首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
  An anaerobic methanogenic microbial consortium, developed in a granular form, exhibited extensive dechlorination of defined polychlorinated biphenyl (PCB) congeners. A 2,3,4,5,6-pentachlorobiphenyl was dechlorinated to biphenyl via 2,3,4,6-tetrachlorobiphenyl, 2,4,6-trichlorobiphenyl, 2,4-dichlorobi-phenyl and 2-chlorobiphenyl (CB). Removal of chlorine atoms from all three positions of the biphenyl ring, i.e., ortho, meta and para, was observed during this reductive dechlorination process. Biphenyl was identified as one of the end-products of the reductive dechlorination by GC-MS. After 20 weeks, the concentrations of the dechlorination products 2,4,6-CB, 2,4-CB, 2-CB and biphenyl were 8.1, 41.2, 3.0 and 47.8 μM respectively, from an initial 105 μM 2,3,4,5,6-CB. The extent and pattern of the dechlorination were further confirmed by the dechlorination of lightly chlorinated congeners including 2-CB, 3-CB, 4-CB, 2,4-CB and 2,6-CB individually. This study indicates that the dechlorination of 2,3,4,5,6-CB to biphenyl is due to ortho, meta and para dechlorination by this anaerobic microbial consortium. Received: 30 April 1996 / Received revision: 26 July 1996 / Accepted: 5 August 1996  相似文献   

2.
Batch cultures of Pseudomonas fluorescens (strain P2a) maintained under carbon-limiting conditions in the presence of chrysene and other aromatics, survived starvation with no detectable changes in cell number for at least 4 months. P2a also demonstrated high dioxygenase levels after growth on benzoate and catechol. To characterize this strain further, early stationary-phase cells were resuspended in fresh mineral medium containing different aromatics, to evaluate enzyme expression in the presence of high-molecular-mass (isocyclic and heterocyclic) compounds. Results demonstrated effects on catechol 1,2-dioxygenase modulation by the model compounds used, confirming a low substrate specificity for this enzyme. The increases of specific activity observed in the presence of heterocyclic compounds were higher than those observed with isocyclic compounds. Received: 28 October 1996 / Accepted: 23 November 1996  相似文献   

3.
The biodegradation of an oily sludge is facilitated by a microbial tensio-active agent isolated from Pseudomonas aeruginosa USB-CS1. The optimal oil-in-water dispersion conditions are as follows: pH 6.5, temperature 30 °C, agitation 150 rev/min. The total hydrocarbon content shows that the biodegradation of the oily substrate mediated by the biosurfactant or by the biosurfactant–P. aeruginosa USB-CS1 complex is significantly higher after 30 days of incubation than that in other experimental conditions, by a mean of 70%. Substrate fractionation by column chromatography reveals that, if biosurfactant is present, saturated and aromatic compounds are more susceptible to microbial degradation than they are in other biodegradation systems by an average of 55% and 40% respectively. These results suggest that the stimulatory effects of the biosurfactant on the biodegradation of the oily substrate are limited over time by the loss of surface activity of the biosurfactant after 30 days of incubation. Received : 7 August 1996 / Received revision : 6 December 1996 / Accepted : 4 January 1997  相似文献   

4.
Pseudomonas sp. D7-4 and Pseudomonas sp. B13 FR1(pFRC20P) degraded mixtures of chloro- and methyl-substituted benzoates exclusively via an extended ortho pathway, whereas in Pseudomonas putida WR201 both ortho and meta fission were induced by mixtures of 3-chloro- and 3-methylbenzoate or even by 3-chlorobenzoate alone. The competition behaviour of these strains was compared in batch and in chemostat cultures. Despite misrouting of metabolites, strain WR201 was competitive, in a lot of the competition experiments, with mixtures of these substrates. Only in a narrow range of the mixing ratio of chloro- and methylbenzoate was the presence of both the meta and ortho pathways a disadvantage for competitiveness. Outside these ranges other attributes, such as high growth rates or short lag periods, of a respective strain were even more essential for one strain to outcompete another. Received: 13 February 1998 / Received revision: 28 April 1998 / Accepted: 30 April 1998  相似文献   

5.
Two Streptomyces strains, UAH 30 and UAH 51, have been shown to decolourise a paper-mill effluent obtained after semichemical alkaline pulping of wheat straw. Fractionation of the effluent decolourised by strains UAH 30 and UAH 51 showed that 60% and 80% respectively of the alkali-lignin fraction have been removed from the effluent after 7 days of growth. 13C NMR cross polarization and magic angle spinning (CPMAS) spectra of the alkali-lignin remaining in the effluent after decolourisation revealed a decrease in the relative amount of aromatic lignin units compared to that obtained from the untreated effluent along with a reduction in the ratio of syringyl:guaiacyl units. Gas chromatography/mass spectrometry analysis of the low-molecular-mass compounds extracted from the decolourised effluent revealed the presence of new aromatic lignin-related compounds that were not present in the untreated control effluent. This was linked to a general depolymerization of larger lignin molecules occurring during decolourisation by the two Streptomyces strains. Identification of low-molecular-mass aromatic compounds extracted from the decolourised effluent revealed only the presence of p-hydroxyphenyl units in effluents decolourised by the strain UAH 30 while p-hydroxyphenyl, guaiacyl and syringyl units were detected in effluents decolourised by Streptomyces strain UAH 51. The study indicates that, while decolourisation is a common feature of the two Streptomyces strains, the mechanisms involved in the degradation of the lignin fractions may be different and strain-specific. Received: 8 July 1996 / Received revision: 9 October 1996 / Accepted: 14 October 1996  相似文献   

6.
2,5-Dimethylpyrazine (2,5-DMP) and tetramethylpyrazine (TTMP) were produced using Bacillus subtilis IFO 3013 grown on soybeans. Solid-state cultivations were carried out either in 100-ml bottles or in a fixed-bed column reactor, both systems being at 27 °C. Optimization studies showed that the best way to produce the two above aroma compounds involved two separate processes. 2,5-DMP was obtained using soybeans enriched with 75 g threonine/kg initial dry weight (i.d.w.), giving 0.85 g metabolite/kg i.d.w. after 6 days. TTMP production involved addition of 90 g/kg i.d.w. acetoin to soybeans, and 2.5 g/kg i.d.w. was recovered after 14 days. These results demonstrated the suitability of solid-state cultivation for production of high-added-value compounds. Received: 30 September 1996 / Received revision: 23 December 1996 / Accepted: 30 December 1996  相似文献   

7.
The co-metabolism of citrate plus xylose by Leuconostoc mesenteroides subsp. mesenteroides results in a growth stimulation, an increase in d-lactate and acetate production and repression of ethanol production. This correlated well with the levels of key enzymes involved. A partial repression of alcohol dehydrogenase and a marked stimulation of acetate kinase were observed. High citrate bioconversion yields in diacetyl plus acetoin were obtained at pH 5.2 in batch (11.5%) or in chemostat (up to 17.4%) culture. In contrast, no diacetyl or acetoin was detected in citrate plus glucose fermentation. Received: 6 December 1996 / Received revision: 14 February 1997 / Accepted: 14 February 1997  相似文献   

8.
The mobilization of plasmids from gram-negative Escherichia coli to gram-positive Brevibacterium lactofermentum, mediated by P-type transfer functions, was used to construct disrupted mutants blocked specifically in the homoserine branch of the aspartate pathway. The mutant strain B. lactofermentum R31 showed an efficiency of conjugal transfer two to three orders of magnitude higher than that of the wild-type strain B.␣lactofermentum ATCC 13869. The hom- and thrB- disrupted mutants of B. lactofermentum ATCC 13869 were lysine overproducers. B. lactofermentum R31 mutants do not overproduce lysine because R31 is an alanine-overproducing strain and channels the pyruvate needed for lysine biosynthesis to the production of alanine. Received: 23 January 1996 / Received last revision: 28 July 1996 / Accepted: 5 August 1996  相似文献   

9.
2-Hydroxybenzothiazole (OBT) is present in wastewaters from the industrial production of the rubber vulcanization accelerator 2-mercaptobenzothiazole (MBT). We have achieved the first isolation of axenic bacterial cultures capable of the degradation of OBT and growth on this substrate as the sole source of carbon, nitrogen and energy. All isolates had similar characteristics corresponding to one particular isolate, which was studied in more detail and identified as Rhodococcus rhodochrous. The strains were also capable of degrading benzothiazole (BT) but not MBT or benzothiazole-2-sulphonate (BTSO3). OBT was degraded at a concentration of up to 600 mg · l−1. BT was toxic above 300 mg · l−1. MBT inhibited OBT degradation. Growth on OBT was not significantly different at pH values of between 6.3 and 7.9 or salt concentrations between 1 % and 3 %. In shake flasks the cells clumped together, which resulted in a lower rate of oxygen transfer and slower degradation as compared to cells grown on OBT in a stirred reactor. Received: 22 August 1996 / Received revision: 29 November 1996 / Accepted: 29 November 1996  相似文献   

10.
The influence of low temperature (5–29 °C) on the methanogenic activity of non-adapted digested sewage sludge and on temperature/leachate-adapted biomass was assayed by using municipal landfill leachate, intermediates of anaerobic degradation (propionate) and methane precursors (acetate, H2/CO2) as substrates. The temperature dependence of methanogenic activity could be described by Arrhenius-derived models. However, both substrate and adaptation affected the temperature dependence. The adaptation of biomass in a leachate-fed upflow anaerobic sludge-blanket reactor at approximately 20 °C for 4 months resulted in a sevenfold and fivefold increase of methanogenic activity at 11 °C and 22 °C respectively. Both acetate and H2/CO2 were methanized even at 5 °C. At 22 °C, methanogenic activities (acetate 4.8–84 mM) were 1.6–5.2 times higher than those at 11 °C. The half-velocity constant (K s) of acetate utilization at 11 °C was one-third of that at 22 °C while a similar K i was obtained at both temperatures. With propionate (1.1–5.5 mM) as substrate, meth‐anogenic activities at 11 °C were half those at 22 °C. Furthermore, the residual concentration of the substrates was not dependent on temperature. The results suggest that the adaptation of biomass enables the achievement of a high treatment capacity in the anaerobic process even under psychrophilic conditions. Received: 23 December 1996 / Received last revision: 18 June 1997 / Accepted: 23 June 1997  相似文献   

11.
E Grund  C Knorr    R Eichenlaub 《Applied microbiology》1990,56(5):1459-1464
Eight actinomycetes of the genera Amycolatopsis and Streptomyces were tested for the degradation of aromatic compounds by growth in a liquid medium containing benzoate, monohydroxylated benzoates, or quinate as the principal carbon source. Benzoate was converted to catechol. The key intermediate in the degradation of salicylate was either catechol or gentisate, while m-hydroxybenzoate was metabolized via gentisate or protocatechuate. p-Hydroxybenzoate and quinate were converted to protocatechuate. Catechol, gentisate, and protocatechuate were cleaved by catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, and protocatechuate 3,4-dioxygenase, respectively. The requirement for glutathione in the gentisate pathway was dependent on the substrate and the particular strain. The conversion of p-hydroxybenzoate to protocatechuate by p-hydroxybenzoate hydroxylase was gratuitously induced by all substrates that were metabolized via protocatechuate as an intermediate, while protocatechuate 3,4-dioxygenase was gratuitously induced by benzoate and salicylate in two Amycolatopsis strains.  相似文献   

12.
A phenol-degrading thermophilic bacterium, designated Bacillus sp. A2, was isolated from a water and mud sample from a hot spring in Iceland. The aerobic isolate grew optimally on phenol at 65 °C. At 70 °C, 85% of the optimal growth rate was still observed. No growth was observed at 40 °C and 75 °C. Bacillus sp. A2 is a gram-positive spore-forming rod. According to 16S rDNA analysis Bacillus sp. A2 is closely related to Bacillus stearothermophilus, Bacillus kaustophilus and Bacillus thermoleovorans. Bacillus sp. A2 degraded phenol completely in concentrations up to 5 mM. In addition, all three isomers of cresol were utilized as sole carbon and energy sources. The degradation of phenols proceeds via the meta-cleavage pathway and the enzymes involved in its degradation are constitutively expressed. Received: 13 May 1996 / Received revision: 29 July 1996 / Accepted: 12 August 1996  相似文献   

13.
  Tn4371 is a 55 kb transposon which encodes enzymes for the degradation of biphenyl and 4-chlorobiphenyl compounds into benzoate and 4-chlorobenzo-ate derivatives. We constructed a cosmid library of Tn4371 DNA. The bph genes involved in biphenyl/4-chlorobiphenyl degradation were found to be clustered in the middle of the transposon. Sequencing revealed an organisation of the bph genes similar to that previously found in Pseudomonas sp. KKS102, i.e. the bphEGF genes are located upstream of bphA1A2A3 and bphA4 is separated from bphA1A2A3 by bphBCD. Consensus sequences for σ54-associated RNA polymerase were found upstream of bphA1 and bphEGF. Plasmid RP4::Tn4371 was transferred into a mutant of Alcaligenes eutrophus H16 lacking σ54. In contrast to wild-type H16 exconjugants, the σ54 mutant exconjugants could not grow on biphenyl, indicating the dependence of Tn4371bph gene expression on σ54. The Tn4371-encoded bph pathway was activated when biphenyl and various biphenyl-like compounds were present in the growth medium. Preliminary observations indicate the presence of a region outside the catabolic genes downstream of bphA4 which is involved in mediating at least the basal expression of BphC. Received: 13 May 1996 / Accepted: 16 September 1996  相似文献   

14.
Eight actinomycetes of the genera Amycolatopsis and Streptomyces were tested for the degradation of aromatic compounds by growth in a liquid medium containing benzoate, monohydroxylated benzoates, or quinate as the principal carbon source. Benzoate was converted to catechol. The key intermediate in the degradation of salicylate was either catechol or gentisate, while m-hydroxybenzoate was metabolized via gentisate or protocatechuate. p-Hydroxybenzoate and quinate were converted to protocatechuate. Catechol, gentisate, and protocatechuate were cleaved by catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, and protocatechuate 3,4-dioxygenase, respectively. The requirement for glutathione in the gentisate pathway was dependent on the substrate and the particular strain. The conversion of p-hydroxybenzoate to protocatechuate by p-hydroxybenzoate hydroxylase was gratuitously induced by all substrates that were metabolized via protocatechuate as an intermediate, while protocatechuate 3,4-dioxygenase was gratuitously induced by benzoate and salicylate in two Amycolatopsis strains.  相似文献   

15.
Fructose and H2 were compared as electron donors for hydrogenation of carbon-carbon double bonds using Acetobacterium woodii. Caffeate was used as a model substrate. An electron donor was required and both fructose and H2 were suitable. With fructose as the donor, the K s for caffeate was 0.5 mM and the V max was 678 mmol kgdry weight −1 h−1.␣Fructose oxidation was coupled very efficiently to caffeate reduction by an alteration in the fructose fermentation so that acetate was no longer produced. Received: 24 June 1996 / Accepted: 1 July 1996  相似文献   

16.
The fermentability of commercial xylans and municipal waste hemicelluloses in the presence of Clostridium sp. (C.SAIV; ATCC 700188) has been evaluated. Teak, deal wood, banana stalk and bagasse of the municipal waste contained significant amounts (approx. 12 %–23 %) of hemicellulose. Under optimized growth conditions, the growth rate of C.SAIV was improved as indicated by an increase in the concentration of ethanol in the culture broth. Commercial xylans were utilized fairly efficiently and ethanol formed from larch wood xylan and bagasse hemicellulose was at least 64 mM. The amount of ethanol formed from the bagasse hemicellulose was at least three times higher than any other reported value. The current study also indicated that the source and composition of hemicellulose played an important role in determining the fermentability of the substrate for some microorganisms. Received: 19 June 1996 / Received revision: 22 October 1996 / Accepted: 25 October 1996  相似文献   

17.
Different possibilities for converting pregnenolone triacetate to prednisolone using immobilized preparations of Flavobacterium dehydrogenans, Curvularia lunata and Arthrobacter simpelex in a fixed-bed loop reactor were investigated. The effects of the carrier, substrate concentration, pH and temperature on the rate of the substrate conversion were studied also. The biotransformations were performed with a continuous or semicontinuous substrate supply. A convenient pathway for the formation of prednisolone is proposed on the basis of the results obtained. Received: 8 July 1996 / Accepted: 5 August 1996  相似文献   

18.
Rhodococcus equi Ac6 was found to express an inducible (S )-specific N-acetyl-1-phenylethylamine amidohydrolase. Optimal bacterial growth and amidohydrolase expression were both observed around pH 6.5. Purification of the enzyme to a single band in a Coomassie-blue-stained sodium dodecyl sulfate/polyacrylamide gel (SDS-PAGE) was achieved by ammonium sulfate precipitation of R. equi Ac6 crude extract and column chromatographies on Fractogel TSK Butyl-650(S) and Superose 12HR. At pH 7.0 and 30 °C the amidohydrolase had a half-life of around 350 days; at 44 °C it was only 10 min. Except for Ni2+ and, to some extent, Zn2+ and Co2+, the enzyme was neither strongly influenced by metal cations nor by chelating agents, but was inhibited by 95% at 0.1 mM phenylmethylsulfonyl fluoride. The molecular mass of the native enzyme was estimated to be 94 kDa by gel filtration and 50 kDa by SDS-PAGE, suggesting a dimeric structure. Specificity experiments revealed a spectrum of related N-acetylated compounds being hydrolyzed with variable enantiomeric selectivities. Received: 20 September 1996 / Received revision: 23 December 1996 / Accepted: 30 December 1996  相似文献   

19.
The degradation of olive mill wastewater by aerobic microorganisms has been investigated in a batch reactor, by conducting experiments where the initial concentration of organic matter, quantified by the chemical oxygen demand, and the initial biomass were varied. The evolution of the chemical oxygen demand, biomass and the total contents of phenolic and aromatic compounds were followed through each experiment. According to the Contois model, a kinetic expression for the substrate utilization rate is derived, and its biokinetic constants are evaluated. This final predicted equation agrees well with all the experimental data. Received: 12 June 1996 / Received revision: 11 September 1996 / Accepted: 13 September 1996  相似文献   

20.
Ralstonia eutropha (formerly Alcaligenes eutrophus) JMP 134 was continuously grown on phenol and 2,4-dichlorophenoxyacetate at elevated levels of stationary substrate concentration by using the nutristat principle in order to study the physiological impact exerted by these toxic substrates. Growth at stationary concentrations of both the substrates resulted in the reduction of growth efficiency and growth rate. The growth yield data revealed a pronounced dependence on the substrate concentration, and the growth yield increasingly diminished with rising substrate concentration. Inhibition was more pronounced with 2,4-dichlorophenoxyacetate, which reduced the growth yield coefficient by 50% at a substrate concentration of 0.1–0.25 mM. The same effect was obtained with phenol at about 5 mM. The growth rate profile had two distinct phases: after an initially strong reduction, the rate levelled-off at higher substrate concentrations. Standardizing the inhibition profiles, by taking into account the maximum effect after extrapolating the data to zero growth yield, revealed an almost identical pattern with both substrates, indicating some common mechanism. The growth yield data show that an increased amount of energy is required for both growth and maintenance. Homeostatic work was increased by a factor of 8 at 75% inhibition; growth collapsed once this amount of energy was no longer available. The effects are discussed with respect to the properties of these substrates functioning as potential uncouplers of energy conservation. Received: 5 June 1997 / Received revision: 7 July 1997 / Accepted: 12 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号