首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fat is an atypical cadherin that controls both cell growth and planar polarity. Atrophin is a nuclear co-repressor that is also essential for planar polarity; however, it is not known what genes Atrophin controls in planar polarity, or how Atrophin activity is regulated during the establishment of planar polarity. We show that Atrophin binds to the cytoplasmic domain of Fat and that Atrophin mutants show strong genetic interactions with fat. We find that both Atrophin and fat clones in the eye have non-autonomous disruptions in planar polarity that are restricted to the polar border of clones and that there is rescue of planar polarity defects on the equatorial border of these clones. Both fat and Atrophin are required to control four-jointed expression. In addition our mosaic analysis demonstrates an enhanced requirement for Atrophin in the R3 photoreceptor. These data lead us to a model in which fat and Atrophin act twice in the determination of planar polarity in the eye: first in setting up positional information through the production of a planar polarity diffusible signal, and later in R3 fate determination.  相似文献   

3.
BACKGROUND: The atypical Fat cadherin has long been known to control cell proliferation and organ size in Drosophila, but the mechanism by which Fat controls these processes has remained elusive. A newly emerging signaling pathway that controls organ size during development is the Salvador/Warts/Hippo pathway. RESULTS: Here we demonstrate that Fat limits organ size by modulating activity of the Salvador/Warts/Hippo pathway. ft interacts genetically with positive and negative regulators of this pathway, and tissue lacking fat closely phenocopies tissue deficient for genes that normally promote Salvador/Warts/Hippo pathway activity. Cells lacking fat grow and proliferate more quickly than their wild-type counterparts and exhibit delayed cell-cycle exit as a result of elevated expression of Cyclin E. fat mutant cells display partial insensitivity to normal developmental apoptosis cues and express increased levels of the anti-apoptotic DIAP1 protein. Collectively, these defects lead to increased organ size and organism lethality in fat mutant animals. Fat modulates Salvador/Warts/Hippo pathway activity by promoting abundance and localization of Expanded protein at the apical membrane of epithelial tissues. CONCLUSIONS: Fat restricts organ size during Drosophila development via the Salvador/Warts/Hippo pathway. These studies aid our understanding of developmental organ size control and have implications for human hyperproliferative disorders, such as cancers.  相似文献   

4.
5.
6.
Jia K  Hart AC  Levine B 《Autophagy》2007,3(1):21-25
Expanded polyglutamine (polyQ) proteins aggregate intracellularly in Huntington's disease and other neurodegenerative disorders. The lysosomal degradation pathway, autophagy, is known to promote clearance of polyQ protein aggregates in cultured cells. Moreover, basal autophagy in neuronal cells in mice prevents neurodegeneration by suppressing the accumulation of abnormal intracellular proteins. However, it is not yet known whether autophagy genes play a role in vivo in protecting against disease caused by mutant aggregate-prone, expanded polyQ proteins. To examine this question, we used two models of polyQ-induced toxicity in C. elegans, including the expression of polyQ40 aggregates in muscle and the expression of a human huntingtin disease fragment containing a polyQ tract of 150 residues (Htn-Q150) in ASH sensory neurons. Here, we show that genetic inactivation of autophagy genes accelerates the accumulation of polyQ40 aggregates in C. elegans muscle cells and exacerbates polyQ40-induced muscle dysfunction. Autophagy gene inactivation also increases the accumulation of Htn-Q150 aggregates in C. elegans ASH sensory neurons and results in enhanced neurodegeneration. These data provide in vivo genetic evidence that autophagy genes suppress the accumulation of polyQ aggregates and protect cells from disease caused by polyQ toxicity.  相似文献   

7.
《Autophagy》2013,9(1):21-25
Expanded polyglutamine (polyQ) proteins aggregate intracellularly in Huntington’s disease and other neurodegenerative disorders. The lysosomal degradation pathway, autophagy, is known to promote clearance of polyQ protein aggregates in cultured cells. Moreover, basal autophagy in neuronal cells in mice prevents neurodegeneration by suppressing the accumulation of abnormal intracellular proteins. However, it is not yet known whether autophagy genes play a role in vivo in protecting against disease caused by mutant aggregate-prone, expanded polyQ proteins. To examine this question, we used two models of polyQ-induced toxicity in C. elegans, including the expression of polyQ40 aggregates in muscle and the expression of a human huntingtin disease fragment containing a polyQ tract of 150 residues (Htn-Q150) in ASH sensory neurons. Here, we show that genetic inactivation of autophagy genes accelerates the accumulation of polyQ40 aggregates in C. elegans muscle cells and exacerbates polyQ40-induced muscle dysfunction. Autophagy gene inactivation also increases the accumulation of Htn-Q150 aggregates in C. elegans ASH sensory neurons and results in enhanced neurodegeneration. These data provide in vivo genetic evidence that autophagy genes suppress the accumulation of polyQ aggregates and protect cells from disease caused by polyQ toxicity.  相似文献   

8.
MicroRNA pathways modulate polyglutamine-induced neurodegeneration   总被引:1,自引:0,他引:1  
Nine human neurodegenerative diseases are due to expansion of a CAG repeat- encoding glutamine within the open reading frame of the respective genes. Polyglutamine (polyQ) expansion confers dominant toxicity, resulting in neuronal degeneration. MicroRNAs (miRNAs) have been shown to modulate programmed cell death during development. To address whether miRNA pathways play a role in neurodegeneration, we tested whether genes critical for miRNA processing modulated toxicity induced by the spinocerebellar ataxia type 3 (SCA3) protein. These studies revealed a striking enhancement of polyQ toxicity upon reduction of miRNA processing in Drosophila and human cells. In parallel genetic screens, we identified the miRNA bantam (ban) as a potent modulator of both polyQ and tau toxicity in flies. Our studies suggest that ban functions downstream of toxicity of the SCA3 protein, to prevent degeneration. These findings indicate that miRNA pathways dramatically modulate polyQ- and tau-induced neurodegeneration, providing the foundation for new insight into therapeutics.  相似文献   

9.
A large number of neural and glial cell species differentiate from neuronal precursor cells during nervous system development. Two types of Drosophila optic lobe neurons, lamina and medulla neurons, are derived from the neuroepithelial (NE) cells of the outer optic anlagen. During larval development, epidermal growth factor receptor (EGFR)/Ras signaling sweeps the NE field from the medial edge and drives medulla neuroblast (NB) formation. This signal drives the transient expression of a proneural gene, lethal of scute, and we refer to its signal array as the "proneural wave," as it is the marker of the EGFR/Ras signaling front. In this study, we show that the atypical cadherin Fat and the downstream Hippo pathways regulate the transduction of EGFR/Ras signaling along the NE field and, thus, ensure the progress of NB differentiation. Fat/Hippo pathway mutation also disrupts the pattern formation of the medulla structure, which is associated with the regulation of neurogenesis. A candidate for the Fat ligand, Dachsous is expressed in the posterior optic lobe, and its mutation was observed to cause a similar phenotype as fat mutation, although in a regionally restricted manner. We also show that Dachsous functions as the ligand in this pathway and genetically interacts with Fat in the optic lobe. These findings provide new insights into the function of the Fat/Hippo pathway, which regulates the ordered progression of neurogenesis in the complex nervous system.  相似文献   

10.
BACKGROUND: The tight control of cell proliferation and cell death is essential to normal tissue development, and the loss of this control is a hallmark of cancers. Cell growth and cell death are coordinately regulated during development by the Hippo signaling pathway. The Hippo pathway consists of the Ste20 family kinase Hippo, the WW adaptor protein Salvador, and the NDR kinase Warts. Loss of Hippo signaling in Drosophila leads to enhanced cell proliferation and decreased apoptosis, resulting in massive tissue overgrowth through increased expression of targets such as Cyclin E and Diap1. The cytoskeletal proteins Merlin and Expanded colocalize at apical junctions and function redundantly upstream of Hippo. It is not clear how they regulate growth or how they are localized to apical junctions. RESULTS: We find that another Drosophila tumor-suppressor gene, the atypical cadherin fat, regulates both cell proliferation and cell death in developing imaginal discs. Loss of fat leads to increased Cyclin E and Diap1 expression, phenocopying loss of Hippo signaling. Ft can regulate Hippo phosphorylation, a measure of its activation, in tissue culture. Importantly, fat is needed for normal localization of Expanded at apical junctions in vivo. Genetic-epistasis experiments place fat with expanded in the Hippo pathway. CONCLUSIONS: Together, these data suggest that Fat functions as a cell-surface receptor for the Expanded branch of the conserved Hippo growth control pathway.  相似文献   

11.
Polyglutamine (polyQ) amyloid fibrils are observed in disease tissue and have been implicated as toxic agents responsible for neurodegeneration in expanded CAG repeat diseases such as Huntington's disease. Despite intensive efforts, the mechanism of amyloid toxicity remains unknown. As a novel approach to probing polyQ toxicity, we investigate here how some cellular and physical properties of polyQ amyloid vary with the chirality of the glutamine residues in the polyQ. We challenged PC12 cells with small amyloid fibrils composed of either l- or d-polyQ peptides and found that d-fibrils are as cytotoxic as l-fibrils. We also found using fluorescence microscopy that both aggregates effectively seed the aggregation of cell-produced l-polyQ proteins, suggesting a surprising lack of stereochemical restriction in seeded elongation of polyQ amyloid. To investigate this effect further, we studied chemically synthesized d- and l-polyQ in vitro. We found that, as expected, d-polyQ monomers are not recognized by proteins that recognize l-polyQ monomers. However, amyloid fibrils prepared from d-polyQ peptides can efficiently seed the aggregation of l-polyQ monomers in vitro, and vice versa. This result is consistent with our cell results on polyQ recruitment but is inconsistent with previous literature reports on the chiral specificity of amyloid seeding. This chiral cross-seeding can be rationalized by a model for seeded elongation featuring a “rippled β-sheet” interface between seed fibril and docked monomers of opposite chirality. The lack of chiral discrimination in polyQ amyloid cytotoxicity is consistent with several toxicity mechanisms, including recruitment of cellular polyQ proteins.  相似文献   

12.
13.
Polyglutamine (polyQ) diseases are genetically inherited neurodegenerative disorders. They are caused by mutations that result in polyQ expansions of particular proteins. Mutant proteins form intranuclear aggregates, induce cytotoxicity and cause neuronal cell death. Protein interaction data suggest that polyQ regions modulate interactions between coiled‐coil (CC) domains. In the case of the polyQ disease spinocerebellar ataxia type‐1 (SCA1), interacting proteins with CC domains further enhance aggregation and toxicity of mutant ataxin‐1 (ATXN1). Here, we suggest that CC partners interacting with the polyQ region of a mutant protein, increase its aggregation while partners that interact with a different region reduce the formation of aggregates. Computational analysis of genetic screens revealed that CC‐rich proteins are highly enriched among genes that enhance pathogenicity of polyQ proteins, supporting our hypothesis. We therefore suggest that blocking interactions between mutant polyQ proteins and their CC partners might constitute a promising preventive strategy against neurodegeneration.  相似文献   

14.
15.
Transcriptional abnormalities in Huntington disease   总被引:30,自引:0,他引:30  
  相似文献   

16.
17.
Spinal and bulbar muscular atrophy (SBMA) is an X-linked, adult-onset, neurodegenerative disorder affecting only males and is caused by expanded polyglutamine (polyQ) stretches in the N-terminal A/B domain of human androgen receptor (hAR). Although no overt phenotype was detected in adult fly eye photoreceptor neurons expressing mutant hAR (polyQ 52), ingestion of androgen or its known antagonists caused marked neurodegeneration with nuclear localization and structural alteration of the hAR mutant. Ligand-independent toxicity was detected with a truncated polyQ-expanded A/B domain alone, which was attenuated with cytosolic trapping by coexpression of the unliganded hAR E/F ligand binding domain. Thus, our findings suggest that the full binding of androgen to the polyQ-expanded hAR mutants leads to structural alteration with nuclear translocation that eventually results in the onset of SBMA in male patients.  相似文献   

18.
Zyxin links fat signaling to the hippo pathway   总被引:1,自引:0,他引:1  
Rauskolb C  Pan G  Reddy BV  Oh H  Irvine KD 《PLoS biology》2011,9(6):e1000624
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号