首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT. The dynamics of cytoplasmic streaming, retrograde translocation of externally bound particles and locomotion by Entamoeba invadens were compared. Locomoting amoebae were monopodial, exhibited fountain flow cytoplasmic streaming and translocated externally bound erythrocytes to the rear of cells. The rates of rearward flow of peripheral cytoplasmic vacuoles and of the externally bound particles were equal to the rate of cell forward locomotion. Rhodamine-phalloidin staining revealed a distinct cortical polymerized actin cytoskeleton. This was least evident about the periphery of the advancing pseudopod, increased in density toward the rear of the cell and was most concentrated in the uroid. A monoclonal anti-eucaryotic actin antibody, which recognized monomeric Entamoeba actin on immunoblots, stained trophozoites by indirect immunofluorescence throughout the cytoplasm, but not in the cortical regions stained by rhodamine-phalloidin. This and other evidence implied that the antibody recognized only unpolymerized actin in Entamoeba . We propose that locomotion, cytoplasmic streaming and translocation of externally bound particles are driven by a common actin-based mechanism in Entamoeba , possibly involving retrograde cortical actin flow and recycling.  相似文献   

2.
The dynamics of cytoplasmic streaming, retrograde translocation of externally bound particles and locomotion by Entamoeba invadens were compared. Locomoting amoebae were monopodial, exhibited fountain flow cytoplasmic streaming and translocated externally bound erythrocytes to the rear of cells. The rates of rearward flow of peripheral cytoplasmic vacuoles and of the externally bound particles were equal to the rate of cell forward locomotion. Rhodamine-phalloidin staining revealed a distinct cortical polymerized actin cytoskelton. This was least evident about the periphery of the advancing pseudopod, increased in density toward the rear of the cell and was most concentrated in the uroid. A monoclonal anti-eucaryotic actin antibody, which recognized monomeric Entamoeba actin on immunoblots, stained trophozoites by indirect immunofluorescence throughout the cytoplasm, but not in the cortical regions stained by rhodamine-phalloidin. This and other evidence implied that the antibody recognized only unpolymerized actin in Entamoeba. We propose that locomotion, cytoplasmic streaming and translocation of externally bound particles are driven by a common actin-based mechanism in Entamoeba, possibly involving retrograde cortical actin flow and recycling.  相似文献   

3.
Summary Effects of cytochalasin B and mycalolide-B on cytoplasmic streaming, organizations of actin filaments and the transvacuolar strand were studied in root hair cells ofHydrocharis, which shows reverse fountain streaming. Both toxins inhibited cytoplasmic streaming and destroyed the organizations of actin filaments and transvacuolar strands. However, we found a great difference between these toxins with respect to reversibility. The effects of cytochalasin B were reversible but not those of mycalolide B. The present results suggest that actin filaments work as a track of cytoplasmic streaming and as a cytoskeleton to maintain the transvacuolar strand. The usefulness of root hair cells ofHydrocharis in studying the dynamic organization of actin filaments of plant is discussed.Abbreviations CB cytochalasin B - DMSO dimethylsulfoxide - ML-B mycalolide B  相似文献   

4.
Cytoplasmic actin cables are the most prominent actin structures in plant cells, but the molecular mechanism underlying their formation is unknown. The function of these actin cables, which are proposed to modulate cytoplasmic streaming and intracellular movement of many organelles in plants, has not been studied by genetic means. Here, we show that Arabidopsis thaliana formin3 (AFH3) is an actin nucleation factor responsible for the formation of longitudinal actin cables in pollen tubes. The Arabidopsis AFH3 gene encodes a 785–amino acid polypeptide, which contains a formin homology 1 (FH1) and a FH2 domain. In vitro analysis revealed that the AFH3 FH1FH2 domains interact with the barbed end of actin filaments and have actin nucleation activity in the presence of G-actin or G actin-profilin. Overexpression of AFH3 in tobacco (Nicotiana tabacum) pollen tubes induced excessive actin cables, which extended into the tubes'' apices. Specific downregulation of AFH3 eliminated actin cables in Arabidopsis pollen tubes and reduced the level of actin polymers in pollen grains. This led to the disruption of the reverse fountain streaming pattern in pollen tubes, confirming a role for actin cables in the regulation of cytoplasmic streaming. Furthermore, these tubes became wide and short and swelled at their tips, suggesting that actin cables may regulate growth polarity in pollen tubes. Thus, AFH3 regulates the formation of actin cables, which are important for cytoplasmic streaming and polarized growth in pollen tubes.  相似文献   

5.
Furrowing in altered cell surfaces.   总被引:1,自引:0,他引:1  
Understanding the process which established the cell division mechanism requires analysis of the role of the responding surface as well as that of stimulatory subsurface structures. Cell surface was altered by the expansion which occurs during exovate formation. Exovates appear on the surface of fertilized Arbacia lixula, Paracentrotus lividus and Echinarachnius parma eggs in response to extreme flattening. They result from cytoplasmic outflow initiated in a very restricted portion of the egg surface. Observations of the formation process in pigmented A. lixula eggs revealed that the original surface may be expanded about 100 fold as the exovate swells. When exovates formed 15-30 minutes after fertilization contain the mitotic apparatus, they divide synchronously with flattened controls. If nucleated exovates are established after the beginning of first cleavage, furrows appear in ten minutes. Exovates established after the beginning of second cleavage develop furrows four minutes after the entrance of the the mitsotic apparatus. Cytoplasm beneath damaged exovate surfaces sometimes develops partial constrictions independently of the surface in the plane the furrow would have occupied. These results suggest that normal surface structure is unnecessary for furrow establishment and function.  相似文献   

6.
Summary We studied the mechanism controlling the organization of actin filaments (AFs) inHydrocharis root hair cells, in which reverse fountain streaming occurs. The distribution of AFs and microtubules (MTs) in root hair cells were analyzed by fluorescence microscopy and electron microscopy. AFs and MTs were found running in the longitudinal direction of the cell at the cortical region. AFs were observed in the transvacuolar strand, but not MTs. Ultrastructural studies revealed that AFs and MTs were colocalized and that MTs were closer to the plasma membrane than AFs. To examine if MTs regulate the organization of AFs, we carried out a double inhibitor experiment using cytochalasin B (CB) and propyzamide, which are inhibitors of AFs and MTs, respectively. CB reversibly inhibited cytoplasmic streaming while propyzamide alone had no effect on it. However, after treatment with both CB and propyzamide, removal of CB alone did not lead to recovery of cytoplasmic streaming. In these cells, AFs showed a meshwork structure. When propyzamide was also removed, cytoplasmic streaming and the original organization of AFs were recovered. These results strongly suggest that MTs are responsible for the organization of AFs inHydrocharis root hair cells.  相似文献   

7.
The effect of streaming speed on intercellular transport ofchloride has been studied using pairs of internodal cells ofChara. The rate of transport was measured by that fraction ofthe chloride that entered one internode which was transportedout of it into the cells of the node and the next internode.The speed of cytoplasmic streaming was altered by treating thefirst cell with cytochalasin B. The relative rate of intercellular transport depended markedlyon the streaming speed at all speeds up to those found in untreatedcells. The chloride influx into the treated cell did not dependon the streaming speed. It is concluded that the rate of intercellular transport oflow molecular weight solutes in Chara will be normally limitedby the rate at which cytoplasmic streaming brings solute tothe plasmodesmata, rather than by the diffusion permeabilityof the plasmodesmata. This conclusion may well apply to othercharophyte plants, and could in principle apply to higher plants.  相似文献   

8.
It has been reported that auxin accelerates cytoplasmic streamingat low concentrations and inhibits it at high concentrationsin several plant cells. In the present study, the mechanismof inhibition of cytoplasmic streaming by naphthalene aceticacid (NAA) at high concentrations was analyzed in root haircells of Hydrocharis. Because the effective concentration ofNAA inhibiting cytoplasmic streaming decreased when the extracellularpH (pHo) was lowered, it was hypothesized that cytoplasmic streamingis inhibited by NAA via acidification of the cytoplasm. Thispossibility was supported by the fact that acetic acid, pro-pionicacid and decanoic acid also inhibited cytoplasmic streamingat low pHo. Acidification of the cytoplasm disturbed the orientationof actin filaments (AFs) and disrupted cortical microtubules(MTs). The effects of NAA were reversible; both cytoplasmicstreaming and organization of the cytoskeleton were recoveredupon removal of NAA. During the recovery, tracks of cytoplasmicstreaming in the subcortical region temporarily showed a helicalpattern along the longitudinal direction of the cell. Fluorescencestaining of cytoskeletons revealed that both AFs and MTs alignedobliquely to the longitudinal axis of the cell. The helicalstreaming returned to the original reverse fountain streamingafter several hours. The simultaneous changes in the organizationof both cytoskeletons supported our previous report that theorganization of AFs is regulated by MTs. 1Author for correspondence. Fax, 81-7915-8-0175. e-mail: tomy-@sci.himeji-tech.ac.jp  相似文献   

9.
Cytoplasmic streaming in Characean internodes enables rapid intracellular transport and facilitates interactions between spatially remote cell regions. Cyclosis-mediated distant interactions might be particularly noticeable under nonuniform illumination, in the vicinity of light-shade borders where metabolites are transported between functionally distinct cell regions. In support of this notion, chlorophyll fluorescence parameters assessed on a microscopic area of Chara corallina internodal cells (area of inspection, AOI) responded to illumination of nearby regions in asymmetric manner depending on the vector of cytoplasmic streaming. When a beam of white light was applied through a 400-μm optic fiber upstream of AOI with regard to the direction of cytoplasmic streaming, non-photochemical quenching (NPQ) developed after a lag period in AOI exposed to moderate intensity light. Conversely, no NPQ was induced in the same cell area when the beam position was shifted to an equal distance downstream of AOI. Light-response curves for the efficiency of photosystem II electron transport in chloroplasts differed markedly depending on the illumination pattern (whole-cell versus small area illumination) but these differences were eliminated after the inhibition of cytoplasmic streaming with cytochalasin B. Localized illumination promoted chloroplast fluorescence responses to electrical plasmalemma excitation at high light intensities, which contrasts to the requirement of low to moderate irradiances for observation of the stimulus-response coupling under whole-cell illumination. The results indicate that different photosynthetic capacities of chloroplasts under general and localized illumination are related to lateral transport of nonevenly distributed cytoplasmic components between the cell parts with dominant photosynthetic and respiratory metabolism.  相似文献   

10.
《The Journal of cell biology》1994,127(6):1637-1653
We show here using time-lapse video tapes that cytoplasmic streaming causes nuclear migration along the anterior-posterior axis (axial expansion) in the early syncytial embryo of Drosophila melanogaster. Using confocal microscopy and labeled phalloidin we explore the distribution of F-actin during axial expansion. We find that a network of F-actin fibers fills the cytoplasm in the embryo. This actin network partially disassembles around the nuclei during axial expansion. Our observations of normal development, fixed embryos, and drug injection experiments indicate that disassembly of the actin network generates cytoplasmic movements. We suggest that the cell cycle regulates disassembly of the actin network, and that this process may be mediated directly or indirectly by the microtubules. The cytoplasmic movements we observe during axial expansion are very similar to fountain streaming in the pseudopod of amoebae, and by analogy with the pseudopod we propose a working hypothesis for axial expansion based on solation-contraction coupling within the actin network.  相似文献   

11.
Dodonova SO  Bulychev AA 《Protoplasma》2011,248(4):737-749
Cytoplasmic streaming in plant cells is an effective means of intracellular transport. The cycling of ions and metabolites between the cytosol and chloroplasts in illuminated cell regions may alter the cytoplasm composition, while directional flow of this modified cytoplasm may affect the plasma membrane and chloroplast activities in cell regions residing downstream of the illumination area. The impact of local illumination is predicted to be asymmetric because the cell regions located downstream and upstream in the cytoplasmic flow with respect to illumination area would be exposed to flowing cytoplasm whose solute composition was influenced by photosynthetic or dark metabolism. This hypothesis was checked by measuring H+-transporting activity of plasmalemma and chlorophyll fluorescence of chloroplasts in shaded regions of Chara corallina internodal cells near opposite borders of illuminated region (white light, beam width 2 mm). Both the apoplastic pH and chlorophyll fluorescence, recorded in shade regions at equal distances from illuminated area, exhibited asymmetric light-on responses depending on orientation of cytoplasmic streaming at the light–shade boundary. In the region where the cytoplasm flowed from illuminated area to the measurement area, the alkaline zone (a zone with high plasma membrane conductance) was formed within 4-min illumination, whereas no alkaline zone was observed in the area where cytoplasm approached the boundary from darkened regions. The results emphasize significance of cyclosis in lateral distribution of a functionally active intermediate capable of affecting the membrane transport across the plasmalemma, the functional activity of chloroplasts, and pattern formation in the plant cell.  相似文献   

12.
Lipochito-oligosaccharides, Nod factors secreted by Rhizobium bacteria, are signal molecules that induce deformation of root hairs of their host plant. A bioassay was used for deformation, and the cytological changes induced by specific lipochito-oligosaccharides in root hairs of Vicia sativa L. (vetch), grown between glass slides, were examined. In the assay, root hairs of a particular developmental stage, those that were terminating growth, were susceptible to deformation. These hairs obtained characteristics of tip-growing cells again: (i) a polar cytoplasmic organization and reverse fountain streaming, (ii) an accumulation of a spectrin-like antigen at the tip, and (iii) a tip-focused calcium gradient. Calcium gradients were visualized in Indo-1 loaded root hairs with UV confocal microscopy and ratio-imaging. The results show that hairs respond to the bacterial signal by recovering cytoplasmic polarity and exocytosis.  相似文献   

13.
Membrane protein redistribution during Xenopus first cleavage   总被引:7,自引:5,他引:2       下载免费PDF全文
A large increase in surface area must accompany formation of the amphibian embryo first cleavage furrow. The additional membrane for this areal expansion has been thought to be provided entirely from cytoplasmic stores during furrowing. We have radioiodinated surface proteins of fertilized, precleavage Xenopus laevis embryos and followed their redistribution during first cleavage by autoradiography. Near the end of first cleavage, membrane of the outer, pigmented surface of the embryo and a short band of membrane at the leading edge of the furrow displayed a high silver grain density, but the remainder of the furrow membrane was lightly labeled. The membrane of the cleavage furrow is thus mosaic in character; the membrane at the leading edge originates in part from the surface of the zygote, but most of the membrane lining the furrow walls is derived from a source inaccessible to surface radioiodination. The furrow membrane adjacent to the outer, pigmented surface consistently showed a very low silver grain density and was underlain by large membranous vesicles, suggesting that new membrane derived from cytoplasmic precursors is inserted primarily in this location, at least during the later phase of cleavage. Radioiodinated membrane proteins and surface-attached carbon particles, which lie in the path of the future furrow, contract toward the animal pole in the initial stages of cleavage while markers in other regions do not. We suggest that the domain of heavily labeled membrane at the leading edge of the definitive furrow contains the labeled elements that are gathered at the animal pole during the initial surface contraction and that they include membrane anchors for the underlying contractile ring of microfilaments.  相似文献   

14.
Recently, it was found that myosin generating very fast cytoplasmic streaming in Chara corallina has very high ATPase activity. To estimate the energy consumed by this myosin, its concentration in the internodal cells of C. corallina was determined by quantitative immunoblot. It was found that the concentration of Chara myosin was considerably high (200 nM) and the amount of ATP consumed by this myosin would exceed that supplied by dark respiration if all myosin molecules were fully activated by the interaction with actin. These results and model calculations suggested that the energy required to generate cytoplasmic streaming is very small and only one-hundredth of the existing myosin is enough to maintain the force for the streaming in the Chara cell.  相似文献   

15.
Ackers D  Buchen B  Hejnowicz Z  Sievers A 《Planta》2000,211(1):133-143
 The spatial pattern of acropetal and basipetal cytoplasmic streaming velocities has been studied by laser-Doppler-velocimetry (LDV) in the positively gravitropic (downward growing) rhizoids of Chara globularis Thuill. and for the first time in the negatively gravitropic (upward growing) protonemata. The LDV method proved to be precise and yielded reproducible results even when tiny differences in velocities were measured. In the apical parts of the streaming regions of both cell types, acropetal streaming was faster than basipetal streaming. Starting at the apical reversal point of streaming, the velocity increased basipetally with the distance from that point and became fairly constant close to the basal reversal point; subsequently, the velocity decreased slightly acropetally as the apical reversal point was again approached. There was no change in velocity at the basal reversal point. However, at the apical reversal point there was an abrupt decrease in velocity. The pattern of the ratio of acropetal to basipetal streaming velocity (VR) was a function of the relative distance of the site of measurement from the apical reversal point rather than a function of the absolute distance. Upon inversion of the rhizoids, the VR decreased on average by 3.8% (±0.4%), indicating that the effect of gravity on the streaming velocity was merely physical and without a physiological amplification. Rhizoids that had developed on the slowly rotating horizontal axis of a clinostat, and had never experienced a constant gravity vector, were similar to normally grown rhizoids with respect to VR pattern. In protonemata, the VR pattern was not significantly different from that in rhizoids although the direction of growth was inverse. In rhizoids, oryzalin caused the polar organization of the cell to disappear and nullified the differences in streaming velocities, and cytochalasin D decreased the velocity of basipetal streaming slightly more than that of acropetal streaming. Cyclopiazonic acid, known as an inhibitor of the Ca2+-ATPase of the endoplasmic reticulum, also reduced the streaming velocities in rhizoids, but had slightly more effect on the acropetal stream. It is possible that the endogenous difference in streaming velocities in both rhizoids and protonemata is caused by differences in the cytoskeletal organization of the opposing streams and/or loading of inhibitors (like Ca2+) from the apical/subapical zone into the basipetally streaming endoplasm. Received: 4 October 1999 / Accepted: 4 November 1999  相似文献   

16.
Plasmodia of the acellular slime mold, Physarum polycephalum, reveal a complex and changing pattern of birefringence when examined with a sensitive polarizing microscope. Positively birefringent fibrils are found throughout the ectoplasmic region of the plasmodium. In the larger strands they may be oriented parallel to the strand axis, or arranged circularly or spirally along the periphery of endoplasmic channels. Some fibrils exist for only a few minutes, others for a longer period. Some, particularly the circular fibrils, undergo changes in birefringence as they undergo cyclic deformations. In the ramifying strand region and the advancing margin there is a tendency for fibrils of various sizes to become organized into mutually orthogonal arrays. In some plasmodia the channel wall material immediately adjacent to the endoplasm has been found to be birefringent. The sign of endoplasmic birefringence is negative, and its magnitude is apparently constant over the streaming cycle. The pattern of plasmodial birefringence and its changes during the shuttle streaming cycle of Physarum are considered in the light of several models designed to explain either cytoplasmic streaming alone or the entire gamut of plasmodial motions. The results of this and other recent physical studies suggest that both streaming and the various other motions of the plasmodium may very likely be explained in terms of coordinated contractions taking place in the fibrils which are rendered visible in polarized light.  相似文献   

17.
Actin filaments are often arranged into higher-order structures, such as the longitudinal actin cables that generate the reverse fountain cytoplasmic streaming pattern present in pollen tubes. While several actin binding proteins have been implicated in the generation of these cables, the mechanisms that regulate their dynamic turnover remain largely unknown. Here, we show that Arabidopsis thaliana ACTIN-DEPOLYMERIZING FACTOR7 (ADF7) is required for turnover of longitudinal actin cables. In vitro biochemical analyses revealed that ADF7 is a typical ADF that prefers ADP-G-actin over ATP-G-actin. ADF7 inhibits nucleotide exchange on actin and severs filaments, but its filament severing and depolymerizing activities are less potent than those of the vegetative ADF1. ADF7 primarily decorates longitudinal actin cables in the shanks of pollen tubes. Consistent with this localization pattern, the severing frequency and depolymerization rate of filaments significantly decreased, while their maximum lifetime significantly increased, in adf7 pollen tube shanks. Furthermore, an ADF7–enhanced green fluorescent protein fusion with defective severing activity but normal G-actin binding activity could not complement adf7, providing compelling evidence that the severing activity of ADF7 is vital for its in vivo functions. These observations suggest that ADF7 evolved to promote turnover of longitudinal actin cables by severing actin filaments in pollen tubes.  相似文献   

18.
The midpoint of the mitotic apparatus is fixed in the future division plane long before the division mechanism develops, and this static relationship has been considered essential in speculations concerning division mechanism establishment. The purpose of the present investigation was to determine whether prevention of the static relationship affects the establishment process. Sand dollar eggs were reshaped into cylinders by confinement in an elastic capillary tube and, beginning about 20 min before cleavage, the mitotic apparatus was kept in reciprocal motion by alternately compressing the poles. When the movement was continuous and the excursions were 25, 50 or 75 μm, furrow activity developed near the midpoint of the region underlain by the mitotic apparatus. The acuteness of the furrow decreased as the distance the mitotic apparatus was moved increased. When the movement was made discontinuous by allowing the mitotic apparatus to pause at the end of each excursion, the results depended upon the duration of the pause. Pauses 30 s long resulted in a single furrow formed in the midpoint of the entire region underlain by the mitotic apparatus. When the pauses were 45s long, furrowing activity developed in both regions where the mitotic apparatus was allowed to pause. The results indicated that the normal static relation between the mitotic apparatus midpoint and the division plane is unnecessary for division mechanism establishment. They also demonstrate that a restricted region of contractile activity can be established in the cortex despite experimentally induced spreading and dilution of mitotic apparatus effect.  相似文献   

19.
From Cynops pyrrhogaster eggs just after the start of the first cleavage, a fragment of cortical layer with a small entire cleavage furrow was cut out. In the fragment, the cortex had already acquired susceptibility to and the subcortical cytoplasm had already accquired inducibility for furrow formation. The fragment was transplanted to the animal hemisphere of uncleaved fertilized eggs or eggs immediately after the onset of the first cleavage, from which a portion of the host cortex was removed. Observation was made on division of the graft, and on propagation of the cortical susceptibility and the cytoplasmic inducibility of the graft onto the host egg. The transplant divided succesively on the host egg in many cases, but the furrow of the graft never advanced to the surface of the host egg. Neither the cortical factor nor the cytoplasmic factor was transmitted across the graft to the recipient egg.  相似文献   

20.
After trypsinization and replating, BHK-21 cells spread and change shape from a rounded to a fibroblastic form. Time-lapse movies of spreading cells reveal that organelles are redistributed by saltatory movements from a juxtanuclear position into the expanding regions of cytoplasm. Bidirectional saltations are seen along the long axes of fully spread cells. As the spreading process progresses, the pattern of saltatory movements changes and the average speed of saltations increases from 1.7 MICROMETER/S during the early stages of spreading to 2.3 micrometer/s in fully spread cells. Correlative electron microscope studies indicate that the patterns of saltatory movements that lead to the redistribution of organelles during spreading are closely related to changes in the degree of assembly, organization, and distribution of microtubules and 10-nm filaments. Colchicine (10 microgram/ml of culture medium) reversibly disassembles the microtubule-10-nm filament complexes which form during cell spreading. This treatment results in the disappearance of microtubules and the appearance of a juxtanuclear accumulation of 10-nm filaments. These changes closely parallel an inhibition of saltatory movements. Within 30 min after the addition of the colchicine, pseudopod-like extensions form rapidly at the cell periphery, and adjacent organelles are seen to stream into them. The pseudopods contain extensive arrays of actinlike microfilament bundles which bind skeletal-muscle heavy meromyosin (HMM). Therefore, in the presence of colchicine, intracellular movements are altered from a normal saltatory pattern into a pattern reminiscent of the type of cytoplasmic streaming seen in amoeboid organisms. The streaming may reflect either the activity or the contractility of submembranous microfilament bundles. Streaming activity is not seen in cells containing well-organized microtubule-10-nm filament complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号