首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
The effect of intravenous cloprostenol treatment at the time of insemination on reproductive performance was consecutively evaluated in three different subpopulations of high producing lactating dairy cows: Study (1) early postpartum synchronized and fixed-time inseminated (about 50 days in milk) cows (n = 379: 187 control and 192 treated cows); Study (2) presumed high fertility cows first inseminated between 90 and 120 days postpartum (n = 248: 124 control and 124 treated cows); and Study (3) heat stressed repeat breeder cows (n = 183: 93 control and 90 treated cows). Data were analyzed using multiple regression methods. Study 1: Parity (primiparous versus multiparous), milk production, body condition score at AI, insemination season (cool versus warm period) and treatment were included in the analysis as potential factors affecting ovulation, double ovulation, return to estrus, and pregnancy to first AI and to second AI (first AI plus return AI) rates. Logistic regression analysis indicated that the final model for ovulation rate only included the interaction (P = 0.002) between insemination season and treatment. Cloprostenol treatment at insemination led to a 4.2-fold increase in the ovulation rate in cows inseminated during the warm period. There were no significant effects of treatment, parity, milk production, body score or the insemination season on the return to estrus rate. The only variables included in the final logistic model for double ovulation and pregnancy to first AI rates were treatment and season, respectively. Treatment led to a 2.6-fold increase (P = 0.001) in the double ovulation rate, whereas cows inseminated in the warm period were 2.1 times less likely (P = 0.007) to become pregnant at first AI compared to those inseminated in the cool season. The variables included in the final logistic model for the pregnancy rate to second AI were treatment and season. Cloprostenol given at AI increased the risk of pregnancy 1.9 times (P = 0.002), and cows inseminated during the warm season were two times less likely to become pregnant (P = 0.003). No significant interactions were found among these three dependent variables (double ovulation and pregnancy to first and to second AI rates). Study 2: Logistic regression analysis of all the dependent variables: return to estrus, and pregnancy to first and to second AI (first AI plus return to AI) rates indicated no significant effects of treatment, parity, days in milk, milk production or body score at AI. No significant interactions were found. Study 3: The final model for the pregnancy rate only included the interaction between parity (primiparous versus multiparous) and treatment. Days in milk, milk production and insemination number showed no significant effect on pregnancy rate. Cloprostenol treatment at insemination increased the pregnancy rate in primiparous repeat breeder cows (odds ratio: 3.6). The treatment group and parity showed significant (P < 0.0001) interaction. This interaction suggests that cloprostenol treatment of primiparous cows at insemination might enhance pregnancy yet have no effect in multiparous cows. Our findings indicate that cloprostenol administered at insemination promotes ovulation and double ovulation in lactating dairy cows. Cloprostenol treatment showed no benefit in cows with acceptable reproductive performance, suggesting that cloprostenol treatment at AI may only be useful in cows in which stress factors affect ovulation and in repeat breeder cows.  相似文献   

2.
The objective was to compare two protocols for synchronizing ovulation in lactating Holstein cows submitted to timed AI (TAI) or timed ET (TET). Within each farm (n = 8), cows (n = 883; mean ± SEM 166.24 ± 3.27 d postpartum, yielding 36.8 ± 0.34 kg of milk/d) were randomly assigned to receive either: 1) an intravaginal progesterone insert (CIDR®) with 1.9 g of progesterone + GnRH on Day -10, CIDR® withdrawal + PGF2α on Day -3, and 1 mg estradiol cypionate on Day -2 (treatment GP-P-E; nTAI = 180; nTET = 260); or 2) a CIDR® insert + 2 mg estradiol benzoate on Day -10, PGF2α on Day -3, CIDR® withdrawal + 1 mg estradiol cypionate on Day -2 (treatment EP-P-E; nTAI = 174; nTET = 269). Cows were subsequently randomly assigned to receive either TAI on Day 0 or TET on Day 7. Serum progesterone concentration on Day -3 was greater in GP-P-E than in EP-P-E (2.89 ± 0.15 vs 2.29 ± 0.15 ng/mL; P < 0.01), with no significant effect of group on serum progesterone on Day 7. Compared to cows submitted to TAI, those submitted to TET had greater pregnancy rates on Day 28 (44.0% [233/529] vs 29.7% [105/354]; P < 0.001) and on Day 60 (37.6% [199/529] vs 26.5 [94/354]; P < 0.001). However, there were no effects of treatments (GP-P-E vs EP-P-E; P > 0.10) on synchronization (87.0% [383/440] vs 85.3% [378/443]), conception (TAI: 35.3% [55/156] vs 33.8% [50/148]; TET: 50.7% [115/227] vs 51.3% [118/230]) and pregnancy rates on Days 28 (TAI: 30.5% [55/180] vs 28.7% [50/174]; TET: 44.2% [115/260] vs 43.9% [118/269]) and 60 (TAI: 27.2% [49/80] vs 25.9% [45/174]; TET: 38.8% [101/260] vs 36.4% [98/269]). In conclusion, GP-P-E increased serum progesterone concentrations on Day -3, but rates of synchronization, conception, and pregnancy were not significantly different between cows submitted to GP-P-E and EP-P-E protocols, regardless of whether they were inseminated or received an embryo.  相似文献   

3.
In previous studies, we demonstrated that the administration of a luteolytic dose of cloprostenol, followed by 750 IU hCG plus 3 mg estradiol benzoate (EB) 12 h later, synchronized estrus in cows in the luteal phase. Most cows were ready for service 48 h after the beginning of treatment. The objectives of this study were to evaluate the reproductive performance of lactating dairy cows treated with this method of estrus synchronization and to determine the effect of decreasing the hCG-EB dose on synchronization and pregnancy rates after timed AI. Data were obtained from cows first inseminated within an interval of 45 to 70 d postpartum. A total of 2,472 lactating dairy cows in their first to second lactation period were assigned to 4 groups. Cows estimated to be in the luteal phase by rectal palpation were treated with 500 mcg, im, of cloprostenol and assigned to 1 of 3 groups to be intramuscularly injected with hCG-EB 12 h later at the following doses: Group 1 (n=626), 250 IU of hCG and 1 mg of EB; Group 2 (n=592), 500 IU of hCG and 2 mg of EB; and Group 3 (n=664), 750 IU of hCG and 3 mg of EB. Cows displaying natural estrus were inseminated to serve as controls (n=590). The synchronized cows were inseminated 48 h after cloprostenol injection, and control animals visually determined to be in natural estrus during the morning or afternoon were inseminated the following morning. Pregnancy diagnosis was performed by rectal palpation at 34 to 40 d postinsemination. All synchronized cows showed estrous activity within 24 to 36 h after cloprostenol treatment and were considered to be ready for service 48 h after this treatment. There was a significant effect of treatment on the pregnancy rate, either to first AI or to 2 rounds of AI. The pregnancy rate in response to first or second rounds of AI was similar to control rates for cows in Groups 1 and 2, and lower than control rates in Group 3. Cows in Group 1 showed a higher pregnancy rate to first AI than those in Group 3 (P<0.0001), and a higher pregnancy rate to second AI rounds than cows in Groups 2 (P<0.02) and 3 (P<0.0001). The number of cows returning to estrus was unaffected by treatment. However, treatment significantly decreased (P<0.01) the time of return to estrus as the hCG-EB dose increased. These findings indicate that the lowest dose of hCG-EB treatment tested gave the overall best pregnancy results among the treated groups. Furthermore, the synchronization protocol used in this experiment allows effective AI management of lactating dairy cows without the need for estrus detection.  相似文献   

4.
This study investigated the hypothesis that a reduction in submission rates at a resynchronised oestrus is not due to the resynchrony treatment involving intravaginal progesterone releasing devices (IVDs) and oestradiol benzoate (ODB) but is associated with artificial insemination (AI) at the first synchronised oestrus. In Experiment 1, cows were synchronised for first oestrus with IVDs, with ODB administered at the time of device insertion (Day 0, 2 mg IM) and 24 h after removal (Day 9, 1 mg IM) and PGF(2alpha) injected at the time of device removal. Cows were then either inseminated (I) for 4 days or not inseminated (NI) following detection of oestrus (first round of AI). Every animal was resynchronised for a second round of AI by reinsertion of IVDs on Day 23 with administration of ODB (1 mg IM) at the time of insertion as well as 24 h after removal (Day 32). Cows detected in oestrus and inseminated for 4 days at the second round of AI were resynchronised for a third round by repeating the resynchrony treatment starting on Day 46 and inseminating cows on detection of oestrus for 4 days. In Experiment 2 the same oestrous synchronisation and resynchronisation treatments were used, but the timing of treatments differed. The cows had their cycles either presynchronised (treatment start Day -23) without AI and then resynchronised, starting on Day 0, for the first round of AI for AI at detected oestrus for 4 days, or they were synchronised (treatment start Day 0) for the first round of AI. In Experiment 1, 91.4% (64/70) and 92.6% (63/68) (P = 0.79) of cows in the I and NI treatments, respectively, were detected in oestrus after the initial synchronisation. At the second round of AI, submission rates for insemination were lower in the I group compared to the NI cows (74.5%, 35/47 versus 92.6%, 63/68, respectively; P = 0.007). Pregnancy rates (proportion treated that were classified as becoming pregnant) in I and NI cows 4 weeks (61.4%, 43/70 versus 63.2%, 43/68) and 7 weeks (77.1%, 54/70 versus 69.1%, 47/68) after the AI start date (AISD) did not differ significantly between treatments. In Experiment 2, presynchronisation and then resynchronisation of oestrous cycles before the first round of AI did not affect oestrous detection rates at the first round of AI (100%, 44/44 versus 98.0%, 50/51; P = 0.54), or pregnancy rates 1 week (63.6%, 28/44 versus 60.8%, 31/51; P = 0.70), 4 weeks (72.7%, 32/44 versus 76.5%, 39/51; P = 0.76) and 7 weeks (81.8%, 36/44 versus 88.2%, 45/51; P = 0.40) after AISD compared to cows that had their cycles synchronised for the first round of AI. These findings support our hypothesis that a reduction in submission rates at a resynchronised oestrus is associated with AI at the first synchronised oestrus and not due to a resynchrony treatment involving IVDs and ODB. This study supports the concept that early embryonic loss following AI at a synchronised oestrus could cause a reduction in submission rates following resynchronisation of oestrus, although investigation of the effect of passing an AI catheter or semen components were not studied per se.  相似文献   

5.
The present study investigated how the timing of the administration of estradiol benzoate (EB) impacted the synchronization of ovulation in fixed-time artificial insemination protocols of cattle. To accomplish this, two experiments were conducted, with EB injection occurring at different times: at withdrawal of the progesterone-releasing (P4) intravaginal device or 24h later. The effectiveness of these times was compared by examining ovarian follicular dynamics (Experiment 1, n=30) and conception rates (Experiment 2, n=504). In Experiment 1, follicular dynamics was performed in 30 Nelore cows (Bos indicus) allocated into two groups. On a random day of the estrous cycle (Day 0), both groups received 2mg of EB i.m. and a P4-releasing intravaginal device, which was removed on Day 8, when 400 IU of eCG and 150 microg of PGF were administered. The control group (G-EB9; n=15) received 1mg of EB on Day 9, while Group EB8 (G-EB8; n=15) received the same dose a day earlier. Ovarian ultrasonographic evaluations were performed every 8h after device removal until ovulation. The timing of EB administration (Day 8 compared with Day 9) did affect the interval between P4 device removal to ovulation (59.4+/-2.0 h compared with 69.3+/-1.7h) and maximum diameter of dominant (1.54+/-0.06 acm compared with 1.71+/-0.05 bcm, P=0.03) and ovulatory (1.46+/-0.05 acm compared with 1.58+/-0.04 bcm, P<0.01) follicles. In Experiment 2, 504 suckling cows received the same treatment described in Experiment 1, but insemination was performed as follows: Group EB8-AI48 h (G-EB8-AI48 h; n=119) and Group EB8-AI54 h (G-EB8-AI54 h; n=134) received 1mg of EB on Day 8 and FTAI was performed, respectively, 48 or 54 h after P4 device removal. Group EB9-AI48h (G-EB9-AI48 h; n=126) and Group EB9-AI54 h (G-EB9-AI54 h; n=125) received the same treatments and underwent the same FTAI protocols as G-EB8-AI48 h and G-EB8-AI54 h, respectively; however, EB was administered on Day 9. Conception rates were greater (P<0.05) in G-EB9-AI54 h [63.2% (79/125) a], G-EB9-AI48 h [58.7% (74/126) a] and G-EB8-AI48 h [58.8% (70/119) a] than in G-EB8-AI54 h [34.3% (46/134) b]. We concluded that when EB administration occurred at device withdrawal (D8), the interval to ovulation shortened and dominant and ovulatory follicle diameters decreased. Furthermore, when EB treatment was performed 24h after device removal, FTAI conducted at either 48 or 54 h resulted in similar conception rates. However, EB treatment on the same day as device withdrawal resulted in a lesser conception rate when FTAI was conducted 54 h after device removal.  相似文献   

6.
The objective was to determine whether timed artificial insemination (TAI) 56 h after removal of a Controlled Internal Drug Release (CIDR, 1.38 g of progesterone) insert would improve AI pregnancy rate in beef heifers compared to TAI 72 h after CIDR insert removal in a 5-days CO-Synch + CIDR protocol. Angus cross beef heifers (n = 1098) at nine locations [WA (5 locations; n = 634), ID (2 locations; n = 211), VA (one location; n = 193) and WY (one location; n = 60)] were included in this study. All heifers were given a body condition score (BCS; 1-emaciated; 9-obese), and received a CIDR insert and 100 μg of gonadorelin hydrochloride (GnRH) on Day 0. The CIDR insert was removed and two doses of 25 mg of dinoprost (PGF) were given, first dose at CIDR insert removal and second dose 6 h later, on Day 5. A subset of heifers (n = 629) received an estrus detector aid at CIDR removal. After CIDR removal, heifers were observed thrice daily for estrus and estrus detector aid status until they were inseminated. Within farm, heifers were randomly allocated to two groups and were inseminated either at 56 h (n = 554) or at 72 h (n = 544) after CIDR removal. All heifers were given 100 μg of GnRH at AI. Insemination 56 h after CIDR insert removal improved AI pregnancy rate compared to insemination 72 h (66.2 vs. 55.9%; P < 0.001; 1 - β = 0.94). Locations, BCS categories (≤ 6 vs. > 6) and location by treatment and BCS by treatment interactions did not influence AI pregnancy rate (P > 0.1). The AI pregnancy rates for heifers with BCS ≤ 6 and > 6 were 61.8 and 60.1%, respectively (P > 0.1). The AI pregnancy rates among locations varied from 54.9 to 69.2% (P > 0.1). The AI pregnancy rate for heifers observed in estrus at or before AI was not different compared to heifers not observed in estrus [(65.4% (302/462) vs. 52.7% (88/167); P > 0.05)]. In conclusion, heifers inseminated 56 h after CIDR insert removal in a 5-days CO-Synch + CIDR protocol had, on average, 10.3% higher AI pregnancy rate compared to heifers inseminated 72 h after CIDR insert removal.  相似文献   

7.
A total of 226 out of 245 postpartum lactating dairy cows in a commercial dairy farm were allocated to two groups of oestrous synchronisation protocols in order to evaluate reproductive performance. One group was treated with oestradiol benzoate (ODB) and PGF2alpha on day 10 of the oestrous cycle with insemination at the detected oestrus, the second group underwent the Ovsynch (OVS) protocol (GnRH + PGF2alpha + GnRH) with timed AI. Pregnancy was diagnosed by ultrasonography on day 28 after AI and confirmed by rectal palpation on day 45. A higher (P < 0.001) proportion of cows in OVS (100%) were inseminated within (19.2 +/- 3.8 h) following the second GnRH injection than those of cows in EPE (ODB + PGF2alpha + ODB) (70.6%) inseminated at the detected oestrus within (35.6 +/- 5.2 h) following the second ODB injection. Pregnancy rates for the first AI at day 28 (64.0 +/- 4.6, 62.4 +/- 5.5%) and at day 45 post-insemination (40.4 +/- 4.7, 40.0 +/- 5.6%) for OVS and EPE cows respectively, did not differ between the two treatments, whereas, the overall pregnancy rates tended to be higher (P < 0.08) for the OVS (85.1 +/- 3.8%) cows than the EPE cows (74.1 +/- 4.5%). No differences were observed in pregnancy rates for first AI and overall up to fourth AI between primiparous (34.7 +/- 5.8 and 85.3 +/- 4.7%) and multiparous cows (43.5 +/- 4.5 and 77.4 +/- 3.6%). Days open for pregnant cows tended to be lower (P < 0.08) for OVS (76.2 +/- 3) than for EPE cows (84.7 +/- 4), while days open were higher (P < 0.05) in primiparous cows (85.3 +/- 4) than in multiparous cows (75.6 +/- 3). The results indicate that pregnancy rates for first AI were similar, but overall pregnancy rates up to the fourth AI tended to be higher for OVS than EPE cows, while days open was tended to be lower for OVS than EPE cows.  相似文献   

8.
Three hundred and one Holstein cows (n=301), calving at a commercial free-stall dairy farm, were randomly assigned to 1 of 3 prostaglandin treatment groups or a placebo group. The placebos were packaged 3 ways to mimic the 3 commercial prostaglandin preparations. Group 1 received 1 mg fenprostalene and 1.6 mg oxytetracycline; Group 2 received the fenprostalene placebo (2 ml polyethylene glycol and 1.6 mg oxytetracycline); while Group 3 was given 25 mg dinoprost. Group 4, the dinoprost placebo received 5 ml saline; Group 5 received 500 ug cloprostenol; and Group 6 the cloprostenol placebo received 2 ml saline. The treatments were administered between Days 24 and 31 post partum. Double blind techniques were used in administering treatments and in assessing the response to treatment. There were no significant differences among treatment groups with respect to incidence of retained fetal membranes, endometritis, pyometra, anestrus, number of services per pregnancy, calving-to-first estrus interval, services per conception, number of prostaglandin treatments other than those administered between Days 24 and 31 post partum, the percentage culled for reproductive reasons and all factors combined. Cows receiving fenprostalene, dinoprost or cloprostenol had a decreased calving-to-conception interval compared with that of the controls (P = 0.05). It is concluded that, in the herd studied, treatment with any of the 3 commercially available prostaglandin products between Days 24 and 31 post partum was beneficial for reproductive performance.  相似文献   

9.
The objective of this study was to determine the reproductive performance of lactating dairy cows treated with GnRH and/or PGF2a for synchronization of estrus and ovulation. Between Days 43 and 57 post partum, a total of 374 dairy cows was divided into 4 groups. Cows in Group 1 (n = 62) were treated with 25 mg, i.m. PGF2a on Days 43 and 57; cows in Group 2 (n = 65) were not treated at this time; cows in Group 3 (n = 118) were treated with 100 ug, i.m. GnRH on Day 50, 25 mg, i.m. PGF2a on Day 57, 100 ug, i.m. GnRH on Day 59, and time-inseminated 16 h later; cows in Group 4 (n = 129) were treated with 25 mg, i.m. PGF2a once on Day 57. Cows in Groups 1 and 4 were inseminated at an induced estrus within 7 d after the last PGF2a treatment, and cows in Group 2 were inseminated at a noninduced estrus within a corresponding period of time. Conception rate, estrus detection rate and pregnancy rate were analyzed using logistic regression, and controlled for lactation number, body condition score and time of year. Days from calving to conception were analyzed using the GLM procedures of SAS, and the model included group, body condition score, lactation number, time of year, and their interactions. Cows in Group 3 had a significantly higher pregnancy rate than cows in Groups 1, 2 and 4. Orthogonal contrasts of mean days from calving to conception showed that cows in Group 3 had significantly (P < 0.01) less days from calving to conception than cows in Group 1 and Group 4. There was a significant effect of time of year on pregnancy rate and days from calving to conception, but there was no interaction between time of year and these reproductive characteristics. There was no effect of body condition score and lactation number on the reproductive characteristics evaluated. From the results of this study, it was concluded that better reproductive performance was observed in cows inseminated at a synchronized ovulation than in those inseminated at a synchronized estrous period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号