首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulmonary veins show greater sensitivity to endothelin (ET)-1-induced vasoconstriction than pulmonary arteries, and remodeling was observed in pulmonary veins under hypoxic conditions. We examined, using an immunohistochemical method, the expression of Big ET-1, ET-converting enzyme (ECE), and ET(A) and ET(B) receptors in rat pulmonary veins under normoxic and hypoxic conditions. In control rats, Big ET-1 and ECE were coexpressed in the intima and media of the pulmonary veins, with an even distribution along the axial pathway. ET(A) and ET(B) receptors were expressed in the pulmonary veins, with a predominant distribution in the proximal segments. The expression of Big ET-1 was more abundant in the pulmonary veins than in the pulmonary arteries. After exposure to hypoxia for 7 or 14 days, the expression of Big ET-1, ECE, and ET receptors increased in small pulmonary veins. Increases in the medial thickness, wall thickness, and immunoreactivity for alpha-smooth muscle actin were also observed in the small pulmonary veins under hypoxic conditions. The upregulation of ET-1 and ET receptors in the small pulmonary veins is associated with vascular remodeling, which may lead to the development of hypoxic pulmonary hypertension.  相似文献   

2.
Pulmonary hypertension is characterized by structural and morphological changes to the lung vasculature. To determine the potential role of nitric oxide in the vascular remodeling induced by hypoxia, we exposed wild-type [WT(+/+)] and endothelial nitric oxide synthase (eNOS)-deficient [(-/-)] mice to normoxia or hypoxia (10% O(2)) for 2, 4, and 6 days or for 3 wk. Smooth muscle alpha-actin and von Willebrand factor immunohistochemistry revealed significantly less muscularization of small vessels in hypoxic eNOS(-/-) mouse lungs than in WT(+/+) mouse lungs at early time points, a finding that correlated with decreases in proliferating vascular cells (5-bromo-2'-deoxyuridine positive) at 4 and 6 days of hypoxia in the eNOS(-/-) mice. After 3 wk of hypoxia, both mouse types exhibited similar percentages of muscularized small vessels; however, only the WT(+/+) mice exhibited an increase in the percentage of fully muscularized vessels and increased vessel wall thickness. eNOS protein expression was increased in hypoxic WT(+/+) mouse lung homogenates at all time points examined, with significantly increased percentages of small vessels expressing eNOS protein after 3 wk. These results indicate that eNOS deficiency causes decreased muscularization of small pulmonary vessels in hypoxia, likely attributable to the decrease in vascular cell proliferation observed in these mice.  相似文献   

3.
The aim of this study was to determine whether increased expression of heme oxygenase (HO) contributes to impairment of aortic contractile responses after hypoxia through effects on reactivity to endothelin-1 (ET-1). Thoracic aortas from normoxic rats and rats exposed to hypoxia (10% O2) for 16 or 48 h were mounted in organ bath myographs for contractile studies, fixed in paraformaldehyde, or frozen in liquid nitrogen for protein extraction. In rings from normoxic rats, the HO inhibitor tin protoporphyrin IX (SnPP IX, 10 microM) did not alter the response to phenylephrine or ET-1. In rings from rats exposed to 16-h hypoxia, maximum tension generated in response to these agonists was higher in endothelium-intact but not -denuded rings in the presence of SnPP IX. In rings from rats exposed to 48-h hypoxia SnPP IX increased contraction in endothelium-intact but not -denuded rings. In endothelium-intact aortic rings from rats exposed to 16-h hypoxia incubated with endothelin A receptor-specific antagonist BQ-123 (10(-7) M), SnPP IX did not alter phenylephrine-induced contraction. Aortic ET-1 protein levels, measured by radioimmunoassay, were increased in rats exposed to hypoxia for 16 and 48 h. Western blotting showed that HO-1 and HO-2 protein were increased after 16 h of hypoxia and returned to near-control levels after 48 h. Increase in HO-1 protein was detected in endothelium-intact and -denuded rings. Removal of endothelium abolished the increase in HO-2 immunoreactivity. Immunohistochemistry localized expression of HO-1 protein to vascular smooth muscle, whereas HO-2 was only detected in endothelium. HO-2 is expressed by aortic endothelial cells early during hypoxic exposure and impairs ET-1-mediated potentiation of contraction to alpha-adrenoceptor stimulation.  相似文献   

4.
We investigated the effects of the nitric oxide (NO) donor molsidomine and the nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME) on pulmonary endothelin (ET)-1 gene expression and ET-1 plasma levels in chronic hypoxic rats. Two and four weeks of hypoxia (10% O2) significantly increased right ventricular systolic pressure, the medial cross-sectional vascular wall area of the pulmonary arteries, and pulmonary ET-1 mRNA expression (2-fold and 3.2-fold, respectively). ET-1 plasma levels were elevated after 4 wk of hypoxia. In rats exposed to 4 wk of hypoxia, molsidomine (15 mg x kg(-1) x day(-1)) given either from the beginning or after 2 wk of hypoxia significantly reduced pulmonary hypertension, pulmonary vascular remodeling, pulmonary ET-1 gene expression, and ET-1 plasma levels. L-NAME administration (45 mg x kg(-1) x day(-1)) in rats subjected to 2 wk of hypoxia did not modify these parameters. Our findings suggest that in chronic hypoxic rats, exogenously administered NO acts in part by suppressing the formation of ET-1. In contrast, inhibition of endogenous NO production exerts only minor effects on the pulmonary circulation and pulmonary ET-1 synthesis in these animals.  相似文献   

5.
We have reported that eucapnic intermittent hypoxia (E-IH) causes systemic hypertension, elevates plasma endothelin 1 (ET-1) levels, and augments vascular reactivity to ET-1 and that a nonspecific ET-1 receptor antagonist acutely lowers blood pressure in E-IH-exposed rats. However, the effect of chronic ET-1 receptor inhibition has not been evaluated, and the ET receptor subtype mediating the vascular effects has not been established. We hypothesized that E-IH causes systemic hypertension through the increased ET-1 activation of vascular ET type A (ET(A)) receptors. We found that mean arterial pressure (MAP) increased after 14 days of 7 h/day E-IH exposure (109 +/- 2 to 137 +/- 4 mmHg; P < 0.005) but did not change in sham-exposed rats. The ET(A) receptor antagonist BQ-123 (10 to 1,000 nmol/kg iv) acutely decreased MAP dose dependently in conscious E-IH but not sham rats, and continuous infusion of BQ-123 (100 nmol.kg(-1).day(-1) sc for 14 days) prevented E-IH-induced increases in MAP. ET-1-induced constriction was augmented in small mesenteric arteries from rats exposed 14 days to E-IH compared with those from sham rats. Constriction was blocked by the ET(A) receptor antagonist BQ-123 (10 microM) but not by the ET type B (ET(B)) receptor antagonist BQ-788 (100 microM). ET(A) receptor mRNA content was greater in renal medulla and coronary arteries from E-IH rats. ET(B) receptor mRNA was not different in any tissues examined, whereas ET-1 mRNA was increased in the heart and in the renal medulla. Thus augmented ET-1-dependent vasoconstriction via vascular ET(A) receptors appears to elevate blood pressure in E-IH-exposed rats.  相似文献   

6.
Pulmonary intralobar arteries express heme oxygenase (HO)-1 and -2 and release carbon monoxide (CO) during incubation in Krebs buffer. Acute hypoxia elicits isometric tension development (0.77 +/- 0.06 mN/mm) in pulmonary vascular rings treated with 15 micromol/l chromium mesoporphyrin (CrMP), an inhibitor of HO-dependent CO synthesis, but has no effect in untreated vessels. Acute hypoxia also induces contraction of pulmonary vessels taken from rats injected with HO-2 antisense oligodeoxynucleotides (ODN), which decrease pulmonary HO-2 vascular expression and CO release. Hypoxia-induced contraction of vessels treated with CrMP is attenuated (P < 0.05) by endothelium removal, by CO (1-100 micromol/l) in the bathing buffer, and by endothelin-1 (ET-1) receptor blockade with L-754142 (10 micromol/l). CrMP increases ET-1 levels in pulmonary intralobar arteries, particularly during incubation in hypooxygenated media. CrMP also causes a leftward shift in the concentration-response curve to ET-1, which is offset by exogenous CO. In anesthetized rats, pretreatment with CrMP (40 micromol/kg iv) intensifies the elevation of pulmonary artery pressure elicited by breathing a hypoxic gas mixture. However, acute hypoxia does not elicit augmentation of pulmonary arterial pressure in rats pretreated concurrently with CrMP and the ET-1 receptor antagonist L-745142 (15 mg/kg iv). These data suggest that a product of HO activity, most likely CO, inhibits hypoxia-induced pulmonary vasoconstriction by reducing ET-1 vascular levels and sensitivity.  相似文献   

7.
Hypoxia contracts mammalian respiratory vessels and increases vascular resistance in respiratory tissues of many vertebrates. In systemic vessels these responses vary, hypoxia relaxes mammalian vessels and contracts systemic arteries from cyclostomes. It has been proposed that hypoxic vasoconstriction in cyclostome systemic arteries is the antecedent to mammalian hypoxic pulmonary vasoconstriction, however, phylogenetic characterization of hypoxic responses is lacking. In this study, we characterized the hypoxic response of isolated systemic and respiratory vessels from a variety of vertebrates using standard myography. Pre-gill/respiratory (ventral aorta, afferent branchial artery, pulmonary artery) and post-gill/systemic (dorsal and thoracic aortas, efferent branchial artery) from lamprey (Petromyzon marinus), sandbar shark (Carcharhinus plumbeus), yellowfin tuna (Thunnus albacares), American bullfrog (Rana catesbeiana), American alligator (Alligator mississippiensis), Pekin duck (Anas platyrhynchos domesticus), chicken (Gallus domesticus) and rat (Rattus norvegicus) were exposed to hypoxia at rest or during pre-stimulation (elevated extracellular potassium, epinephrine or norepinephrine). Hypoxia produced a relaxation or transient contraction followed by relaxation in all pre-gill vessels, except for contraction in lamprey, and vasoconstriction or tri-phasic constriction-dilation-constriction in all pulmonary vessels. Hypoxia contracted systemic vessels from all animals except shark and rat and in pre-contracted rat aortas it produced a transient contraction followed by relaxation. These results show that while the classic "systemic hypoxic vasodilation and pulmonary hypoxic vasoconstriction" may occur in the microcirculation, the hypoxic response of the vertebrate macrocirculation is quite variable. These findings also suggest that hypoxic vasoconstriction is a phylogenetically ancient response.  相似文献   

8.
During hypoxia, release of platelet-activating factor (PAF) and activation of its cognate receptor (PAFR) regulate neural transmission and are required for full expression of peak hypoxic ventilatory response (pHVR) but not hypercapnic ventilatory response. However, it is unclear whether PAFR underlie components of long-term ventilatory adaptations to hypoxia. To examine this issue, adult male PAFR(+/+) and PAFR(-/-) mice were exposed to intermittent hypoxia (IH) consisting of 90 s 21% O(2) and 90 s 10% O(2) for 30 days, and normoxic and hypoxic ventilatory patterns were assessed using whole body plethysmography. Starting at day 14 of IH, normoxic ventilation in PAFR(-/-) was reduced significantly compared with PAFR(+/+) mice (P < 0.001), the latter exhibiting a prominent long-term ventilatory facilitation (LTVF). However, IH-exposed PAFR(-/-) mice had markedly enhanced pHVR and hypoxic ventilatory decline that became similar to those of IH-exposed PAFR(+/+) mice. Thus we postulate that PAFR expression and/or function underlies critical components of IH-induced LTVF but does not play a role in the potentiation of the hypoxic ventilatory response after IH exposures.  相似文献   

9.
We used genetically engineered D(2) receptor-deficient [D(2)-(-/-)] and wild-type [D(2)-(+/+)] mice to test the hypothesis that dopamine D(2) receptors modulate the ventilatory response to acute hypoxia [hypoxic ventilatory response (HVR)] and hypercapnia [hypercapnic ventilatory response (HCVR)] and time-dependent changes in ventilation during chronic hypoxia. HVR was independent of gender in D(2)-(+/+) mice and significantly greater in D(2)-(-/-) than in D(2)-(+/+) female mice. HCVR was significantly greater in female D(2)-(+/+) mice than in male D(2)-(+/+) and was greater in D(2)-(-/-) male mice than in D(2)-(+/+) male mice. Exposure to hypoxia for 2-8 days was studied in male mice only. D(2)-(+/+) mice showed time-dependent increases in "baseline" ventilation (inspired PO(2) = 214 Torr) and hypoxic stimulated ventilation (inspired PO(2) = 70 Torr) after 8 days of acclimatization to hypoxia, but D(2)-(-/-) mice did not. Hence, dopamine D(2) receptors modulate the acute HVR and HCVR in mice in a gender-specific manner and contribute to time-dependent changes in ventilation and the acute HVR during acclimatization to hypoxia.  相似文献   

10.
Production of reactive oxygen species (ROS) may be increased during hypoxia in pulmonary arteries. In this study, the role of ROS in the effect of hypoxia on endothelin (ET) type B (ETB) receptor-mediated vasocontraction in lungs was determined. In rat intrapulmonary (approximately 0.63 mm ID) arteries, contraction induced by IRL-1620 (a selective ETB receptor agonist) was significantly attenuated after 4 h of hypoxia (30 mmHg Po2) compared with normoxic control (140 mmHg Po2). The effect was abolished by tiron, a scavenger of superoxide anions, but not by polyethylene glycol (PEG)-conjugated catalase, which scavenges H2O2. The hypoxic effect on ETB receptor-mediated vasoconstriction was also abolished by endothelium denudation but not by nitro-L-arginine and indomethacin. Exposure for 4 h to exogenous superoxide anions, but not H2O2, attenuated the vasoconstriction induced by IRL-1620. Confocal study showed that hypoxia increased ROS production in pulmonary arteries that were scavenged by PEG-conjugated SOD. In endothelium-intact pulmonary arteries, the ETB receptor protein was reduced after 4 h of exposure to hypoxia, exogenous superoxide anions, or ET-1. BQ-788, a selective ETB receptor antagonist, prevented these effects. ET-1 production was stimulated in endothelium-intact arteries after 4 h of exposure to hypoxia or exogenous superoxide anions. This effect was blunted by PEG-conjugated SOD. These results demonstrate that exposure to hypoxia attenuates ETB receptor-mediated contraction of rat pulmonary arteries. A hypoxia-induced production of superoxide anions may increase ET-1 release from the endothelium and result in downregulation of ETB receptors on smooth muscle.  相似文献   

11.
In the lung, chronic hypoxia (CH) causes pulmonary arterial smooth muscle cell (PASMC) depolarization, elevated endothelin-1 (ET-1), and vasoconstriction. We determined whether, during CH, depolarization-driven activation of L-type Ca(2+) channels contributes to 1) maintenance of resting intracellular Ca(2+) concentration ([Ca(2+)](i)), 2) increased [Ca(2+)](i) in response to ET-1 (10(-8) M), and 3) ET-1-induced contraction. Using indo 1 microfluorescence, we determined that resting [Ca(2+)](i) in PASMCs from intrapulmonary arteries of rats exposed to 10% O(2) for 21 days was 293.9 +/- 25.2 nM (vs. 153.6 +/- 28.7 nM in normoxia). Resting [Ca(2+)](i) was decreased after extracellular Ca(2+) removal but not with nifedipine (10(-6) M), an L-type Ca(2+) channel antagonist. After CH, the ET-1-induced increase in [Ca(2+)](i) was reduced and was abolished after extracellular Ca(2+) removal or nifedipine. Removal of extracellular Ca(2+) reduced ET-1-induced tension; however, nifedipine had only a slight effect. These data indicate that maintenance of resting [Ca(2+)](i) in PASMCs from chronically hypoxic rats does not require activation of L-type Ca(2+) channels and suggest that ET-1-induced contraction occurs by a mechanism primarily independent of changes in [Ca(2+)](i).  相似文献   

12.
To determine the role of endothelium in hypoxic pulmonary vasoconstriction (HPV), we measured vasomotor responses to hypoxia in isolated seventh-generation porcine pulmonary arteries < 300 microm in diameter with (E+) and without endothelium. In E+ pulmonary arteries, hypoxia decreased the vascular intraluminal diameter measured at a constant transmural pressure. These constrictions were complete in 30-40 min; maximum at PO(2) of 2 mm Hg; half-maximal at PO(2) of 40 mm Hg; blocked by exposure to Ca(2+)-free conditions, nifedipine, or ryanodine; and absent in E+ bronchial arteries of similar size. Hypoxic constrictions were unaltered by indomethacin, enhanced by indomethacin plus N(G)-nitro-L-arginine methyl ester, abolished by BQ-123 or endothelial denudation, and restored in endothelium-denuded pulmonary arteries pretreated with 10(-10) M endothelin-1 (ET-1). Given previous demonstrations that hypoxia caused contractions in isolated pulmonary arterial myocytes and that ET-1 receptor antagonists inhibited HPV in intact animals, our results suggest that full in vivo expression of HPV requires basal release of ET-1 from the endothelium to facilitate mechanisms of hypoxic reactivity in pulmonary arterial smooth muscle.  相似文献   

13.
We tested the hypothesis that pulmonary endothelial nitric oxide synthase (eNOS) gene expression is primarily regulated by hemodynamic factors and is thus increased in rats with chronic hypoxic pulmonary hypertension. Furthermore, we examined the role of endothelin (ET)-1 in this regulatory process, since ET-1 is able to induce eNOS via activation of the ET-B receptor. Therefore, chronic hypoxic rats (10% O(2)) were treated with the selective ET-A receptor antagonist LU-135252 (50 mg x kg(-1) x day(-1)). Right ventricular systolic pressure and cross-sectional medial vascular wall area of pulmonary arteries rose significantly, and eNOS mRNA levels increased 1.8- and 2.6-fold after 2 and 4 wk of hypoxia, respectively (each P < 0.05). Pulmonary ET-1 mRNA and ET-1 plasma levels increased significantly after 4 wk of hypoxia (each P < 0.05). LU-135252 reduced right ventricular systolic pressure, vascular remodeling, and eNOS gene expression in chronic hypoxic rats (each P < 0.05), whereas ET-1 production was not altered. We conclude that eNOS expression in chronic hypoxic rat lungs is modified predominantly by hemodynamic factors, whereas the ET-B receptor-mediated pathway and hypoxia seem to be less important.  相似文献   

14.
Pulmonary hypertension and blunted pulmonary vascular responses to ACh develop when newborn pigs are exposed to chronic hypoxia for 3 days. To determine whether a cyclooxygenase (COX)-dependent contracting factor, such as thromboxane, is involved with altered pulmonary vascular responses to ACh, newborn piglets were raised in 11% O(2) (hypoxic) or room air (control) for 3 days. Small pulmonary arteries (100-400 microm diameter) were cannulated and pressurized, and their responses to ACh were measured before and after either the COX inhibitor indomethacin; a thromboxane synthesis inhibitor, dazoxiben or feregrelate; or the thromboxane-PGH(2)-receptor antagonist SQ-29548. In control arteries, indomethacin reversed ACh responses from dilation to constriction. In contrast, hypoxic arteries constricted to ACh before indomethacin and dilated to ACh after indomethacin. Furthermore, ACh constriction in hypoxic arteries was nearly abolished by either dazoxiben, feregrelate, or SQ-29548. These findings suggest that thromboxane is the COX-dependent contracting factor that underlies the constrictor response to ACh that develops in small pulmonary arteries of piglets exposed to 3 days of hypoxia. The early development of thromboxane-mediated constriction may contribute to the pathogenesis of chronic hypoxia-induced pulmonary hypertension in newborns.  相似文献   

15.
16.
Increased levels of endothelin-1 (ET-1) in the carotid body (CB) contribute to the enhancement of chemosensory responses to acute hypoxia in cats exposed to chronic intermittent hypoxia (CIH). However, it is not known if the ET receptor types A (ETA-R) and B (ETB-R) are upregulated. Thus, we studied the expression and localization of ETA-R and ETB-R using Western blot and immunohistochemistry (IHC) in CBs from cats exposed to cyclic hypoxic episodes, repeated during 8 hr for 4 days. In addition, we determined if ET-1 is expressed in the chemoreceptor cells using double immunofluorescence for ET-1 and tyrosine hydroxylase (TH). We found that ET-1 expression was ubiquitous in the blood vessels and CB parenchyma, although double ET-1 and TH-positive chemoreceptor cells were mostly found in the parenchyma. ETAR was expressed in most chemoreceptor cells and blood vessels of the CB vascular pole. ETB-R was expressed in chemoreceptor cells, parenchymal capillaries, and blood vessels of the vascular pole. CIH upregulated ETB-R expression by approximately 2.1 (Western blot) and 1.6-fold (IHC) but did not change ETA-R expression. Present results suggest that ET-1,ETA-R, and ETB-R are involved in the enhanced CB chemosensory responses to acute hypoxia induced by CIH.  相似文献   

17.
左旋精氨酸对低氧性肺动脉高压治疗作用的实验研究   总被引:6,自引:0,他引:6  
目的:探讨结构型一氧化氮合酶(cNOS),内皮素-1(ET-1)在低氧性肺动脉高压(HPH)发病中的机制及左旋精氢酸(L-Arg)对HPH的治疗作用。方法:30只健康雄性SD大鼠平均分为三组:正常对照组(NC组)、低氧组(HP组)、低氧左旋精氨酸治疗组(LT组)。后组每日低氧前给予200mg/kg L-Arg。于低氧21d检测运动血流动力学,肺组织NO、ET-1含量,肺动脉内皮cNOS含量的改变,  相似文献   

18.
Prolonged fetal hypoxia leads to growth restriction and can cause detrimental prenatal and postnatal alterations. The embryonic chicken is a valuable model to study the effects of prenatal hypoxia, but little is known about its long-term effects on cardiovascular regulation. We hypothesized that chicken embryos incubated under chronic hypoxia would be hypotensive due to bradycardia and βAR-mediated relaxation of the systemic and/or the chorioallantoic (CA) arteries. We investigated heart rate, blood pressure, and plasma catecholamine levels in 19-day chicken embryos (total incubation 21 days) incubated from day 0 in normoxia or hypoxia (14-15% O(2)). Additionally, we studied α-adrenoceptor (αAR)-mediated contraction, relaxation to the β-adrenoceptor (βAR) agonist isoproterenol, and relaxation to the adenylate cyclase activator forskolin in systemic (femoral) and CA arteries (by wire myography). Arterial pressure showed a trend toward hypotension in embryos incubated under chronic hypoxic conditions compared with the controls (mean arterial pressure 3.19 ± 0.18 vs. 2.59 ± 0.13 kPa, normoxia vs. hypoxia, respectively. P = 0.056), without an accompanied bradycardia and elevation in plasma norepinephrine and lactate levels. All vessels relaxed in response to βAR stimulation with isoproterenol, but the CA arteries completely lacked an αAR response. Furthermore, hypoxia increased the sensitivity of femoral arteries (but not CA arteries) to isoproterenol. Hypoxia also increased the responsiveness of femoral arteries to forskolin. In conclusion, we suggest that hypotension in chronic hypoxic chicken embryos is the consequence of elevated levels of circulating catecholamines acting in vascular beds with exclusive (CA arteries) or exacerbated (femoral arteries) βAR-mediated relaxation, and not a consequence of bradycardia.  相似文献   

19.
Seven-day-old mice, strain H, were exposed to intermittent high altitude hypoxia (IHA) in a barochamber (7,000 m, 4 h/day, 5 days a week); a total number of exposures was 10. It has been shown that the layer of cardiac musculature in the adventitia of the pulmonary veins, the so-called pulmonary myocardium, reacts to IHA hypoxia by enlargement even sooner than the right ventricular myocardium. The average thickness of the layer of pulmonary myocardium was significantly greater in animals exposed to IHA hypoxia as compared with the controls. Furthermore, IHA hypoxia induces the extension of the pulmonary myocardium to the periphery of the pulmonary venous bed. Ultrastructural investigation of the pulmonary myocardium in hypoxic animals revealed the presence of unoriented myofilaments in the peripheral myofibril-free sarcoplasma, increase in the number of ribosomes and appearance of profiles of granular endoplasmic reticulum. Our data provide quantitative support for the hypothesis that it is not only the contraction of pulmonary arteries, but also venoconstriction which contribute to the hypoxic pressure response in mice.  相似文献   

20.
Perinatal exposure to chronic hypoxia induces sustained pulmonary hypertension and structural and functional changes in both pulmonary and systemic vascular beds. The aim of this study was to analyze consequences of high-altitude chronic hypoxia during gestation and early after birth in pulmonary and femoral vascular responses in newborn sheep. Lowland (LLNB; 580 m) and highland (HLNB; 3,600 m) newborn lambs were cathetherized under general anesthesia and submitted to acute sustained or stepwise hypoxic episodes. Contractile and dilator responses of isolated pulmonary and femoral small arteries were analyzed in a wire myograph. Under basal conditions, HLNB had a higher pulmonary arterial pressure (PAP; 20.2 +/- 2.4 vs. 13.6 +/- 0.5 mmHg, P < 0.05) and cardiac output (342 +/- 23 vs. 279 +/- 13 ml x min(-1) x kg(-1), P < 0.05) compared with LLNB. In small pulmonary arteries, HLNB showed greater contractile capacity and higher sensitivity to nitric oxide. In small femoral arteries, HLNB had lower maximal contraction than LLNB with higher maximal response and sensitivity to noradrenaline and phenylephrine. In acute superimposed hypoxia, HLNB reached higher PAP and femoral vascular resistance than LLNB. Graded hypoxia showed that average PAP was always higher in HLNB compared with LLNB at any Po2. Newborn lambs from pregnancies at high altitude have stronger pulmonary vascular responses to acute hypoxia associated with higher arterial contractile status. In addition, systemic vascular response to acute hypoxia is increased in high-altitude newborns, associated with higher arterial adrenergic responses. These responses determined in intrauterine life and early after birth could be adaptive to chronic hypoxia in the Andean altiplano.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号