首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activity of tyrosine hydroxylase is regulated by feedback inhibition and inactivation by catecholamines, and activation by protein phosphorylation. In this article, reaction mechanisms for the conversion of tyrosine hydroxylase to an inactive/stable form by catecholamines, and activation of tyrosine hydroxylase by phosphorylation at Ser-40 are discussed. Inactivation may be induced by sub-stoichiometric amounts of catecholamines, and activation by phosphorylation of Ser-40 may require phosphorylation of three or all four subunits of a tyrosine hydroxylase molecule. Cooperative phosphorylation at Ser-40 in the subunits is also discussed.  相似文献   

2.
An analysis of the effect of eleven monoclonal antibodies on the functional characteristics of monkey liver phenylalanine hydroxylase is presented. These eleven antibodies have been found to react with eight distinct regions on the phenylalanine hydroxylase protein. PH1 antibody inhibits enzyme activity, is dependent on phenylalanine for its binding, and appears to be related to structural changes occurring during phenylalanine activation of the enzyme activity. PH2 and PH3 antibodies stimulate enzyme activity, their binding is inhibited by lysolecithin and this group apparently is recognizing structures involved in lysolecithin activation of the enzyme activity. PH5, PH10, PH12 and PH6 recognise sites on phenylalanine hydroxylase affected by lysolecithin activation.  相似文献   

3.
Abstract— The activity of soluble tryptophan hydroxylase from rat brain stem was increased in presence of mm concentrations of calcium. Similarly to that observed by treating the enzyme with sodium dodecyl sulphate or trypsin, this activation resulted mainly from an increased affinity of tryptophan hydroxylase for both its substrate, tryptophan, and the cofactor 2-amino-4-hydroxy-6-methyl-5,6,7,8-tetrahydropteridine (6-MPH4). In addition, the optimal pH for the enzymic activity was shifted from 7.6 to 7.9 following activation by calcium, sodium dodecyl sulphate or trypsin.
Under the assay conditions used for measuring tryptophan hydroxylase activity, calcium also stimulated a neutral proteinase. This latter enzyme could be eliminated from the solution of tryptophan hydroxylase by filtration through Sephadex G 200. The resulting partially purified tryptophan hydroxylase could be activated by calcium only when the neutral proteinase was included in the assay mixture. In support of this conclusion, the effect of calcium on tryptophan hydroxylase was very small in the new born rat when the activity of the neutral proteinase was low. In addition, the activating effect of Ca2+ could be antagonized not only by a chelating agent like EGTA but also (partially) by specific inhibitors of proteinases such as benzethonium and PMSF.
These results strongly suggest that the activation of tryptophan hydroxylase by calcium is the consequence of a partial proteolysis of the enzyme by the calcium-dependent neutral proteinase. Therefore, the physiological significance of this irreversible effect is doubtful.  相似文献   

4.
Phenylalanine hydroxylase, important in phenylalanine metabolism in mammals, is regulated through short-term (activation) and long-term (induction) mechanisms. To help elucidate the structure-function relationships involved in the activation of this enzyme, we have isolated and characterized full-length cDNA clones to rat phenylalanine hydroxylase. Recombinant rat phenylalanine hydroxylase was placed into an expression vector in Escherichia coli. The enzyme has been purified to homogeneity and its physical and catalytic properties have been characterized. The molecular weight and the fluorescence emission spectrum of the recombinant enzyme were identical to those of the native enzyme. The recombinant enzyme could be activated by incubation with phenylalanine or lysolecithin or by phosphorylation, as is the rat liver enzyme. The extent of activation is the same as that for the native enzyme in each case except for phenylalanine, which activates the recombinant enzyme only 5- to 10-fold rather than the 15- to 30-fold activation observed with the native enzyme. The kinetic constants determined for the recombinant enzyme are also essentially the same as those reported for the native enzyme. We conclude that this enzyme is essentially identical to the native enzyme and should be very useful in the future study of this important hydroxylase.  相似文献   

5.
Abstract: Tyrosine hydroxylase in rat retina is activated in vivo as a consequence of photic stimulation. Tyrosine hydroxylase in crude extracts of dark-adapted retinas is activated in vitro by incubation under conditions that stimulate protein phosphorylation by cyclic AMP-dependent protein kinase. Comparison of the activations of the enzyme by photic stimulation in vivo and protein phosphorylation in vitro demonstrated several similarities. Both treatments decreased the apparent K m of the enzyme for the synthetic pterin cofactor 6MPH4. Both treatments also produced the same change in the relationships of tyrosine hydroxylase activity to assay pH. When retinal extracts containing tyrosine hydroxylase activated either in vivo by photic stimulation or in vitro by protein phosphorylation were incubated at 25°C, the enzyme was inactivated in a time-dependent manner. The inactivation of the enzyme following both activation in vivo and activation in vitro was partially inhibited by sodium pyrophosphate, an inhibitor of phosphoprotein phosphatase. In addition to these similarities, the activation of tyrosine hydroxylase in vivo by photic stimulation was not additive to the activation in vitro by protein phosphorylation. These data indicate that the mechanism for the activation of tyrosine hydroxylase that occurs as a consequence of light-induced increases of neuronal activity is similar to the mechanism for activation of the enzyme in vitro by protein phosphorylation. This observation suggests that the activation of retinal tyrosine hydroxylase in vivo may be mediated by phosphorylation of tyrosine hydroxylase or some effector molecule associated with the enzyme.  相似文献   

6.
S Knapp  A J Mandell  W P Bullard 《Life sciences》1975,16(10):1583-1593
Using both radioisotopic and fluorometric techniques to measure the activity of midbrain soluble enzyme, we have demonstrated that calcium activates tryptophan hydroxylase. The observed activation apparently results from an increased affinity of the enzyme for both its substrate, tryptophan, and the cofactor 2-amino-4-hydroxy-6-methyl-5,6,7,8-tetrahydropteridine (6-MPH4). The calcium activation of tryptophan hydroxylase appears to be specific for both enzyme and effector: other brain neurotransmitter biosynthetic enzymes, such as aromatic amino acid decarboxylase(s) and tyrosine hydroxylase, are not affected by calcium (at concentrations ranging from 0.01 mM to 2.0 mM); other divalent cations, such as Ba++, Mg++, and Mn++, have no activating effect on tryptophan hydroxylase. This work suggests that increases in brain serotonin biosynthesis induced by neural activation may be due to influx of Ca++ associated with membrane depolarization and resulting activation of nerve ending tryptophan hydroxylase.  相似文献   

7.
Role of calmodulin in the activation of tryptophan hydroxylase   总被引:7,自引:0,他引:7  
Tryptophan hydroxylase can be activated 2.0- to 2.5-fold in vitro by ATPa dn Mg2+. This apparent phosphorylation effect is not dependent on cyclic nucleotides but is dependent on the presence of calcium. The activation of tryptophan hydroxylase by ATP-Mg2+ reduces the apparent Km of the enzyme for its cofactor, 6-methyltetrahydropterin, from 0.21 to 0.09 mM. The addition of certain antipsychotic drugs known to bind to calmodulin in a phosphorylation reaction mixture prevents the activation to tryptophan hydroxylase by ATP-Mg2+ in the concentration-dependent fashion. External addition of purified calmodulin protects the enzyme from the drug-induced effects. Preparation of calmodulin-free tryptophan hydroxylase by affinity chromatography on fluphenazine-Sepharose 4B yields an enzyme that is no longer activated by ATP-Mg2+, whereas the readdition of calmodulin to a calmodulin-free enzyme restores the responsiveness of tryptophan hydroxylase to ATP-Mg2+. This restoration is dependent on Ca2+. Taken together, these results indicate that the activation of tryptophan hydroxylase by phosphorylating conditions is dependent on both calcium and calmodulin.  相似文献   

8.
Tryptic peptide fragments of tyrosine hydroxylase isolated from 32PO4-prelabeled bovine adrenal chromaffin cells are resolved into seven phosphopeptides by reverse phase-high performance liquid chromatography. All seven of the peptides are phosphorylated on serine residues. Three of these putative phosphorylation sites, peptides 3, 5, and 6, are rapidly phosphorylated (5-fold in 15 s) by both acetylcholine stimulation and potassium depolarization of the cells, and this phosphorylation is accompanied by a similarly rapid activation of the enzyme. Both phosphorylation and activation are transient and do not account for the prolonged increase in catecholamine biosynthesis produced by these stimuli. Peptides 4 and 7 show a much slower and sustained increase in phosphorylation (3-fold in 4 min) in response to acetylcholine and potassium. Phosphorylation of these peptides correlates with the sustained increase in catecholamine biosynthesis rather than enzyme activation. Peptides 1 and 2 are not stimulated by any agonist yet employed and thus show no relation to enzyme activation or catecholamine biosynthesis. Phosphorylation of all five peptides by acetylcholine or potassium is calcium-dependent. In contrast to the stimulation of phosphorylation of tyrosine hydroxylase on multiple sites, forskolin stimulates the phosphorylation of only peptide 6, and this is accompanied by a coordinated activation of tyrosine hydroxylase and increased catecholamine biosynthesis. These findings show that the phosphorylation of tyrosine hydroxylase in intact cells is more complex than predicted from in vitro results, that at least two protein kinases are involved in the secretagogue-induced phosphorylation of tyrosine hydroxylase, and that the regulation of catecholamine biosynthesis, in response to phosphorylation, appears to involve both tyrosine hydroxylase activation and other mechanisms.  相似文献   

9.
Tyrosine hydroxylase is the rate-limiting enzyme in the biosynthesis of the catecholamines. It has been reported that retinol (vitamin A) modulates tyrosine hydroxylase activity by increasing its expression through the activation of the nuclear retinoid receptors. In this study, we observed that retinol also leads to an acute activation of tyrosine hydroxylase in bovine adrenal chromaffin cells and this was shown to occur via two distinct non-genomic mechanisms. In the first mechanism, retinol induced an influx in extracellular calcium, activation of protein kinase C and serine40 phosphorylation, leading to tyrosine hydroxylase activation within 15 min. This effect then declined over time. The retinol-induced rise in intracellular calcium then led to a second slower mechanism; this involved an increase in reactive oxygen species, activation of extracellular signal-regulated kinase 1/2 and serine31 phosphorylation and the maintenance of tyrosine hydroxylase activation for up to 2 h. No effects were observed with retinoic acid. These results show that retinol activates tyrosine hydroxylase via two sequential non-genomic mechanisms, which have not previously been characterized. These mechanisms are likely to operate in vivo to facilitate the stress response, especially when vitamin supplements are taken or when retinol is used as a therapeutic agent.  相似文献   

10.
Adrenal tyrosine hydroxylase activation was elicited in developing control, hypo- and hyperthyroid rats by insulin-hypoglycaemia. Rats were deeply anaesthetized with chloroform at a low concentration, since intrinsic tyrosine hydroxylase activation was very low with this technique, as compared to Ketamine injection or chloroform at a high concentration. The study of time-course of tyrosine hydroxylase activation showed that the maximum value was observed 2 h after insulin administration. In control animals, tyrosine hydroxylase activation increased between 4 and 20 days, and then decreased. Hypothyroidism is associated with a decreased tyrosine hydroxylase activation between 4 and 50 days, as compared to controls and hyperthyroidism with an increased activation between 6 and 30 days. While tyrosine hydroxylase from saline-treated rats exhibits two different forms (with two apparent Km values for the cofactor), enzyme from insulin-treated animals was present in a single form with a Km corresponding to the low Km value of the saline-injected rats. At 6 and 14 days, hypothyroidism increases tyrosine hydroxylase Km values as compared to euthyroid animals.  相似文献   

11.
The effects of basic polypeptides on the activation of adrenal tyrosine hydroxylase by ATP were investigated to show a possible involvement of macromolecular cell components in the regulation of the enzyme activity. Basic polypeptides caused an enhancement of the activation of tyrosine hydroxylase by low concentrations of ATP, and the potentiating effects of these polypeptides were observed to be dependent on their concentrations. Kinetic studies showed that basic polypeptides caused an increase in the Vmax of the ATP-activated enzyme for the cofactor without any change in the Km. These results suggest that basic polypeptides convert the enzyme from a nonsusceptible form to a form susceptible to ATP, thus resulting in the potentiation of the ATP-induced activation. Furthermore, the activation by ATP of tyrosine hydroxylase was not observed after treatment of the enzyme preparation with CM-cellulose, and the responsiveness of the enzyme treated with CM-cellulose to ATP was partially restored by addition of basic polypeptides. These observations suggest the possibility that macromolecular cell components, presumably basic proteins, may be involved in the regulation of the activity of tyrosine hydroxylase through their modulating effects on the sensitivity of the enzyme to ATP within the cell.  相似文献   

12.
Abstract: The effect of protein kinase A on the catalytic activity and phosphorylation of brain tryptophan hydroxylase was examined. Stimulation of endogenous protein kinase A by cyclic AMP or its analogues, dibutyryl-cyclic AMP and 8-thiomethyl-cyclic AMP, failed to activate tryptophan hydroxylase. The activation of tryptophan hydroxylase by calcium/calmodulin-phosphorylating conditions was not modified by cyclic AMP. Endogenous protein kinase A phosphorylated a large number of proteins and tryptophan hydroxylase could be identified as one substrate by sucrose gradient centrifugation, immunoprecipitation, and immunoblotting. These results indicate that tryptophan hydroxylase is phosphorylated by protein kinase A in brain and question whether this protein kinase exerts direct regulatory influence over tryptophan hydroxylase activity via phosphorylation.  相似文献   

13.
Abstract: We have investigated three aspects of the relationship between calcium and tyrosine hydroxylase activity in rat striatum. In the first series of experiments, we examined the hypothesis that the rise in dopamine synthesis during increased impulse flow results from a calcium-induced activation of tyrosine hydroxylase. Calcium (12.5–200 μ M ) had no effect when added to crude enzyme or enzyme partially purified by gel filtration. Moreover, incubation of synaptosomes with excess calcium (up to 3.5 m M ) had little or no effect on dopamine synthesis. Incubation with the depolarizing alkaloid veratridine (75 μ M ) did increase dopamine synthesis, but did not alter the activity of tyrosine hydroxylase subsequently prepared from the synaptosomes, despite the presumed rise in intracellular calcium. In the second series we examined the hypothesis that increased dopamine synthesis after axotomy results from activation of tyrosine hydroxylase owing to a decrease in intracellular calcium. Addition of the calcium chelator EGTA (100 μ M ) to crude or partially purified enzyme was without effect, whereas incubation of synaptosomes with EGTA (500 μM ) decreased cell-free enzyme activity. In the third experimental series we examined the relationship between calcium and activation of tyrosine hydroxylase by dibutyryl cyclic AMP. EGTA failed to alter the increase in the activity of tyrosine hydroxylase prepared from synaptosomes incubated with dibutyryl cyclic AMP. However, it blocked the increase in synaptosomal dopamine synthesis and dopamine content normally produced by the cyclic AMP analogue. Thus, tyrosine hydroxylase does not appear to be activated by either increases or decreases in calcium availability. However, calcium may be important for the maintenance of basal tyrosine hydroxylase activity, and may play an indirect role in the expression of tyrosine hydroxylase activation produced by other means.  相似文献   

14.
Abstract: The catalytic subunit of protein kinase A increases brain tryptophan hydroxylase activity. The activation is manifested as an increase in Vmax without alterations in the Km for either tetrahydrobiopterin or tryptophan. The activation of tryptophan hydroxylase by protein kinase A is dependent on ATP and an intact kinase and is inhibited specifically by protein kinase A inhibitors. Protein kinase A also catalyzes the phosphorylation of tryptophan hydroxylase. The extent to which tryptophan hydroxylase is phosphorylated by protein kinase A is dependent on the amount of kinase used and is closely related to the degree to which the hydroxylase is activated. These results suggest that a direct relationship exists between phosphorylation and activation of tryptophan hydroxylase by protein kinase A.  相似文献   

15.
Phenylalanine hydroxylase, the enzyme that catalyzes the irreversible hydroxylation of phenylalanine to tyrosine, was purified from rat kidney with the use of phenyl-Sepharose, DEAE-Sephacel, and gel permeation high pressure liquid chromatography. Our most highly purified fractions had a specific activity in the presence of 6-methyltetrahydropterin, of 1.5 mumol of tyrosine formed/min/mg of protein, which is higher than has been reported hitherto. For the rat kidney enzyme, the ratio of specific activity in the presence of 6-methyltetrahydropterin to the specific activity in the presence of tetrahydrobiopterin (BH4) is 5. By contrast, this ratio for the unactivated rat liver hydroxylase is 80. These results indicate that the kidney enzyme is in a highly activated state. The rat kidney hydroxylase could not be further activated by any of the methods that stimulate the BH4-dependent activity of the rat liver enzyme. In addition, the kidney enzyme binds to phenyl-Sepharose without prior activation with phenylalanine. The phenylalanine saturation pattern with BH4 as a cofactor is hyperbolic with substrate inhibition at greater than 0.5 mM phenylalanine, a pattern that is characteristic of the activated liver hydroxylase. The molecular weight of the rat kidney enzyme as determined by gel permeation chromatography is 110,000, suggesting that the enzyme might be an activated dimer. We conclude, therefore, that phenylalanine hydroxylases from rat kidney and liver are in different states of activation and may be regulated in different ways.  相似文献   

16.
The phosphorylation and activation of tyrosine hydroxylase was examined in PC12 cells following depolarization with KCl or treatment with nerve growth factor. Both treatments activate tyrosine hydroxylase (TH) and increase enzyme phosphorylation. Site-specific analysis of the tryptic phosphopeptides of TH isolated from [32P]phosphate-labeled PC12 cells demonstrated that the major phosphorylated peptide (termed "H25") did not contain any of the previously reported phosphorylation sites. Phosphoamino acid analysis of this peptide demonstrated that the phosphorylated residue was a serine. Synthetic tryptic peptides containing putative phosphorylation sites were prepared, and subjected to high performance liquid chromatography analysis and isoelectric focusing. The tryptic phosphopeptide containing serine 31 comigrated with the H25 peptide during both of these analytical techniques. The tryptic phosphopeptide produced by the phosphorylation of tyrosine hydroxylase by the recently discovered proline-directed protein kinase and the phosphorylated synthetic phosphopeptide TH2-12 are clearly separated from H25 by this analysis. We conclude that serine 31 is phosphorylated during KCl depolarization and nerve growth factor treatment of PC12 cells and that this phosphorylation is responsible for the activation of tyrosine hydroxylase. Since this site is not located in a sequence selective for any of the "classical" protein kinases, we suggest that a novel protein kinase may be responsible for the phosphorylation of this site. Since serine 31 has a proline residue on the carboxyl-terminal side, the possibility that this kinase may be related to the recently reported proline-directed protein kinase is discussed. Other sites that are also phosphorylated on TH during KCl depolarization include serine 19, which is known to be phosphorylated by calmodulin-dependent protein kinase II. A schematic model for the regulation of tyrosine hydroxylase activity by phosphorylation of the NH2-terminal regulatory domain is presented.  相似文献   

17.
The activity of tyrosine hydroxylase, the rate-limiting enzyme in the biosynthesis of dopamine, is stimulated by phosphorylation. In this study, we examined the effects of activation of NMDA receptors on the state of phosphorylation and activity of tyrosine hydroxylase in rat striatal slices. NMDA produced a time-and concentration-dependent increase in the levels of phospho-Ser(19)-tyrosine hydroxylase in nigrostriatal nerve terminals. This increase was not associated with any changes in the basal activity of tyrosine hydroxylase, measured as DOPA accumulation. Forskolin, an activator of adenylyl cyclase, stimulated tyrosine hydroxylase phosphorylation at Ser(40) and caused a significant increase in DOPA accumulation. NMDA reduced forskolin-mediated increases in both Ser(40) phosphorylation and DOPA accumulation. In addition, NMDA reduced the increase in phospho-Ser(40)-tyrosine hydroxylase produced by okadaic acid, an inhibitor of protein phosphatase 1 and 2A, but not by a cyclic AMP analogue, 8-bromo-cyclic AMP. These results indicate that, in the striatum, glutamate decreases tyrosine hydroxylase phosphorylation at Ser(40) via activation of NMDA receptors by reducing cyclic AMP production. They also provide a mechanism for the demonstrated ability of NMDA to decrease tyrosine hydroxylase activity and dopamine synthesis.  相似文献   

18.
A peptide corresponding to position 32-47 in tyrosine hydroxylase was synthesized (TH-16) and polyclonal antibodies against this peptide were raised in rabbits (anti-TH-16). The effects of anti-TH-16 on modulation of tyrosine hydroxylase activity were investigated. Anti-TH-16 enhanced the enzymatic activity in a concentration-dependent manner, and the antigen TH-16 inhibited the stimulatory activity of the antiserum in a concentration-dependent manner. The activated enzyme had a lower Km app for the cofactor 2-amino-4-hydroxy-6-methyl-5,6,7,8-tetrahydropterin and a higher Vmax app than the nonactivated enzyme. Anti-TH-16 was characterized further by its ability to immunoprecipitate the enzyme activity by labeling tyrosine hydroxylase after Western blotting and by immunohistochemical labeling of catecholaminergic neurons. Anti-TH-16 did not block activation of tyrosine hydroxylase by phosphorylation catalyzed by cyclic AMP-dependent protein kinase. Exposure of the enzyme to anti-TH-16 and subsequent phosphorylation of the enzyme resulted in a greater activation of the enzyme than the sum of activation produced by these two treatments separately. However, the activation was less than additive when the enzyme was first phosphorylated and subsequently exposed to anti-TH-16. The present study demonstrates the utility of anti-TH-16 in investigating the molecular aspects of the enzyme activation.  相似文献   

19.
Allosteric regulation of phenylalanine hydroxylase   总被引:1,自引:0,他引:1  
The liver enzyme phenylalanine hydroxylase is responsible for conversion of excess phenylalanine in the diet to tyrosine. Phenylalanine hydroxylase is activated by phenylalanine; this activation is inhibited by the physiological reducing substrate tetrahydrobiopterin. Phosphorylation of Ser16 lowers the concentration of phenylalanine for activation. This review discusses the present understanding of the molecular details of the allosteric regulation of the enzyme.  相似文献   

20.
Activation of rat liver phenylalanine hydroxylase by limited proteolysis catalyzed by chymotrypsin was investigated with the use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high pressure gel filtration. Both activation and proteolysis were decreased by the addition of the natural cofactor, (6R)-tetrahydrobiopterin. From chymotryptic digests of the hydroxylase carried out in the presence and absence of (6R)-tetrahydrobiopterin, several different enzyme species were isolated by high pressure gel filtration. One species (subunit Mr = 47,000) with unchanged hydroxylase activity was isolated from the chymotryptic digest in the presence of (6R)-tetrahydrobiopterin; it was derived from the native enzyme (Mr = 52,000) by cleavage of the COOH-terminal Mr = 5,000 portion of the native enzyme. In the absence of (6R)-tetrahydrobiopterin, another species (subunit Mr = 36,000) was isolated. In addition to modification at the COOH-terminal end of the molecule, this species also had lost a Mr = 11,000 fragment from the NH2-terminal end of the hydroxylase. The Mr = 11,000 fragment was shown to include the phosphorylation site of the enzyme. This Mr = 36,000 species was 30-fold more active than the native phenylalanine hydroxylase when assayed in the presence of tetrahydrobiopterin. These results suggest that the regulatory domain that inhibits hydroxylase activity in the basal state may be located at the NH2 terminus of the phenylalanine hydroxylase subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号