首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
小熊猫肾脏和输尿管的组织学研究   总被引:2,自引:0,他引:2  
米志平  杨智  李平 《四川动物》2003,22(4):241-243
小熊猫的肾脏呈蚕豆形,表面光滑不分叶,只有1个肾锥体和1个肾盏,无肾盂。肾脏皮质内可见皮质迷路和髓放线。皮质迷路内有近曲小管、远曲小管和肾小体等结构。髓放线内有近端小管直部和远端小管直部。髓质可分为外髓和内髓两个区域。外髓有较多的集合管断面,少量的远端小管直部和细段,较多的直小血管束。内髓部位有大量的细段和乳头管。各种泌尿小管之间有少量的疏松结缔组织构成的间质,间质内有丰富的毛细血管。输尿管横切面呈圆形或卵圆形,管腔呈不规则的裂隙状。管壁由粘膜、肌肉层和外膜组成。并与大熊猫肾脏和输尿管的组织结构作了比较研究。  相似文献   

2.
Angiotensin II receptors in the kidney   总被引:3,自引:0,他引:3  
Angiotensin II (AngII) receptors have been localized in rat kidney by using the high-affinity agonist analog 125I-labeled [Sar1]AngII as a probe for in vitro autoradiography. Receptors were associated with four morphologically distinct patterns of distribution. First, a high density of receptors occurs in glomeruli. These are diffusely distributed, consistent with a mesangial localization. AngII receptor density shows a cortical gradient, which is highest in superficial and midcortical glomeruli and lowest in juxtamedullary glomeruli. Receptors associated with both superficial and deep glomeruli show down-regulation during low-sodium intake. Second, low levels of tubular AngII binding were seen in the outer cortex. Third, a very high density of AngII receptors occurs in longitudinal bands in the inner zone of the outer medulla in association with vasa recta bundles. Receptors in this site also show down-regulation during low dietary sodium intake. Fourth, a moderate density of receptors occurs diffusely throughout the inner zone of the outer medulla in the interbundle areas. These results suggest that AngII exerts a number of different intrarenal regulatory actions. In addition to the known vascular, glomerular, and proximal tubular effects of AngII, these findings focus attention on possible actions of AngII in the renal medulla where it could regulate medullary blood flow and thereby modify the function of the countercurrent concentrating system.  相似文献   

3.
Using light and electron microscope autoradiography in vivo, the localization of 125I-(Arg 101-Tyr 126) atrial natriuretic factor (ANF)-binding sites was studied in the renal medulla of rats. At the light microscopic level, the autoradiographic reaction was mainly distributed in patches in the outer medulla, and followed the tubular architecture in the innermost part of the inner medulla. At the electron microscopic level, binding sites were mainly found in the outer medullary descending vasa recta and inner medullary collecting ducts. These results suggest that, in rats, the renal medulla may participate in the natriuresis and diuresis produced by ANF through vascular and tubular effects; the former by changing medullary blood flow at the level of descending vasa recta and the latter by acting on electrolyte and water transport at the level of collecting ducts.  相似文献   

4.
Examination of the gross and microscopic anatomy of the kidney of the West Indian manatee, Trichechus manatus, revealed that: (1) the medulla is about 6 times thicker than the cortex; (2) juxtamedullary glomeruli have a mean diameter 1.3 times greater than that of cortical glomeruli; (3) juxtamedullary glomeruli have 1.7 times as much volume as cortical glomeruli; (4) there are about twice as many cortical glomeruli as juxtamedullary glomeruli per square millimeter of cortical tissue, and (5) the vasa recta are closely juxtaposed to the thin loops of Henle in the outer medulla. Many of these results suggest an enhanced urine-concentrating ability in this species.  相似文献   

5.
Background: Medullary blood flow is via vasa recta capillaries, which possess contractile pericytes. In vitro studies using isolated descending vasa recta show that pericytes can constrict/dilate descending vasa recta when vasoactive substances are present. We describe a live kidney slice model in which pericyte-mediated vasa recta constriction/dilation can be visualized in situ. Methods: Confocal microscopy was used to image calcein, propidium iodide and Hoechst labelling in 'live' kidney slices, to determine tubular and vascular cell viability and morphology. DIC video-imaging of live kidney slices was employed to investigate pericyte-mediated real-time changes in vasa recta diameter. Results: Pericytes were identified on vasa recta and their morphology and density were characterized in the medulla. Pericyte-mediated changes in vasa recta diameter (10-30%) were evoked in response to bath application of vasoactive agents (norepinephrine, endothelin-1, angiotensin-II and prostaglandin E(2)) or by manipulating endogenous vasoactive signalling pathways (using tyramine, L-NAME, a cyclo-oxygenase (COX-1) inhibitor indomethacin, and ATP release). Conclusions: The live kidney slice model is a valid complementary technique for investigating vasa recta function in situ and the role of pericytes as regulators of vasa recta diameter. This technique may also be useful in exploring the role of tubulovascular crosstalk in regulation of medullary blood flow.  相似文献   

6.
Distribution of endothelin receptor subtypes ETA and ETB in the rat kidney.   总被引:2,自引:0,他引:2  
The endothelin (ET) receptor system is markedly involved in the regulation of renal function under both physiological and pathophysiological conditions. The present study determined the detailed cellular localization of both ET receptor subtypes, ET(A) and ET(B), in the vascular and tubular system of the rat kidney by immunofluorescence microscopy. In the vascular system we observed both ET(A) and ET(B) receptors in the media of interlobular arteries and afferent and efferent arterioles. In interlobar and arcuate arteries, only ET(A) receptors were present on vascular smooth muscle cells. ET(B) receptor immunoreactivity was sparse on endothelial cells of renal arteries, whereas there was strong labeling of peritubular and glomerular capillaries as well as vasa recta endothelium. ET(A) receptors were evident on glomerular mesangial cells and pericytes of descending vasa recta bundles. In the renal tubular system, ET(B) receptors were located in epithelial cells of proximal tubules and inner medullary collecting ducts, whereas ET(A) receptors were found in distal tubules and cortical collecting ducts. Distribution of ET(A) and ET(B) receptors in the vascular and tubular system of the rat kidney reported in the present study supports the concept that both ET receptor subtypes cooperate in mediating renal cortical vasoconstriction but exert differential and partially antagonistic effects on renal medullary function.  相似文献   

7.
Avian and mammalian kidneys can produce a urine hyperosmotic to the blood by means of a renal countercurrent system. Birds are uricotelic; mammals are ureotelic. It is proposed that the inner medulla present in mammalian, but not in avian kidneys serves specifically to accumulate urea in the inner and outer medulla. Among mammalian kidneys the degree to which urea accumulates in the inner medulla is inversely related to the complexity of the vascular bundles (in the outer medulla) and the cortical urea recycling index. A model is proposed for urea recycling via the vascular bundles. The renal pelvis varies in size among mammals. Its relative size is unrelated to the type of vascular bundles, cortical recycling index; or urea accumulation in the inner medulla. Since urine refluxes into the renal pelvis during rising urine flow only, the function of the pelvis could be that of bringing the more dilute urine into contact with the outer medulla and underlying capillaries, thereby aiding in reducing the urea concentration in outer and inner medulla during rising urine flow. The size of the renal pelvis may be related to the volume of the inner medulla. Other factors may also be involved.  相似文献   

8.
Summary The ability of the kidney to excrete sodium appears to depend on release of dopamine from intrarenal sources. In the present study, we have used immunohistochemistry to examine the possibility that renal dopaminergic nerves constitute one of these sources. We found that the sympathetic axons supplying cortical structures in human kidney contain tyrosine hydroxylase-like immunoreactivity but lack DOPA decarboxylase-like immunoreactivity. By contrast, the vasa recta arterioles of the renal medulla are supplied by varicose tyrosine hydroxylase-positive nerve fibres, some of which also contain DOPA decarboxylase. As DOPA decarboxylase has been demonstrated in other situations to be a selective marker for dopaminergic terminal axons, our results suggest the innervation of renal medullary blood vessels in man by both noradrenergic and dopaminergic sympathetic nerves.  相似文献   

9.
The mature renal medulla, the inner part of the kidney, consists of the medullary collecting ducts, loops of Henle, vasa recta and the interstitium. The unique spatial arrangement of these components is essential for the regulation of urine concentration and other specialized kidney functions. Thus, the proper and timely assembly of medulla constituents is a crucial morphogenetic event leading to the formation of a functioning metanephric kidney. Mechanisms that direct renal medulla formation are poorly understood. This review describes the current understanding of the key molecular and cellular mechanisms underlying morphological aspects of medulla formation. Given that hypoplasia of the renal medulla is a common manifestation of congenital obstructive nephropathy and other types of congenital anomalies of the kidney and urinary tract (CAKUT), better understanding of how disruptions in medulla formation are linked to CAKUT will enable improved diagnosis, treatment and prevention of CAKUT and their associated morbidity.  相似文献   

10.
《Organogenesis》2013,9(1):10-17
The mature renal medulla, the inner part of the kidney, consists of the medullary collecting ducts, loops of Henle, vasa recta and the interstitium. The unique spatial arrangement of these components is essential for the regulation of urine concentration and other specialized kidney functions. Thus, the proper and timely assembly of medulla constituents is a crucial morphogenetic event leading to the formation of a functioning metanephric kidney. Mechanisms that direct renal medulla formation are poorly understood. This review describes the current understanding of the key molecular and cellular mechanisms underlying morphological aspects of medulla formation. Given that hypoplasia of the renal medulla is a common manifestation of congenital obstructive nephropathy and other types of congenital anomalies of the kidney and urinary tract (CAKUT), better understanding of how disruptions in medulla formation are linked to CAKUT will enable improved diagnosis, treatment and prevention of CAKUT and their associated morbidity.  相似文献   

11.
The microcirculation of the renal medulla traps NaCl and urea deposited to the interstitium by the loops of Henle and collecting ducts. Theories have predicted that countercurrent exchanger efficiency is favored by high permeability to solute. In contrast to the conceptualization of vasa recta as simple "U-tube" diffusive exchangers, many findings have revealed surprising complexity. Tubular-vascular relationships in the outer and inner medulla differ markedly. The wall structure and transport properties of descending vasa recta (DVR) and ascending vasa recta (AVR) are very different. The recent discoveries of aquaporin-1 (AQP1) water channels and the facilitated urea carrier UTB in DVR endothelia show that transcellular as well as paracellular pathways are involved in equilibration of DVR plasma with the interstitium. Efflux of water across AQP1 excludes NaCl and urea, leading to the conclusion that both water abstraction and diffusion contribute to transmural equilibration. Recent theory predicts that loss of water from DVR to the interstitium favors optimization of urinary concentration by shunting water to AVR, secondarily lowering blood flow to the inner medulla. Finally, DVR are vasoactive, arteriolar microvessels that are anatomically positioned to regulate total and regional blood flow to the outer and inner medulla. In this review, we provide historical perspective, describe the current state of knowledge, and suggest areas that are in need of further exploration.  相似文献   

12.
Zusammenfassung Der architektonische Aufbau der Rattenniere wird bestimmt von den Gefäßen. Die Vasa interlobularia in der Rinde und die Gefäßbündel im Mark bilden jeweils die zentrale Achse einer architektonischen Einheit, um die in recht strenger Ordnung die Tubuli gelagert sind. Für die Rinde können wir die allgemein für die Säugetierniere bekannte Anordnung der Tubuli (v. Möllendorf, 1930) auch für die Rattenniere bestätigen: hier konnten wir keine prinzipiell neuen Befunde erheben. Anders im Nierenmark: hier verlaufen die arteriellen Vasa recta mit venösen Vasa recta zusammengelagert jeweils im Zentrum einer architektonischen Einheit. Darum gruppieren sich zuerst die absteigenden Schleifenschenkel zusammengelagert mit venösen Vasa recta. Die aufsteigenden Schleifenschenkel liegen entfernter von der Gefäßachse in Nachbarschaft der Sammelrohre und werden gemeinsam mit den Sammelrohren von den eigentlichen Kapillaren des Markes umsponnen. Obwohl viele wichtige Unterschiede zwischen Innenstreifen und Innenzone des Markes bestehen, ist der eben kurz zusammengefaßte Grundaufbau in beiden Markabschnitten gleich. Dem Außenstreifen fällt — rein architektonisch gesehen — die Mittlerrolle zwischen Rinde und Mark zu. Die sich aus dem architektonischen Aufbau ergebenden funktionellen Möglichkeiten werden ausführlich diskutiert.
Summary The intrarenal tubular pattern in albino rats is determined by the vessels. The interlobular vessels in the cortex and the vascular bundles in the medulla form the central axis of respectively one architectural unit, around which the tubules are arranged in regular patterns. As to the cortex we can confirm the well known arrangement of the tubules in the mammalian kidney (v. Möllendorff, 1930). As to the medulla, however, the arrangement of the tubules and their relations to the vessels have never been adequately presented. We tried to find out the positions of the different types of vessels (arterial and venous vasa recta, capillaries) and the de- and ascending limbs of Henle's loop also in the inner medulla in order to catch the histotopical arrangement more exactly. Thus, our studies have shown that the whole medulla arterial and venous vasa recta —lying together in bundles —form vascular cones, which begin in the subcortical zone and reach the tip of the papilla. Most of the descending limbs of Henle's loop are arranged in the periphery of these vascular structures alternating with venous vasa recta. The ascending limbs of Henle's loop are lying more distant from the vascular axis adjacent to the collecting tubules. Both structures—ascending limbs and collecting tubules — are lying together within the capillary plexuses of the outer and inner medulla. Although there are important differences between the outer and inner medulla, the just mentioned basic pattern is the same.A number of interesting functional aspects have become evident and are discussed in the text.


Herrn Professor Dr. med. et phil. H. Becher zum 70. Geburtstag in Verehrung gewidmet.

Ich danke der Gesellschaft zur Förderung der Westf. Wilhelms-Universität zu Münster für die Beihilfe zum Druck dieser Arbeit.  相似文献   

13.
The effects of prostaglandin (PG) E1, E2, A1, F1alpha, F2alpha or D2 on the rat renal cortical, outer medullary and inner medullary adenylate cyclase-cyclic AMP systems were examined. While high concentrations (8X10-4M) of each prostaglandin stimulated adenylate cyclase activity in each area of the kidney, PGE1 was the only prostaglandin to stimulate at 10-7M. PGA's were the only prostaglandins tested besides PGE's which stimulated adenylate cyclase at less than 10-4M. This effect of PGA's was limited to the outer medulla. PGD2 was the least stimulatory. Observations with renal slices yielded qualitatively similar results. The PGE's were the most potent in each area with PGA's only stimulatory in the outer medulla. O2 deprivation (5% O2) lowered the slice cyclic AMP content in each area of the kidney. In the cortex and outer medulla, prostaglandin mediated increases in cyclic AMP content were either lower or absent at 5% O2 compared to 95% O2. However, in the inner medulla PGE stimulation was observed only at 5% O2 and not 95% O2. No other prostaglandins were found to increase inner medullary cyclic AMP content at 95% or 5% O2. These results illustrate that the adenylate cyclase-cyclic AMP system responds uniquely to prostaglandins in each area of the kidney. Consideration of these results along with correlative observations suggests that inner medullary produced PGE's may act as local modulators of inner medullary adenylate cyclase.  相似文献   

14.
The ability of the kidney to excrete sodium appears to depend on release of dopamine from intrarenal sources. In the present study, we have used immunohistochemistry to examine the possibility that renal dopaminergic nerves constitute one of these sources. We found that the sympathetic axons supplying cortical structures in human kidney contain tyrosine hydroxylase-like immunoreactivity but lack DOPA decarboxylase-like immunoreactivity. By contrast, the vasa recta arterioles of the renal medulla are supplied by varicose tyrosine hydroxylase-positive nerve fibres, some of which also contain DOPA decarboxylase. As DOPA decarboxylase has been demonstrated in other situations to be a selective marker for dopaminergic terminal axons, our results suggest the innervation of renal medullary blood vessels in man by both noradrenergic and dopaminergic sympathetic nerves.  相似文献   

15.
目的 介绍一种新方法来明确NPR-A蛋白在大鼠肾组织的定位.方法 采用肾脏石蜡切片先行NPR-A免疫荧光染色,然后再行PAS或HE染色.结果 NPR-A免疫阳性物在大鼠肾组织主要沉积于皮质的近端小管、外髓的髓袢升支粗段以及内髓集合管,直小血管、肾小球、远曲小管和细段也有一定量的表达,而皮质及外髓集合管仅有少量的表达.结论 研究采用石蜡切片先行免疫荧光染色后再行PAS或HE染色,在不用或少用特异性抗体的情况下,成功的解决了NPR-A蛋白在大鼠肾组织表达的分布位置及细胞定位的难题.  相似文献   

16.
We extended a region-based mathematical model of the renal medulla of the rat kidney, previously developed by us, to represent new anatomic findings on the vascular architecture in the rat inner medulla (IM). In the outer medulla (OM), tubules and vessels are organized around tightly packed vascular bundles; in the IM, the organization is centered around collecting duct clusters. In particular, the model represents the separation of descending vasa recta from the descending limbs of loops of Henle, and the model represents a papillary segment of the descending thin limb that is water impermeable and highly urea permeable. Model results suggest that, despite the compartmentalization of IM blood flow, IM interstitial fluid composition is substantially more homogeneous compared with OM. We used the model to study medullary blood flow in antidiuresis and the effects of vascular countercurrent exchange. We also hypothesize that the terminal aquaporin-1 null segment of the long descending thin limbs may express a urea-Na(+) or urea-Cl(-) cotransporter. As urea diffuses from the urea-rich papillary interstitium into the descending thin limb luminal fluid, NaCl is secreted via the cotransporter against its concentration gradient. That NaCl is then reabsorbed near the loop bend, raising the interstitial fluid osmolality and promoting water reabsorption from the IM collecting ducts. Indeed, the model predicts that the presence of the urea-Na(+) or urea- Cl(-) cotransporter facilitates the cycling of NaCl within the IM and yields a loop-bend fluid composition consistent with experimental data.  相似文献   

17.
Recent anatomic findings indicate that in the upper inner medulla of the rodent kidney, tubules, and vessels are organized around clusters of collecting ducts (CDs). Within CD clusters, CDs and some of the ascending vasa recta (AVR) and ascending thin limbs (ATLs), when viewed in transverse sections, form interstitial nodal spaces, which are arrayed at structured intervals throughout the inner medulla. These spaces, or microdomains, are bordered on one side by a single CD, on the opposite side by one or more ATLs, and on the other two sides by AVR. To study the interactions among these CDs, ATLs, and AVR, we have developed a mathematical compartment model, which simulates steady-state solute exchange through the microdomain at a given inner medullary level. Fluid in all compartments contains Na(+), Cl(-), urea and, in the microdomain, negative fixed charges that represent macromolecules (e.g., hyaluronan) balanced by Na(+). Fluid entry into AVR is assumed to be driven by hydraulic and oncotic pressures. Model results suggest that the isolated microdomains facilitate solute and fluid mixing among the CDs, ATLs, and AVR, promote water withdrawal from CDs, and consequently may play an important role in generating the inner medullary osmotic gradient.  相似文献   

18.
It has become widely accepted that the osmolality gradient along the corticomedullary axis of the mammalian outer medulla is generated and sustained by a process of countercurrent multiplication: active NaCl absorption from thick ascending limbs is coupled with the counterflow configuration of the descending and ascending limbs of the loops of Henle to generate an axial osmolality gradient along the outer medulla. However, aspects of anatomic structure (e.g., the physical separation of the descending limbs of short loops of Henle from contiguous ascending limbs), recent physiologic experiments (e.g., those that suggest that the thin descending limbs of short loops of Henle have a low osmotic water permeability), and mathematical modeling studies (e.g., those that predict that water-permeable descending limbs of short loops are not required for the generation of an axial osmolality gradient) suggest that countercurrent multiplication may be an incomplete, or perhaps even erroneous, explanation. We propose an alternative explanation for the axial osmolality gradient: we regard the thick limbs as NaCl sources for the surrounding interstitium, and we hypothesize that the increasing axial osmolality gradient along the outer medulla is primarily sustained by an increasing ratio, as a function of increasing medullary depth, of NaCl absorption (from thick limbs) to water absorption (from thin descending limbs of long loops of Henle and, in antidiuresis, from collecting ducts). We further hypothesize that ascending vasa recta that are external to vascular bundles will carry, toward the cortex, an absorbate that at each medullary level is hyperosmotic relative to the adjacent interstitium.  相似文献   

19.
A model of countercurrent exchange has been developed to simulate transport of salt, urea and water among vasa recta and descending limbs of the loop of Henle in the inner medulla. These vessels are abstracted as three concentric cylinders: the inne one represents descending vasa recta, the middle one represents ascending vasa recta and the outer one represents descending limbs. The capillary plexus, which connects the ascending and descending vasa recta, is modeled as a series of well-mixe compartments. Multicomponent transport equations for the sytem are derived from steady state mass balances and simple passive flux relations. The resulting set of nonlinear equations are solved numerically by an iterative Gauss-Seidel algorithm with under-relaxation. Simulations yield the salt and urea concentrations as well as volume flow rates in all tubes and compartments. The simulations indicate that solute concentrations can increase monotonically toward the papillae even if all transport processes within the exchanger are passive and source fluxes decrease monotonically toward the papillae.  相似文献   

20.
The structure of the thumus in adult specimens of a marine teleost, the cling fish Sicyases sanguineus, has been studied by light and transmission electron microscopy. Most cling fishes have an outer thymus located beneath the opercular epithelium. A few of them, however, have a large inner thymus besides a poorly developed outer thymus. In the well-developed outer thymus of cling fish there are three different zones: outer cortex, inner cortex, and medulla. The inner cortex is similar to the cortical region of the thumus in other vertebrates, whereas the outer cortex is a specialized lympho-epithelial zone containing cystic cells (also present in medullary region) and true Hassall's corpuscles. In accordance with the development of the thymic parenchyma, the medullary or basal region may appear either like a true thymic medulla or like a subcapsular region. In the inner thymus, a subcapsular or peripheral "medullary" region and a central area (inverted cortex) show structural features like those of the medullary (basal) and deep cortical regions of the outer thymus, respectively. In addition to the above regions, sometimes there is a lymphomyeloid perithymic infiltration that often extends along connective tissue septa into the perivascular spaces of the gland. Reticuloepithelial, mesenchymal, and unidentified types of stromal cells within the thymus are described. Some erythrocytes, granulocytes, and monocytoid cells are found, but no plasma cells nor erythropoietic foci are evident. The probable significance of these findings is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号