首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quiescent Swiss 3T3 fibroblasts stimulated with epidermal growth factor and insulin showed large transient increases in c-myc mRNA and c-myc protein accumulation which were maximal at about 2 h after addition of the co-mitogens. When the cells were loaded with 0.1 mM of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) by transient permeabilisation immediately before mitogenic stimulation, the increase in c-myc mRNA was similar to that observed in unloaded cells but the corresponding c-myc protein peak was reduced by at least 95%. The GTP gamma S completely blocked incorporation of [35S]methionine into cell proteins for 3-4 h after addition of the mitogens, but not thereafter, and caused a delay in the subsequent onset of DNA synthesis by the same period. The data show that less than 5% of the early increase in c-myc protein normally observed after mitogenic stimulation is required for its obligatory role in the progression of cells to S phase implied by other evidence.  相似文献   

2.
The insulin-stimulated cyclic AMP phosphodiesterase from liver plasma membranes is shown to be activated upon incubation with guanine nucleotides in the presence of ATP. The non-hydrolysable analogue of ATP, adenylyl imidodiphosphate failed to substitute for ATP in achieving activation. GTP, its non-hydrolysable analogues p[NH]ppG and GTP-gamma-S, as well as GDP, all elicited activation. It is suggested that guanine nucleotides, and probably insulin, exert their effect on this enzyme through a distinct species of guanine nucleotide regulatory protein.  相似文献   

3.
Addition of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) to intact Chinese hamster lung fibroblasts (CCL39) depolarized by high K+ concentrations results in activation of phosphoinositide-specific phospholipase C (PLC) (at GTP gamma S concentrations greater than 0.1 mM), inhibition of adenylate cyclase (between 10 microM and 0.5 mM), and activation of adenylate cyclase (above 0.5 mM). Since GTP gamma S-induced activation of PLC is dramatically enhanced upon receptor-mediated stimulation of PLC by alpha-thrombin, we conclude that in depolarized CCL39 cells GTP gamma S directly activates various guanine nucleotide-binding regulatory proteins (G proteins) coupled to PLC (Gp(s)) and to adenylate cyclase (Gi and Gs). Pretreatment of cells with pertussis toxin strongly inhibits GTP gamma S-induced activation of PLC and inhibition of adenylate cyclase. GTP gamma S cannot be replaced by other nucleotides, except by guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which mimics after a lag period of 15-20 min all the effects of GTP gamma S, with the same concentration dependence and the same sensitivity to pertussis toxin. We suggest that GDP beta S is converted in cells into GTP beta S, which acts as GTP gamma S. Since cell viability is not affected by a transient depolarization, these observations provide a simple method to examine long-term effects of G protein activation on DNA synthesis. We show that a transient exposure of G0-arrested CCL39 cells to GTP gamma S or GDP beta S under depolarizing conditions is not sufficient by itself to induce a significant mitogenic response, but markedly potentiates the mitogenic action of fibroblast growth factor, a mitogen known to activate a receptor-tyrosine kinase. The potentiating effect is maximal after 60 min of pretreatment with 2 mM GTP gamma S. GDP beta S is equally efficient but only after a lag period of 15-20 min. Mitogenic effects of both guanine nucleotide analogs are suppressed by pertussis toxin. Since the activation of G proteins by GTP gamma S under these conditions vanishes after a few hours, we conclude that a transient activation of G proteins facilitates the transition G0----G1 in CCL39 cells, whereas tyrosine kinase-induced signals are sufficient to mediate the progression into S phase.  相似文献   

4.
FtsZ, a tubulin homologue, forms a cytokinetic ring at the site of cell division in prokaryotes. The ring is thought to consist of polymers that assemble in a strictly GTP-dependent way. GTP, but not guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma-S), has been shown to induce polymerization of FtsZ, whereas in vitro Ca2+ is known to inhibit the GTP hydrolysis activity of FtsZ. We have studied FtsZ dynamics at limiting GTP concentrations in the presence of 10 mM Ca2+. GTP and its non-hydrolysable analogue GTP-gamma-S bind FtsZ with similar affinity, whereas the non-hydrolysable analogue guanylyl-imidodiphosphate (GMP-PNP) is a poor substrate. Preformed FtsZ polymers can be stabilized by GTP-gamma-S and are destabilized by GDP. As more than 95% of the nucleotide associated with the FtsZ polymer is in the GDP form, it is concluded that GTP hydrolysis by itself does not trigger FtsZ polymer disassembly. Strikingly, GTP-gamma-S exchanges only a small portion of the FtsZ polymer-bound GDP. These data suggest that FtsZ polymers are stabilized by a small fraction of GTP-containing FtsZ subunits. These subunits may be located either throughout the polymer or at the polymer ends, forming a GTP cap similar to tubulin.  相似文献   

5.
Ribosomes complexed with synthetic mRNA and peptidyl-tRNA, ready for peptide release, were purified by gel filtration and used to study the function of release factor RF3 and guanine nucleotides in the termination of protein synthesis. The peptide-releasing activity of RF1 and RF2 in limiting concentrations was stimulated by the addition of RF3 and GTP, stimulated, though to a lesser extent, by RF3 and a non-hydrolysable GTP analogue, and inhibited by RF3 and GDP or RF3 without guanine nucleotide. With short incubation times allowing only a single catalytic cycle of RF1 or RF2, peptide release activity was independent of RF3 and guanine nucleotide. RF3 hydrolysis of GTP to GDP + P(i) was dependent only on ribosomes and not on RF1 or RF2. RF3 affected neither the rate of association of RF1 and RF2 with the ribosome nor the catalytic rate of peptide release. A model is proposed which explains how RF3 recycles RF1 and RF2 by displacing the factors from the ribosome after the release of peptide.  相似文献   

6.
The effects of neomycin, fluoride and the non-hydrolysable guanine nucleotide analogue GTP gamma S on the kinetics of cell-free activation of NADPH oxidase in membranes of resting human neutrophils were investigated. Arachidonate-mediated activation of the oxidase followed a first-order reaction course (kobs. = 0.39 min-1 at 26 degrees C). In the presence of NaF during the activation process, activity was enhanced while the activation rate was slightly reduced (kobs. = 0.25 min-1 at 26 degrees C). Neomycin blocked activation (half-maximal effect at 25 microM) without affecting rates of superoxide release by preactivated enzyme in vitro or in vivo. In spite of reduced specific activity neither the first-order rate constant of the activation nor the Km of the oxidase were altered by neomycin. Oxidase activated in the presence of GTP gamma S exhibited increased specific activity and unchanged Km; the course of the reaction deviated from first-order kinetics. Kinetic evidence is presented for two separate activation reactions: a GTP gamma S-independent, basal, first-order process and a GTP gamma S-dependent sigmoid activation process. The results are compatible with the existence in neutrophil membranes of two separate pools of dormant oxidase. An alternative scheme of the formation of two active forms of NADPH oxidase is also presented.  相似文献   

7.
K Weis  C Dingwall    A I Lamond 《The EMBO journal》1996,15(24):7120-7128
The small nuclear GTP binding protein Ran is required for transport of nuclear proteins through the nuclear pore complex (NPC). Although it is known that GTP hydrolysis by Ran is essential for this reaction, it has been unclear whether additional energy-consuming steps are also required. To uncouple the energy requirements for Ran from other nucleoside triphosphatases, we constructed a mutant derivative of Ran that has an altered nucleotide specificity from GTP to xanthosine 5' triphosphate. Using this Ran mutant, we demonstrate that nucleotide hydrolysis by Ran is sufficient to promote efficient nuclear protein import in vitro. Under these conditions, protein import could no longer be inhibited with non-hydrolysable nucleotide analogues, indicating that no Ran-independent energy-requiring steps are essential for the protein translocation reaction through the NPC. We further provide evidence that nuclear protein import requires Ran in the GDP form in the cytoplasm. This suggests that a coordinated exchange reaction from Ran-GDP to Ran-GTP at the pore is necessary for translocation into the nucleus.  相似文献   

8.
Activation of the NADPH oxidase was examined in electrically permeabilized human neutrophils exposed to non-hydrolysable guanine nucleotides. Guanosine 5'-[gamma-thio]triphosphate (GTP[S]) induced a marked increase in the rate of O2 consumption, which was partially resistant to staurosporine, an inhibitor of protein kinase C, under conditions where the response to diacylglycerol was virtually abolished. The respiratory burst elicited by GTP[S] was dependent on the presence of ATP and Mg2+, suggesting involvement of phosphorylation reactions. Accordingly, phosphoprotein formation was greatly stimulated by the guanine nucleotide. The polypeptide phosphorylation pattern induced by GTP[S] was similar to, but not identical with, that observed with diacylglycerol, indicating the activation of kinases other than protein kinase C by the guanine nucleotide. The possible involvement of tyrosine kinases was assessed by immunoblotting using anti-phosphotyrosine antibodies. Treatment of electroporated cells with GTP[S] stimulated the accumulation of tyrosine-phosphorylated proteins. This effect was not induced by diacylglycerol, indicating that tyrosine phosphorylation is not secondary to stimulation of protein kinase C. The results indicate that, in neutrophils, activated G-proteins can stimulate tyrosine kinase and/or inhibit tyrosine phosphatase activity. Changes in the amounts of tyrosine-phosphorylated proteins may signal activation of the respiratory burst.  相似文献   

9.
X-linked-inhibitor-of-apoptosis-protein (XIAP) is the most potent intracellular inhibitor of caspases-9, -3 and -7. While highly elevated XIAP levels reduce the apoptotic response to various stimuli, the potency of physiological XIAP expression to control caspase activation and the consequences of XIAP deficiency on apoptosis execution remain controversial. We therefore analyzed parental and XIAP-deficient DLD-1 and HCT-116 colon cancer cells by employing fluorescence-based single-cell imaging of mitochondrial permeabilisation and effector caspase activation. Our results demonstrate that physiological XIAP expression maintains a transient "off"-state for effector caspase activation following mitochondrial permeabilisation. Loss of XIAP expression instead accelerated the caspase activation response, but did not enhance the measured caspase activity. Apoptosis execution kinetics were independent of activating the intrinsic or extrinsic pathway by either staurosporine or TRAIL, and corresponded to computational systems analyses of caspase activation dynamics. We confirmed a protective role of XIAP upstream of mitochondrial permeabilisation during TRAIL-induced apoptosis, however, once mitochondria permeabilised ultimately no cell could escape effector caspase activation, regardless of potential cell-to-cell variability within the populations or the presence of XIAP. Our study provides comprehensive kinetic and mechanistic insight into the rapid molecular dynamics during apoptosis execution in the presence or absence of physiological XIAP expression.  相似文献   

10.
Microtubules induced by the binding of GTP or of a non-hydrolysable analog of GTP onto the exchangeable site of tubulin appear very similar according to electron microscopy and polymerisation kinetics criteria. However, we show here that the exchangeable sites or “E” sites of the tubulin subunits remain available for nucleotide exchange inside the GMP-PCP-microtubules contrary to the “E” sites inside the GDP-microtubules. Moreover, under specific conditions, GMP-PCP induces the polymerisation of tubulin into a bidimensional, pseudocrystallin structure. Such a “crystallisation” is inhibited by GTP and GDP.  相似文献   

11.
In eukaryotes, termination of mRNA translation is triggered by the essential polypeptide chain release factors eRF1, recognizing all three stop codons, and eRF3, a member of the GTPase superfamily with a role that has remained opaque. We have studied the kinetic and thermodynamic parameters of the interactions between eRF3 and GTP, GDP and the non-hydrolysable GTP analogue GDPNP in the presence (K(D)(GDP)=1.3+/-0.2 muM, K(D)(GTP) approximately 200 muM and K(D)(GDPNP)>160 muM) as well as absence (K(D)(GDP)=1.9+/-0.3 muM, K(D)(GTP) 0.7+/-0.2 muM and K(D)(GDPNP) approximately 200 muM) of eRF1. From the present data we propose that (i) free eRF3 has a strong preference to bind GDP compared to GTP (ii) eRF3 in complex with eRF1 has much stronger affinity to GTP than free eRF3 (iii) eRF3 in complex with PABP has weak affinity to GTP (iv) eRF3 in complex with eRF1 does not have strong affinity to GDPNP, implying that GDPNP is a poor analogue of GTP for eRF3 binding.  相似文献   

12.
The role of guanine nucleotide binding regulatory proteins (G proteins) in the regulation of phosphorylation of the gamma subunit of the CD3 antigen has been examined. CD3 gamma chain phosphorylation in isolated T cell microsomes was stimulated by the G protein activator guanosine 5'-0 thiotriphosphate (GTP gamma S), but cyclic adenosine monophosphate and guanosine 5'-diphosphate were ineffective at inducing gamma chain phosphorylation. The effect of GTP gamma S was rapid and transient; a half maximal effect was observed with 50 microM of the nucleotide. gamma polypeptide phosphorylated in vitro in GTP gamma S stimulated microsomes incorporated phosphate on Serines 123 and 126. These data are consistent with the involvement of a G protein in the signalling mechanisms that regulate the phosphorylation of the CD3 gamma chain.  相似文献   

13.
J M Stein  B R Martin 《FEBS letters》1984,165(2):290-292
The effect of carbacyclin, a chemically stable analogue of prostacyclin, on the activity of adenylate cyclase in platelet membranes was measured, and compared with the effect of PGE1. When GTP was added in concentrations up to 10 microM the activation of adenylate cyclase by carbacyclin was increased, whereas higher concentrations of GTP were inhibitory. The addition of a non-hydrolysable analogue of GDP, guanosine 5'-[beta-thio]diphosphate (GDP[beta S] ) resulted in a dose-dependent inhibition of adenylate cyclase activation by carbacyclin; this inhibition was relieved by adding increased amounts of GTP.  相似文献   

14.
Amoeba of Dictyostelium discoideum show a rapid, transient cGMP synthesis in response to chemotactic stimulation. Using Mg(2+)-GTP as a substrate, guanylate cyclase (E.C. 4.6.1.2.) activity is found exclusively in the particulate fraction of Dictyostelium cells. Here we show that the activity is dependent on the presence of the non-hydrolysable GTP-analogue GTP gamma S, which itself is only a poor substrate for the enzyme under the prevailing conditions. Evidence is presented that a transient exposure of the enzyme to GTP gamma S is sufficient to constitutively activate the enzyme. GTP gamma S-dependent activity is found to require a factor that can be separated from the enzyme by washing the particulate fraction with low salt buffer. Addition of the soluble cell fraction to these washed membranes restores enzyme activity.  相似文献   

15.
T Asano  E M Ross 《Biochemistry》1984,23(23):5467-5471
The stimulatory GTP-binding protein of adenylate cyclase, Gs, and beta-adrenergic receptors were reconstituted into unilamellar phospholipid vesicles. The kinetics of the quasiirreversible binding of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) to Gs, equivalent to Gs activation by nucleotide, was studied with respect to the stimulation of this process by beta-adrenergic agonists and Mg2+. The rate of GTP gamma S binding displayed apparent first-order kinetics over a wide range of nucleotide, agonist, and Mg2+ concentrations. In the absence of agonist, the apparent first-order rate constant, kapp, was 0.17-0.34 min-1 and did not vary significantly with the concentration of nucleotide. At 50 mM MgCl2, kapp increased somewhat, to 0.26-0.41 min-1, and remained invariant with the nucleotide concentration. In the presence of agonist, kapp was dependent on nucleotide concentration. At 10(-9) M GTP gamma S, the addition of (-)-isoproterenol caused at most a 2-fold stimulation of kapp. However, kapp measured in the presence of isoproterenol increased as an apparently saturable function of the GTP gamma S concentration, such that isoproterenol caused a 17-fold increase in kapp at 1 microM GTP gamma S. The effect of isoproterenol on kapp also appeared to saturate at high isoproterenol concentration, yielding a kapp approximately 6 min-1 at high concentrations of both nucleotide and agonist. These data suggest that the receptor-agonist complex acts by increasing the rate of conversion of a lower affinity Gs-GTP gamma S complex to the stable activated state.  相似文献   

16.
Rapid activation of ornithine decarboxylase is one of the earliest recognized events during induction of a mitogenic response in human T lymphocytes. Here we show that the non-hydrolysable GTP analogues guanine-5-(gamma-thio)trisphosphate and guanylyl-5-imidodiphosphate, introduced into human T cells by means of a transient membrane permeabilization technique, can replace an external mitogenic ligand, such as concanavalin A, in inducing early ornithine decarboxylase activity. Neomycin inhibits this rapid activation at concentrations known to bind to phosphoinositides. One of the two compounds formed in polyphosphoinositide breakdown, inositol-1,4,5-trisphosphate, also induces ornithine decarboxylase activity. The other, diacylglycerol, apparently does not, since the phorbol ester, tetradecanoyl phorbol acetate, which is thought to mimic the action of diacylglycerols, does not alter basal ornithine decarboxylase activity in T cells until several hours after administration. These findings indicate that guanine nucleotide-binding regulatory (G-) protein(s) participates in the transduction of the mitogenic signal. The intracellular target system for this G-protein may include phosphoinositide breakdown and generation of inositoltrisphosphate, which might be involved in the early activation of ornithine decarboxylase.  相似文献   

17.
The signal recognition particle (SRP) and its conjugate receptor (SR) mediate cotranslational targeting of a subclass of proteins destined for secretion to the endoplasmic reticulum membrane in eukaryotes or to the plasma membrane in prokaryotes. Conserved active site residues in the GTPase domains of both SRP and SR mediate discrete conformational changes during formation and dissociation of the SRP.SR complex. Here, we describe structures of the prokaryotic SR, FtsY, as an apo protein and in two different complexes with a non-hydrolysable GTP analog (GMPPNP). These structures reveal intermediate conformations of FtsY containing GMPPNP and explain how the conserved active site residues position the nucleotide into a non-catalytic conformation. The basis for the lower specificity of binding of nucleotide in FtsY prior to heterodimerization with the SRP conjugate Ffh is also shown. We propose that these structural changes represent discrete conformational states assumed by FtsY during targeting complex formation and dissociation.  相似文献   

18.
Introducing non-hydrolysable analogues of GTP into the cytosolic compartment of mast cells results in exocytotic secretion through the activation of GTP binding proteins. The identity and mechanism of action of these proteins are not established. We have investigated the effects of Rho GDP dissociation inhibitor (RhoGDI) on exocytosis induced by guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) in rat mast cells, introducing the protein into cells by means of a patch pipette and recording the progress of exocytosis by monitoring cell capacitance. To allow time for the protein to enter the cells and find its correct location, stimulation was provided 5-10 min after patch rupture by photolysing caged GTP-gamma-S included in the pipette solution. When bovine RhoGDI was introduced into mast cells, exocytosis was inhibited at concentrations of 200-400 nM for native protein and 800 nM to 8 microM for the recombinant form. Protein denatured by heat or N-ethylmaleimide treatment did not inhibit. In permeabilized cells, recombinant RhoGDI increased the rate at which cells lose their ability to respond to GTP-gamma-S. These data demonstrate that one or more small GTP binding proteins of the Rho family has a central role in the exocytotic mechanism in mast cells.  相似文献   

19.
In permeabilized human T lymphocytes, phospholipase C (PLC)-mediated metabolism of polyphosphatidylinositols can be stimulated by triggering the T cell antigen receptor/CD3 antigen complex (Ti/CD3) with the CD3 antibody UCHT1 or by activation of G proteins with the non-hydrolyzable guanine nucleotide analogue, guanosine 5'-O-(3-thiotrisphosphate) (GTP[S]). Ti/CD3 induction of inositol phosphate production demonstrated no dependence on exogenous guanine nucleotides. Furthermore, Ti/CD3 stimulation did not influence the kinetics or dose-response of GTP[S]-induced inositol phosphate production, suggesting that the Ti/CD3 complex does not regulate guanine nucleotide exchange on the G protein pool stimulated by GTP[S]. These data indicate that the Ti/CD3 complex is not G protein-linked to PLC in a manner analogous to the G protein linkage of receptors to adenylate cyclase. However, the inhibitory guanine nucleotide, GDP, antagonizes not only GTP[S]-induced polyphosphatidylinositol hydrolysis but also UCHT1-induced inositol phosphate production. These data infer that a G protein can modulate the coupling of the Ti/CD3 complex to PLC and that there may be some "cross-talk" between Ti/CD3 and G protein PLC coupling mechanisms.  相似文献   

20.
Membranes prepared from DMSO-differentiated HL60 cells labeled with [3H]inositol hydrolyze polyphosphoinositides in a Ca2+-dependent manner, generating inositol 1,4-bisphosphate (IP2) and inositol 1,4,5-trisphosphate (IP3). Incubation of membranes with GTP or GTP gamma S reduces the concentration of Ca2+ required for activation. This nucleotide effect is potentiated by formyl-Met-Leu-Phe (FMLP). Pertussis toxin inhibits FMLP-induced augmentation, but not the induction of IP2/IP3 formation by GTP or GTP gamma S. These results suggest that differentiated HL60 cells contain a membrane-associated phospholipase C that degrades polyphosphoinositides and that activation of this enzyme is mediated by at least two guanine nucleotide binding proteins, one of which is linked to FMLP receptors and is pertussis toxin sensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号