首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LQ Xie  CP Shen  MB Liu  ZD Chen  RY Du  GQ Yan  HJ Lu  PY Yang 《Molecular bioSystems》2012,8(10):2692-2698
Electron transfer dissociation (ETD) is a useful and complementary activation method for peptide fragmentation in mass spectrometry. However, ETD spectra typically receive a relatively low score in the identifications of 2+ ions. To overcome this challenge, we, for the first time, systematically interrogated the benefits of combining ion charge enhancing methods (dimethylation, guanidination, m-nitrobenzyl alcohol (m-NBA) or Lys-C digestion) and differential search algorithms (Mascot, Sequest, OMSSA, pFind and X!Tandem). A simple sample (BSA) and a complex sample (AMJ2 cell lysate) were selected in benchmark tests. Clearly distinct outcomes were observed through different experimental protocol. In the analysis of AMJ2 cell lines, X!Tandem and pFind revealed 92.65% of identified spectra; m-NBA adduction led to a 5-10% increase in average charge state and the most significant increase in the number of successful identifications, and Lys-C treatment generated peptides carrying mostly triple charges. Based on the complementary identification results, we suggest that a combination of m-NBA and Lys-C strategies accompanied by X!Tandem and pFind can greatly improve ETD identification.  相似文献   

2.
It is a major challenge to develop effective sequence database search algorithms to translate molecular weight and fragment mass information obtained from tandem mass spectrometry into high quality peptide and protein assignments. We investigated the peptide identification performance of Mascot and X!Tandem for mass tolerance settings common for low and high accuracy mass spectrometry. We demonstrated that sensitivity and specificity of peptide identification can vary substantially for different mass tolerance settings, but this effect was more significant for Mascot. We present an adjusted Mascot threshold, which allows the user to freely select the best trade-off between sensitivity and specificity. The adjusted Mascot threshold was compared with the default Mascot and X!Tandem scoring thresholds and shown to be more sensitive at the same false discovery rates for both low and high accuracy mass spectrometry data.  相似文献   

3.
MassMatrix is a program that matches tandem mass spectra with theoretical peptide sequences derived from a protein database. The program uses a mass accuracy sensitive probabilistic score model to rank peptide matches. The MS/MS search software was evaluated by use of a high mass accuracy dataset and its results compared with those from MASCOT, SEQUEST, X!Tandem, and OMSSA. For the high mass accuracy data, MassMatrix provided better sensitivity than MASCOT, SEQUEST, X!Tandem, and OMSSA for a given specificity and the percentage of false positives was 2%. More importantly all manually validated true positives corresponded to a unique peptide/spectrum match. The presence of decoy sequence and additional variable PTMs did not significantly affect the results from the high mass accuracy search. MassMatrix performs well when compared with MASCOT, SEQUEST, X!Tandem, and OMSSA with regard to search time. MassMatrix was also run on a distributed memory clusters and achieved search speeds of ~100 000 spectra per hour when searching against a complete human database with eight variable modifications. The algorithm is available for public searches at http://www.massmatrix.net.  相似文献   

4.
Peptide identification by tandem mass spectrometry is the dominant proteomics workflow for protein characterization in complex samples. The peptide fragmentation spectra generated by these workflows exhibit characteristic fragmentation patterns that can be used to identify the peptide. In other fields, where the compounds of interest do not have the convenient linear structure of peptides, fragmentation spectra are identified by comparing new spectra with libraries of identified spectra, an approach called spectral matching. In contrast to sequence-based tandem mass spectrometry search engines used for peptides, spectral matching can make use of the intensities of fragment peaks in library spectra to assess the quality of a match. We evaluate a hidden Markov model approach (HMMatch) to spectral matching, in which many examples of a peptide's fragmentation spectrum are summarized in a generative probabilistic model that captures the consensus and variation of each peak's intensity. We demonstrate that HMMatch has good specificity and superior sensitivity, compared to sequence database search engines such as X!Tandem. HMMatch achieves good results from relatively few training spectra, is fast to train, and can evaluate many spectra per second. A statistical significance model permits HMMatch scores to be compared with each other, and with other peptide identification tools, on a unified scale. HMMatch shows a similar degree of concordance with X!Tandem, Mascot, and NIST's MS Search, as they do with each other, suggesting that each tool can assign peptides to spectra that the others miss. Finally, we show that it is possible to extrapolate HMMatch models beyond a single peptide's training spectra to the spectra of related peptides, expanding the application of spectral matching techniques beyond the set of peptides previously observed.  相似文献   

5.
Database-searching programs generally identify only a fraction of the spectra acquired in a standard LC/MS/MS study of digested proteins. Subtle variations in database-searching algorithms for assigning peptides to MS/MS spectra have been known to provide different identification results. To leverage this variation, a probabilistic framework is developed for combining the results of multiple search engines. The scores for each search engine are first independently converted into peptide probabilities. These probabilities can then be readily combined across search engines using Bayesian rules and the expectation maximization learning algorithm. A significant gain in the number of peptides identified with high confidence with each additional search engine is demonstrated using several data sets of increasing complexity, from a control protein mixture to a human plasma sample, searched using SEQUEST, Mascot, and X! Tandem database-searching programs. The increased rate of peptide assignments also translates into a substantially larger number of protein identifications in LC/MS/MS studies compared to a typical analysis using a single database-search tool.  相似文献   

6.
To interpret LC-MS/MS data in proteomics, most popular protein identification algorithms primarily use predicted fragment m/z values to assign peptide sequences to fragmentation spectra. The intensity information is often undervalued, because it is not as easy to predict and incorporate into algorithms. Nevertheless, the use of intensity to assist peptide identification is an attractive prospect and can potentially improve the confidence of matches and generate more identifications. On the basis of our previously reported study of fragmentation intensity patterns, we developed a protein identification algorithm, SeQuence IDentfication (SQID), that makes use of the coarse intensity from a statistical analysis. The scoring scheme was validated by comparing with Sequest and X!Tandem using three data sets, and the results indicate an improvement in the number of identified peptides, including unique peptides that are not identified by Sequest or X!Tandem. The software and source code are available under the GNU GPL license at http://quiz2.chem.arizona.edu/wysocki/bioinformatics.htm.  相似文献   

7.
MOTIVATION: The identification of peptides by tandem mass spectrometry (MS/MS) is a central method of proteomics research, but due to the complexity of MS/MS data and the large databases searched, the accuracy of peptide identification algorithms remains limited. To improve the accuracy of identification we applied a machine-learning approach using a hidden Markov model (HMM) to capture the complex and often subtle links between a peptide sequence and its MS/MS spectrum. Model: Our model, HMM_Score, represents ion types as HMM states and calculates the maximum joint probability for a peptide/spectrum pair using emission probabilities from three factors: the amino acids adjacent to each fragmentation site, the mass dependence of ion types and the intensity dependence of ion types. The Viterbi algorithm is used to calculate the most probable assignment between ion types in a spectrum and a peptide sequence, then a correction factor is added to account for the propensity of the model to favor longer peptides. An expectation value is calculated based on the model score to assess the significance of each peptide/spectrum match. RESULTS: We trained and tested HMM_Score on three data sets generated by two different mass spectrometer types. For a reference data set recently reported in the literature and validated using seven identification algorithms, HMM_Score produced 43% more positive identification results at a 1% false positive rate than the best of two other commonly used algorithms, Mascot and X!Tandem. HMM_Score is a highly accurate platform for peptide identification that works well for a variety of mass spectrometer and biological sample types. AVAILABILITY: The program is freely available on ProteomeCommons via an OpenSource license. See http://bioinfo.unc.edu/downloads/ for the download link.  相似文献   

8.
Peptide identification of tandem mass spectra by a variety of available search algorithms forms the foundation for much of modern day mass spectrometry-based proteomics. Despite the critical importance of proper evaluation and interpretation of the results generated by these algorithms there is still little consistency in their application or understanding of their similarities and differences. A survey was conducted of four tandem mass spectrometry peptide identification search algorithms, including Mascot, Open Mass Spectrometry Search Algorithm, Sequest, and X! Tandem. The same input data, search parameters, and sequence library were used for the searches. Comparisons were based on commonly used scoring methodologies for each algorithm and on the results of a target-decoy approach to sequence library searching. The results indicated that there is little difference in the output of the algorithms so long as consistent scoring procedures are applied. The results showed that some commonly used scoring procedures may lead to excessive false discovery rates. Finally an alternative method for the determination of an optimal cutoff threshold is proposed.  相似文献   

9.
Tandem mass spectrometry-based proteomics is currently in great demand of computational methods that facilitate the elimination of likely false positives in peptide and protein identification. In the last few years, a number of new peptide identification programs have been described, but scores or other significance measures reported by these programs cannot always be directly translated into an easy to interpret error rate measurement such as the false discovery rate. In this work we used generalized lambda distributions to model frequency distributions of database search scores computed by MASCOT, X!TANDEM with k-score plug-in, OMSSA, and InsPecT. From these distributions, we could successfully estimate p values and false discovery rates with high accuracy. From the set of peptide assignments reported by any of these engines, we also defined a generic protein scoring scheme that enabled accurate estimation of protein-level p values by simulation of random score distributions that was also found to yield good estimates of protein-level false discovery rate. The performance of these methods was evaluated by searching four freely available data sets ranging from 40,000 to 285,000 MS/MS spectra.  相似文献   

10.
The identification of proteins by mass spectrometry is a standard technique in the field of proteomics, relying on search engines to perform the identifications of the acquired spectra. Here, we present a user-friendly, lightweight and open-source graphical user interface called SearchGUI (http://searchgui.googlecode.com), for configuring and running the freely available OMSSA (open mass spectrometry search algorithm) and X!Tandem search engines simultaneously. Freely available under the permissible Apache2 license, SearchGUI is supported on Windows, Linux and OSX.  相似文献   

11.
Peptide identification using tandem mass spectrometry is a core technology in proteomics. Latest generations of mass spectrometry instruments enable the use of electron transfer dissociation (ETD) to complement collision induced dissociation (CID) for peptide fragmentation. However, a critical limitation to the use of ETD has been optimal database search software. Percolator is a post-search algorithm, which uses semi-supervised machine learning to improve the rate of peptide spectrum identifications (PSMs) together with providing reliable significance measures. We have previously interfaced the Mascot search engine with Percolator and demonstrated sensitivity and specificity benefits with CID data. Here, we report recent developments in the Mascot Percolator V2.0 software including an improved feature calculator and support for a wider range of ion series. The updated software is applied to the analysis of several CID and ETD fragmented peptide data sets. This version of Mascot Percolator increases the number of CID PSMs by up to 80% and ETD PSMs by up to 60% at a 0.01 q-value (1% false discovery rate) threshold over a standard Mascot search, notably recovering PSMs from high charge state precursor ions. The greatly increased number of PSMs and peptide coverage afforded by Mascot Percolator has enabled a fuller assessment of CID/ETD complementarity to be performed. Using a data set of CID and ETcaD spectral pairs, we find that at a 1% false discovery rate, the overlap in peptide identifications by CID and ETD is 83%, which is significantly higher than that obtained using either stand-alone Mascot (69%) or OMSSA (39%). We conclude that Mascot Percolator is a highly sensitive and accurate post-search algorithm for peptide identification and allows direct comparison of peptide identifications using multiple alternative fragmentation techniques.  相似文献   

12.
Tandem mass spectrometry-based proteomics experiments produce large amounts of raw data, and different database search engines are needed to reliably identify all the proteins from this data. Here, we present Compid, an easy-to-use software tool that can be used to integrate and compare protein identification results from two search engines, Mascot and Paragon. Additionally, Compid enables extraction of information from large Mascot result files that cannot be opened via the Web interface and calculation of general statistical information about peptide and protein identifications in a data set. To demonstrate the usefulness of this tool, we used Compid to compare Mascot and Paragon database search results for mitochondrial proteome sample of human keratinocytes. The reports generated by Compid can be exported and opened as Excel documents or as text files using configurable delimiters, allowing the analysis and further processing of Compid output with a multitude of programs. Compid is freely available and can be downloaded from http://users.utu.fi/lanatr/compid. It is released under an open source license (GPL), enabling modification of the source code. Its modular architecture allows for creation of supplementary software components e.g. to enable support for additional input formats and report categories.  相似文献   

13.
MS/MS and associated database search algorithms are essential proteomic tools for identifying peptides. Due to their widespread use, it is now time to perform a systematic analysis of the various algorithms currently in use. Using blood specimens used in the HUPO Plasma Proteome Project, we have evaluated five search algorithms with respect to their sensitivity and specificity, and have also accurately benchmarked them based on specified false-positive (FP) rates. Spectrum Mill and SEQUEST performed well in terms of sensitivity, but were inferior to MASCOT, X!Tandem, and Sonar in terms of specificity. Overall, MASCOT, a probabilistic search algorithm, correctly identified most peptides based on a specified FP rate. The rescoring algorithm, PeptideProphet, enhanced the overall performance of the SEQUEST algorithm, as well as provided predictable FP error rates. Ideally, score thresholds should be calculated for each peptide spectrum or minimally, derived from a reversed-sequence search as demonstrated in this study based on a validated data set. The availability of open-source search algorithms, such as X!Tandem, makes it feasible to further improve the validation process (manual or automatic) on the basis of "consensus scoring", i.e., the use of multiple (at least two) search algorithms to reduce the number of FPs. complement.  相似文献   

14.
The promise of mass spectrometry as a tool for probing signal-transduction is predicated on reliable identification of post-translational modifications. Phosphorylations are key mediators of cellular signaling, yet are hard to detect, partly because of unusual fragmentation patterns of phosphopeptides. In addition to being accurate, MS/MS identification software must be robust and efficient to deal with increasingly large spectral data sets. Here, we present a new scoring function for the Inspect software for phosphorylated peptide tandem mass spectra for ion-trap instruments, without the need for manual validation. The scoring function was modeled by learning fragmentation patterns from 7677 validated phosphopeptide spectra. We compare our algorithm against SEQUEST and X!Tandem on testing and training data sets. At a 1% false positive rate, Inspect identified the greatest total number of phosphorylated spectra, 13% more than SEQUEST and 39% more than X!Tandem. Spectra identified by Inspect tended to score better in several spectral quality measures. Furthermore, Inspect runs much faster than either SEQUEST or X!Tandem, making desktop phosphoproteomics feasible. Finally, we used our new models to reanalyze a corpus of 423,000 LTQ spectra acquired for a phosphoproteome analysis of Saccharomyces cerevisiae DNA damage and repair pathways and discovered 43% more phosphopeptides than the previous study.  相似文献   

15.
Large numbers of MS/MS peptide spectra generated in proteomics experiments require efficient, sensitive and specific algorithms for peptide identification. In the Open Mass Spectrometry Search Algorithm (OMSSA), specificity is calculated by a classic probability score using an explicit model for matching experimental spectra to sequences. At default thresholds, OMSSA matches more spectra from a standard protein cocktail than a comparable algorithm. OMSSA is designed to be faster than published algorithms in searching large MS/MS datasets.  相似文献   

16.
Quantitative proteomics relies on accurate protein identification, which often is carried out by automated searching of a sequence database with tandem mass spectra of peptides. When these spectra contain limited information, automated searches may lead to incorrect peptide identifications. It is therefore necessary to validate the identifications by careful manual inspection of the mass spectra. Not only is this task time-consuming, but the reliability of the validation varies with the experience of the analyst. Here, we report a systematic approach to evaluating peptide identifications made by automated search algorithms. The method is based on the principle that the candidate peptide sequence should adequately explain the observed fragment ions. Also, the mass errors of neighboring fragments should be similar. To evaluate our method, we studied tandem mass spectra obtained from tryptic digests of E. coli and HeLa cells. Candidate peptides were identified with the automated search engine Mascot and subjected to the manual validation method. The method found correct peptide identifications that were given low Mascot scores (e.g., 20-25) and incorrect peptide identifications that were given high Mascot scores (e.g., 40-50). The method comprehensively detected false results from searches designed to produce incorrect identifications. Comparison of the tandem mass spectra of synthetic candidate peptides to the spectra obtained from the complex peptide mixtures confirmed the accuracy of the evaluation method. Thus, the evaluation approach described here could help boost the accuracy of protein identification, increase number of peptides identified, and provide a step toward developing a more accurate next-generation algorithm for protein identification.  相似文献   

17.
Confident peptide identification is one of the most important components in mass-spectrometry-based proteomics. We propose a method to properly combine the results from different database search methods to enhance the accuracy of peptide identifications. The database search methods included in our analysis are SEQUEST (v27 rev12), ProbID (v1.0), InsPecT (v20060505), Mascot (v2.1), X! Tandem (v2007.07.01.2), OMSSA (v2.0) and RAId_DbS. Using two data sets, one collected in profile mode and one collected in centroid mode, we tested the search performance of all 21 combinations of two search methods as well as all 35 possible combinations of three search methods. The results obtained from our study suggest that properly combining search methods does improve retrieval accuracy. In addition to performance results, we also describe the theoretical framework which in principle allows one to combine many independent scoring methods including de novo sequencing and spectral library searches. The correlations among different methods are also investigated in terms of common true positives, common false positives, and a global analysis. We find that the average correlation strength, between any pairwise combination of the seven methods studied, is usually smaller than the associated standard error. This indicates only weak correlation may be present among different methods and validates our approach in combining the search results. The usefulness of our approach is further confirmed by showing that the average cumulative number of false positive peptides agrees reasonably well with the combined E-value. The data related to this study are freely available upon request.  相似文献   

18.
In support of accurate neuropeptide identification in mass spectrometry experiments, novel Monte Carlo permutation testing was used to compute significance values. Testing was based on k-permuted decoy databases, where k denotes the number of permutations. These databases were integrated with a range of peptide identification indicators from three popular open-source database search software (OMSSA, Crux, and X! Tandem) to assess the statistical significance of neuropeptide spectra matches. Significance p-values were computed as the fraction of the sequences in the database with match indicator value better than or equal to the true target spectra. When applied to a test-bed of all known manually annotated mouse neuropeptides, permutation tests with k-permuted decoy databases identified up to 100% of the neuropeptides at p-value < 10−5. The permutation test p-values using hyperscore (X! Tandem), E-value (OMSSA) and Sp score (Crux) match indicators outperformed all other match indicators. The robust performance to detect peptides of the intuitive indicator “number of matched ions between the experimental and theoretical spectra” highlights the importance of considering this indicator when the p-value was borderline significant. Our findings suggest permutation decoy databases of size 1×105 are adequate to accurately detect neuropeptides and this can be exploited to increase the speed of the search. The straightforward Monte Carlo permutation testing (comparable to a zero order Markov model) can be easily combined with existing peptide identification software to enable accurate and effective neuropeptide detection. The source code is available at http://stagbeetle.animal.uiuc.edu/pepshop/MSMSpermutationtesting.  相似文献   

19.
As the speed of mass spectrometers, sophistication of sample fractionation, and complexity of experimental designs increase, the volume of tandem mass spectra requiring reliable automated analysis continues to grow. Software tools that quickly, effectively, and robustly determine the peptide associated with each spectrum with high confidence are sorely needed. Currently available tools that postprocess the output of sequence-database search engines use three techniques to distinguish the correct peptide identifications from the incorrect: statistical significance re-estimation, supervised machine learning scoring and prediction, and combining or merging of search engine results. We present a unifying framework that encompasses each of these techniques in a single model-free machine-learning framework that can be trained in an unsupervised manner. The predictor is trained on the fly for each new set of search results without user intervention, making it robust for different instruments, search engines, and search engine parameters. We demonstrate the performance of the technique using mixtures of known proteins and by using shuffled databases to estimate false discovery rates, from data acquired on three different instruments with two different ionization technologies. We show that this approach outperforms machine-learning techniques applied to a single search engine’s output, and demonstrate that combining search engine results provides additional benefit. We show that the performance of the commercial Mascot tool can be bested by the machine-learning combination of two open-source tools X!Tandem and OMSSA, but that the use of all three search engines boosts performance further still. The Peptide identification Arbiter by Machine Learning (PepArML) unsupervised, model-free, combining framework can be easily extended to support an arbitrary number of additional searches, search engines, or specialized peptide–spectrum match metrics for each spectrum data set. PepArML is open-source and is available from . Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号