, including plasmacytoid dendritic cells and epithelial cells. To examine the role of type III IFN in antiviral defense, we generated IL-28Ralpha-deficient mice. These mice were indistinguishable from wild-type mice with respect to clearance of a panel of different viruses, whereas mice lacking the type I IFN receptor (IFNAR(-/-)) were significantly impaired. However, the strong antiviral activity evoked by treatment of mice with TLR3 or TLR9 agonists was significantly reduced in both IL-28RA(-/-) and IFNAR(-/-) mice. The type I IFN receptor system has been shown to mediate positive feedback on IFN-alphabeta expression, and we found that the type I IFN receptor system also mediates positive feedback on IFN-lambda expression, whereas IL-28Ralpha signaling does not provide feedback on either type I or type III IFN expression in vivo. Finally, using bone-marrow chimeric mice we showed that TLR-activated antiviral defense requires expression of IL-28Ralpha only on nonhemopoietic cells. In this compartment, epithelial cells responded to IFN-lambda and directly restricted virus replication. Our data suggest type III IFN to target a specific subset of cells and to contribute to the antiviral response evoked by TLRs.  相似文献   

10.
Type I interferons (IFN) comprise a family of cytokines that signal through a common cellular receptor to induce a plethora of genes with antiviral and other activities. Recombinant IFNs are used for the treatment of hepatitis C virus infection, multiple sclerosis, and certain malignancies. The capability of type I IFN to suppress virus replication and resultant cytopathic effects is frequently used to measure their bioactivity. However, these assays are time-consuming and require appropriate biosafety containment. In this study, an improved IFN assay is presented which is based on a recombinant vesicular stomatitis virus (VSV) replicon encoding two reporter proteins, firefly luciferase and green fluorescent protein. The vector lacks the essential envelope glycoprotein (G) gene of VSV and is propagated on a G protein-expressing transgenic cell line. Several mammalian and avian cells turned out to be susceptible to infection with the complemented replicon particles. Infected cells readily expressed the reporter proteins at high levels five hours post infection. When human fibroblasts were treated with serial dilutions of human IFN-β prior to infection, reporter expression was accordingly suppressed. This method was more sensitive and faster than a classical IFN bioassay based on VSV cytopathic effects. In addition, the antiviral activity of human IFN-λ (interleukin-29), a type III IFN, was determined on Calu-3 cells. Both IFN-β and IFN-λ were acid-stable, but only IFN-β was resistant to alkaline treatment. The antiviral activities of canine, porcine, and avian type I IFN were analysed with cell lines derived from the corresponding species. This safe bioassay will be useful for the rapid and sensitive quantification of multi-species type I IFN and potentially other antiviral cytokines.  相似文献   

11.
Type I and III interferons (IFNs) of the innate immune system belong to a polygenic family, however the individual subtype mediators of the antiviral response in viral infections have been hindered by a lack of reagents. Evaluation studies using different IFN subtypes have distinguished distinct protein properties with different efficacies towards different viruses, opening promising avenues for immunotherapy. This review largely focuses on the application of IFN-α/β and IFN-λ therapies for viral infections, influenza, herpes, HIV and hepatitis. Such IFN subtype therapies may help to cure patients with virus infections where no vaccine exists. The ability of cell types to secrete a number of IFN subtypes from a multi-gene family may be an intuitive counterattack on viruses that evade IFN subtype responses. Hence, clinical use of virus-targeted IFN subtypes may restore antiviral immunity in viral infections. Accumulating evidence suggests that individual IFN subtypes have differential efficacies in selectively activating immune cell subsets to enhance antiviral immune responses leading to production of sustained B and T cell memory. Cytokine therapy can augment innate immunity leading to clearance of acute virus infections but such treatments may have limited effects on chronic virus infections that establish lifelong latency. Therefore, exploiting individual IFN subtypes to select those with the ability to sculpt protective responses as well as reinstating those targeted by viral evasion mechanisms may inform development of improved antiviral therapy.  相似文献   

12.
13.
Liang Z  Wu S  Li Y  He L  Wu M  Jiang L  Feng L  Zhang P  Huang X 《PloS one》2011,6(8):e23346
Toll-like receptors (TLRs) play an important role in innate immunity against invading pathogens. Although TLR signaling has been indicated to protect cells from infection of several viruses, the role of TLRs in Dengue virus (DENV) replication is still unclear. In the present study, we examined the replication of DENV serotype 2 (DENV2) by challenging hepatoma cells HepG2 with different TLR ligands. Activation of TLR3 showed an antiviral effect, while pretreatment of other TLR ligands (including TLR1/2, TLR2/6, TLR4, TLR5 or TLR7/8) did not show a significant effect. TLR3 ligand poly(I:C) treatment prior to viral infection or simultaneously, but not post-treatment, significantly down-regulated virus replication. Pretreatment with poly(I:C) reduced viral mRNA expression and viral staining positive cells, accompanying an induction of the type I interferon (IFN-β) and type III IFN (IL-28A/B). Intriguingly, neutralization of IFN-β alone successfully restored the poly(I:C)-inhibited replication of DENV2. The poly(I:C)-mediated effects, including IFN induction and DENV2 suppression, were significantly reversed by IKK inhibitor, further suggesting that IFN-β is the dominant factor involved in the poly(I:C) mediated antiviral effect. Our study presented the first evidence to show that activation of TLR3 is effective in blocking DENV2 replication via IFN-β, providing an experimental clue that poly(I:C) may be a promising immunomodulatory agent against DENV infection and might be applicable for clinical prevention.  相似文献   

14.
15.
Type III interferons (IFNs) represent the most recently discovered group of IFNs. Together with type I IFNs (e.g. IFN-α/β), type III IFNs (IFN-λ) are produced as part of the innate immune response to virus infection, and elicit an anti-viral state by inducing expression of interferon stimulated genes (ISGs). It was initially thought that type I IFNs and type III IFNs perform largely redundant functions. However, it has become evident that type III IFNs particularly play a major role in antiviral protection of mucosal epithelial barriers, thereby serving an important role in the first-line defense against virus infection and invasion at contact areas with the outside world, versus the generally more broad, potent and systemic antiviral effects of type I IFNs. Herpesviruseses are large DNA viruses, which enter their host via mucosal surfaces and establish lifelong, latent infections. Despite the importance of mucosal epithelial cells in the pathogenesis of herpesviruses, our current knowledge on the interaction of herpesviruses with type III IFN is limited and largely restricted to studies on the alphaherpesvirus herpes simplex virus (HSV). This review summarizes the current understanding about the role of IFN-λ in the immune response against herpesvirus infections.  相似文献   

16.
Type Ⅲ interferons (IFNs) represent the most recently discovered group of IFNs.Together with type Ⅰ IFNs (e.g.IFN-α/β),type Ⅲ IFNs (IFN-λ) are produced as part of the innate immune response to virus infection,and elicit an anti-viral state by inducing expression of interferon stimulated genes (ISGs).It was initially thought that type Ⅰ IFNs and type Ⅲ IFNs perform largely redundant functions.However,it has become evident that type Ⅲ IFNs particularly play a major role in antiviral protection of mucosal epithelial barriers,thereby serving an important role in the first-line defense against virus infection and invasion at contact areas with the outside world,versus the generally more broad,potent and systemic antiviral effects of type Ⅰ IFNs.Herpesviruseses are large DNA viruses,which enter their host via mucosal surfaces and establish lifelong,latent infections.Despite the importance of mucosal epithelial cells in the pathogenesis of herpesviruses,our current knowledge on the interaction of herpesviruses with type Ⅲ IFN is limited and largely restricted to studies on the alphaherpesvirus herpes simplex virus (HSV).This review summarizes the current understanding about the role of IFN-λ in the immune response against herpesvirus infections.  相似文献   

17.
18.
19.
Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN-alpha potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-alpha reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-lambda in vivo did not affect viral load after infection with EMCV or LCMV but did reduce the hepatic viral titer of HSV-2. In a model for a localized HSV-2 infection, we further found that IFN-lambda completely blocked virus replication in the vaginal mucosa and totally prevented development of disease, in contrast to IFN-alpha, which had a more modest antiviral activity. Finally, pretreatment with IFN-lambda enhanced the levels of IFN-gamma in serum after HSV-2 infection. Thus, type III IFNs are expressed in response to most viruses and display potent antiviral activity in vivo against select viruses. The discrepancy between the observed antiviral activity in vitro and in vivo may suggest that IFN-lambda exerts a significant portion of its antiviral activity in vivo via stimulation of the immune system rather than through induction of the antiviral state.  相似文献   

20.
Bats are the natural host reservoir for range of emerging and re-emerging viruses, many of which cause significant morbidity and mortality in other mammals, yet appear to result in no clinical consequences for bats. The ability of bats to coexist with a variety of viruses presents an interesting immunological problem that has not been examined in any detail but which could provide significant insights into the evolution of antiviral mechanisms in mammals. Towards a better understanding of the bat immune system, we analysed the expressed heavy chain variable (VH) regions of antibodies from the black flying fox, Pteropus alecto. The germline repertoire of the closely related Pteropid bat, Pteropus vampyrus, whose genome has been sequenced was also examined for comparative purposes. Representative VH genes were found in all three mammalian VH clans (I, II and III) in both the expressed P. alecto VH repertoire and the germline P. vampyrus VH repertoire. Evidence for the use of multiple heavy chain diversity (DH) and joining (JH) segments for the generation of diverse VDJ rearrangements was also present in the expressed antibody repertoire of P. alecto. The long period of co-evolutionary history of bats with viruses may have resulted in a variety of highly specific VH segments being hardwired into the genomes of bats and may have implications for their ability to successfully cope with a diversity of viral antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号