首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Sulfide oxidation under chemolithoautotrophic denitrifying conditions   总被引:4,自引:0,他引:4  
Chemolithoautotrophic denitrifying microorganisms oxidize reduced inorganic sulfur compounds coupled to the reduction of nitrate as an electron acceptor. These denitrifiers can be applied to the removal of nitrogen and/or sulfur contamination from wastewater, groundwater, and gaseous streams. This study investigated the physiology and kinetics of chemolithotrophic denitrification by an enrichment culture utilizing hydrogen sulfide, elemental sulfur, or thiosulfate as electron donor. Complete oxidation of sulfide to sulfate was observed when nitrate was supplemented at concentrations equal or exceeding the stoichiometric requirement. In contrast, sulfide was only partially oxidized to elemental sulfur when nitrate concentrations were limiting. Sulfide was found to inhibit chemolithotrophic sulfoxidation, decreasing rates by approximately 21-fold when the sulfide concentration increased from 2.5 to 10.0 mM, respectively. Addition of low levels of acetate (0.5 mM) enhanced denitrification and sulfate formation, suggesting that acetate was utilized as a carbon source by chemolithotrophic denitrifiers. The results of this study indicate the potential of chemolithotrophic denitrification for the removal of hydrogen sulfide. The sulfide/nitrate ratio can be used to control the fate of sulfide oxidation to either elemental sulfur or sulfate.  相似文献   

2.
The aim of the present study was to assess the impact of adding cultures of Thiobacillus denitrificans and Thiomicrospira denitrificans to two upflow anaerobic sludge bed (UASB) reactors: one inoculated with granular sludge and the other filled only with activated carbon (AC). The performances of the bioreactors and the changes in biomass were compared with a non-bioaugmented control UASB reactor inoculated with granular sludge. The reactors inoculated with granular sludge achieved efficiencies close to 90% in nitrate and thiosulfate removal for loading rates as high as 107 mmol-NO3 -/l per day and 68 mmol-S2O3 2-/l per day. Bioaugmentation with Tb. denitrificans and Tm. denitrificans did not enhance the efficiency compared to that achieved with non-bioaugmented granular sludge. The loading rates and efficiencies were 30-40% lower in the AC reactor. In all the reactors tested, Tb. denitrificans became the predominant species. The results strongly suggest that this bacterium was responsible for denitrification and sulfoxidation within the reactors. We additionally observed that granules partially lost their integrity during operation under chemolithoautotrophic conditions, suggesting limitations for long-term operation if bioaugmentation is applied in practice.  相似文献   

3.
Thiobacillus denitrificans strain RT could be grown anaerobically in batch culture on thiosulfate but not on other reduced sulfur compounds like sulfide, elemental sulfur, thiocyanate, polythionates or sulfite. During growth on thiosulfate the assimilated cell sulfur was derived totally from the outer or sulfane sulfur. Thiosulfate oxidation started with a rhodanese type cleavage between sulfane and sulfone sulfur leading to elemental sulfur and sulfite. As long as thiosulfate was present elemental sulfur was transiently accumulated within the cells in a form that could be shown to be more reactive than elemental sulfur present in a hydrophilic sulfur sol, however, less reactive than sulfane sulfur of polythionates or organic and inorganic polysulfides. When thiosulfate had been completely consumed, intracellular elemental sulfur was rapidly oxidized to sulfate with a specific rate of 45 natom S°/min·mg protein. Extracellularly offered elemental sulfur was not oxidized under anaerobic conditions.  相似文献   

4.
The effciency of denitrification, or anaerobic respiration, in Pseudomonas denitrificans was investigated, using growth yield as an index. Glutamate was mainly used as the sole source of energy and carbon. In batch culture, the growth yield per mole of electrons transported through the respiratory system under denitrifying conditions was about half that under aerobic conditions. Similar figures were also obtained in chemostat cultures under glutamate-limited conditions. The decrease in growth yield under denitrifying conditions could be due to the restriction of phosphorylation associated with nitrate reduction to nitrogen gas.  相似文献   

5.
6.
Under anaerobic conditions and at circumneutral pH, cells of the widely distributed, obligate chemolithoautotrophic bacterium Thiobacillus denitrificans oxidatively dissolved synthetic and biogenic U(IV) oxides (uraninite) in nitrate-dependent fashion: U(IV) oxidation required the presence of nitrate and was strongly correlated with nitrate consumption. This is the first report of anaerobic U(IV) oxidation by an autotrophic bacterium.  相似文献   

7.
It has been demonstrated that Thiobacillus denitrificans may be readily cultured aerobically in batch and continuous flow reactors on H(2)S(g) under sulfide limiting conditions. Under these conditions sulfide concentrations in the culture medium were less than 1muM resulting in very low concentrations of H(2)S in the reactor outlet gas. Biomass yield under aerobic conditions was much lower than previously reported for anaerobic conditions, presumably because of oxygen inhibition of growth. However, biomass yield was not affected by steady state oxygen concentration in the range of 45muM-150muM. Biomass yield was also observed to be essentially independent of specific growth rate in the range of 0.030-0.053 h(-1). Indicators of reactor upset were determined and recovery from upset conditions demonstrated. Maximum loading of the biomass for H(2)S oxidation under aerobic conditions was observed to be 15.1-20.9 mmol/h/g biomass which is much higher than previously reported for aerobic conditions. Other aspects of the stoichiometry of aerobic H(2)S oxidation are also reported.  相似文献   

8.
Thiobacillus denitrificans is a widespread, chemolithoautotrophic bacterium with an unusual and environmentally relevant metabolic repertoire, which includes its ability to couple denitrification to sulfur compound oxidation; to catalyze anaerobic, nitrate-dependent oxidation of Fe(II) and U(IV); and to oxidize mineral electron donors. Recent analysis of its genome sequence also revealed the presence of genes encoding two [NiFe]hydrogenases, whose role in metabolism is unclear, as the sequenced strain does not appear to be able to grow on hydrogen as a sole electron donor under denitrifying conditions. In this study, we report the development of a genetic system for T. denitrificans, with which insertion mutations can be introduced by homologous recombination and complemented in trans. The antibiotic sensitivity of T. denitrificans was characterized, and a procedure for transformation with foreign DNA by electroporation was established. Insertion mutations were generated by in vitro transposition, the mutated genes were amplified by the PCR, and the amplicons were introduced into T. denitrificans by electroporation. The IncP plasmid pRR10 was found to be a useful vector for complementation. The effectiveness of the genetic system was demonstrated with the hynL gene, which encodes the large subunit of a [NiFe]hydrogenase. Interruption of hynL in a hynL::kan mutant resulted in a 75% decrease in specific hydrogenase activity relative to the wild type, whereas complementation of the hynL mutation resulted in activity that was 50% greater than that of the wild type. The availability of a genetic system in T. denitrificans will facilitate our understanding of the genetics and biochemistry underlying its unusual metabolism.  相似文献   

9.
The complete genome sequence of Thiobacillus denitrificans ATCC 25259 is the first to become available for an obligately chemolithoautotrophic, sulfur-compound-oxidizing, beta-proteobacterium. Analysis of the 2,909,809-bp genome will facilitate our molecular and biochemical understanding of the unusual metabolic repertoire of this bacterium, including its ability to couple denitrification to sulfur-compound oxidation, to catalyze anaerobic, nitrate-dependent oxidation of Fe(II) and U(IV), and to oxidize mineral electron donors. Notable genomic features include (i) genes encoding c-type cytochromes totaling 1 to 2 percent of the genome, which is a proportion greater than for almost all bacterial and archaeal species sequenced to date, (ii) genes encoding two [NiFe]hydrogenases, which is particularly significant because no information on hydrogenases has previously been reported for T. denitrificans and hydrogen oxidation appears to be critical for anaerobic U(IV) oxidation by this species, (iii) a diverse complement of more than 50 genes associated with sulfur-compound oxidation (including sox genes, dsr genes, and genes associated with the AMP-dependent oxidation of sulfite to sulfate), some of which occur in multiple (up to eight) copies, (iv) a relatively large number of genes associated with inorganic ion transport and heavy metal resistance, and (v) a paucity of genes encoding organic-compound transporters, commensurate with obligate chemolithoautotrophy. Ultimately, the genome sequence of T. denitrificans will enable elucidation of the mechanisms of aerobic and anaerobic sulfur-compound oxidation by beta-proteobacteria and will help reveal the molecular basis of this organism's role in major biogeochemical cycles (i.e., those involving sulfur, nitrogen, and carbon) and groundwater restoration.  相似文献   

10.
Bacterial oxidation of sulphide under denitrifying conditions   总被引:11,自引:0,他引:11  
Anoxic H2S oxidation under denitrifying conditions produced sulphur and sulphate in almost equal proportions by an isolated Thiobacillus denitrificans. Under nitrate reducing conditions the rate of sulphide oxidation was approximately 0.9 g sulphide/g biomass h. Nitrate was reduced to nitrite and accumulated during sulphide oxidation. Above 100 mg nitrite/l, the sulphide oxidation rate declined and at 500 mg/l it was totally arrested. The optimum pH for the anoxic sulphide oxidation was around 7.5. Concentrations of sulphate 1500 mg/l and acetate 400 mg/l had no effect on anoxic sulphide oxidation.  相似文献   

11.
The disappearance of 2-13C-acetate and the subsequent incorporation of label into cellular metabolites were followed in denitrifying cells of Thiobacillus versutus by 13C NMR spectroscopy. In cells grown under acetate-limitation, the specific rate of consumption was idependent of the density of the cell suspension. An isotopic steady state was reached within 30 min if sufficient substrate was added to the cell suspension. In cells grown under nitrate-limitation, the consumption of 2-13C-acetate proceeded at a significantly lower rate. The decrease and final disappearance of 2-13C-acetate were accompanied by incorporation of 13C into glutamate, glutamine, and by the release of labeled HCO 3 and CO2. The appearance of a broad resonance being the methyl endgroup of poly-3-hydroxybutyrate (PHB) was indicative for PHB mobilization during the incubation. The sequence of label incorporation and the distribution among the various carbon nuclei were consistent with the operation of the tricarboxylic acid cycle.  相似文献   

12.
We studied Cr isotopic fractionation during Cr(VI) reduction by Pseudomonas stutzeri strain RCH2. Despite the fact that strain RCH2 reduces Cr(VI) cometabolically under both aerobic and denitrifying conditions and at similar specific rates, fractionation was markedly different under these two conditions (ε was ~2‰ aerobically and ~0.4‰ under denitrifying conditions).  相似文献   

13.
14.
Abstract: Pseudomonas aeruginosa, P. stutzeri and Azospirillum brasilense showed highest NO production rates and NO consumption rate constants when anaerobically grown cells were tested under anaerobic conditions. Aerobic assay conditions resulted in 20–75-fold lower NO production rates. NO consumption rate constants, however, decreased by less than a factor of four. NO consumption activity was observed even in aerobically grown P. aeruginosa , provided the assay was done under anaerobic conditions. Obviously, NO consumption was less O2-sensitive than NO production so that compensation between production and consumption occurred at lower NO mixing ratios under aerobic than under anaerobic conditions.  相似文献   

15.
In this study, we used the denitrifying phosphorus-removing bacterium Brachymonas sp. strain P12 to investigate the enhanced biologic phosphorus-removal (EBPR) mechanism involved with polyhydroxybutyrate (PHB), glycogen, and phosphorus uptake in the presence of acetate under anoxic or aerobic conditions. The results showed that excess acetate concentration and aerobic cultivation can enhance PHB formation efficiency and that PHB formation might be stimulated by glycogenolysis of the cellular glycogen. The efficiency of the uptake of anoxic phosphorus was greater when PHB production was lower. The EBPR mechanism of Brachymonas sp. strain P12 for PHB, phosphorus, and glycogen was similar to the conventional anaerobic-aerobic (or anaerobic-anoxic) EBPR models, but these models were developed under anoxic or aerobic conditions only, without an anaerobic stage. The anoxic or aerobic log phase of growth is divided into two main phases: the early log phase, in which acetate and glycogen are consumed to supply enough energy and reducing power for PHB formation and cell growth (phosphorus assimilation), and the late log phase, which ends the simultaneous degradation of PHB and remaining acetate for polyphosphate accumulation. Glycogenolysis plays a significant role in the alternate responses between PHB formation and phosphorus uptake under anoxic or aerobic conditions. After the application of the denitrifying phosphorus-removing bacterium Brachymonas sp. strain P12, aerobic cultivation increases the level of PHB production, and anoxic cultivation further increases phosphorus uptake.  相似文献   

16.
《Process Biochemistry》2010,45(6):919-928
2-Methylquinoline is a common organic contaminant in environment. Its degradation in wastewater treatment system has not been fully explored. In this study, batch experiments were conducted to investigate the biodegradation of 2-methylquinoline by activated sludge under both aerobic and denitrifying conditions. The results showed that 2-methylquinoline was degraded under both conditions, but the degradation under aerobic condition was significantly faster than that under denitrifying condition. Total organic carbon (TOC) residues were detected in the final effluent under both conditions, indicating the formation of recalcitrant metabolites. Further analysis identified 1,2,3,4-tetrahydro-2-methylquinoline, N,N-diethyl-benzenamine, and 4-ethyl-benzenamine as common metabolites under both conditions. 4-Butyl-benzenamine and 2,6-diethyl-benzenamine were additional metabolites under the aerobic condition, whereas 2-methyl-4-quinolinol was exclusive to the denitrifying condition. Most of these metabolites were further degraded during the treatment process. 1,2,3,4-Tetrahydro-2-methylquinoline, however, remained in the final effluent under both conditions, implying its persistence in the environment. It can be concluded that 2-methylquinoline undergoes the similar degradation pathway under both treatment conditions.  相似文献   

17.
18.
19.
Biodegradation of (E)-phytol [3,7,11, 15-tetramethylhexadec-2(E)-en-1-ol] by two bacterial communities isolated from recent marine sediments under aerobic and denitrifying conditions was studied at 20 degrees C. This isoprenoid alcohol is metabolized efficiently by these two bacterial communities via 6,10, 14-trimethylpentadecan-2-one and (E)-phytenic acid. The first step in both aerobic and anaerobic bacterial degradation of (E)-phytol involves the transient production of (E)-phytenal, which in turn can be abiotically converted to 6,10,14-trimethylpentadecan-2-one. Most of the isoprenoid metabolites identified in vitro could be detected in a fresh sediment core collected at the same site as the sediments used for the incubations. Since (E)-phytenal is less sensitive to abiotic degradation at the temperature of the sediments (15 degrees C), the major part of (E)-phytol appeared to be biodegraded in situ via (E)-phytenic acid. (Z)- and (E)-phytenic acids are present in particularly large quantities in the upper section of the core, and their concentrations quickly decrease with depth in the core. This degradation (which takes place without significant production of phytanic acid) is attributed to the involvement of alternating beta-decarboxymethylation and beta-oxidation reaction sequences induced by denitrifiers. Despite the low nitrate concentration of marine sediments, denitrifying bacteria seem to play a significant role in the mineralization of (E)-phytol.  相似文献   

20.
The inclusion of nitrate or nitrite in cultures of Rhodobacter spaeroides subsp. denitrificans grown heterotrophically in light depressed the formation of bacteriochlorophyll a. The pigment biosynthesis was inhibited at the stage of the reduction of chlorophyllide (chlorin) to bacteriochlorophyllide (tetrahydroporphyrin) since 3-hydroxyethylchlorophyllide a accumulated in the culture medium. The addition of exogenous 5-aminolevulinic acid to these cultures resulted in a complete restoration of bacteriochlorophyll synthesis accompanied by the accumulation of 3-vinylbacteriopheophorbide. This indicates that under these conditions bacteriochlorophyll was formed via an alternative route, in which the reduction of chlorins to tetrahydroporphyrins precedes modifications of the C-3 side chain. The multiple forms of 5-aminolevulinic acid synthase were purified from cells grown with and without nitrate. Antibodies against these proteins were raised in rabbits and used in enzyme-linked immunosorbent assays for various forms of 5-aminolevulinic acid synthase. In denitrifying cells, the amount and activity of fraction I of the enzyme was reduced by approximately 40 and 30%, respectively. Partly active enzymes from both types of cells were activated by cystine trisulfide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号