首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A deficiency of tetrahydrobiopterin (BH4), a NO-synthase co-factor, results in reactive oxygen species synthesis by NO-synthase. It leads to disturbances of endothelium-dependent vasorelaxation. We performed our study on the monocrotaline model of pulmonary hypertension. A decrease in endothelium-dependent relaxation was observed only in intrapulmonary arteries of monocrotaline-treated rats. A perfusion of BH4 (0.1 mol/liter) increased significantly endothelium-dependent dilation of hypertensive pulmonary arteries (p < 0.01). But BH4 did not influence the relaxation of systemic vessels and the dilation responses of pulmonary and systemic arteries of control rats. Measuring of superoxide by lucigenin-mediated chemiluminescence showed five-fold O2- production in intrapulmonary arteries of pulmonary hypertensive rats, that was activated by acetylcholine and inhibited by a nonselective NO-synthase blocker (L-NAME). However, activity of NO-synthase measured as [H3]arginine to [H3]citrulline conversion and assessed in pulmonary vessels and aortic tissue, did not differ in control and monocrotaline-treated groups. These data suggest, that there is a local deficiency of BH4--in pulmonary vessels, without significant changes of systemic circulation.  相似文献   

2.
The purpose of this study was to determine whether Captopril (an angiotensin converting enzyme inhibitor) or D-penicillamine (an inhibitor of collagen crosslinking) can ameliorate pulmonary fibrosis induced by the plant alkaloid monocrotaline. Rats were randomly assigned to one of six treatment groups: (1) control; (2) Captopril, 60 mg/kg/day, p.o.; (3) D-penicillamine, 30 mg/kg/day, p.o.; (4) monocrotaline, 2.4 mg/kg/day, p.o.; (5) monocrotaline plus Captopril, as above; (6) monocrotaline plus penicillamine, as above; and were killed after 6 weeks of continuous drug administration. Monocrotaline-treated rats exhibited several anatomic correlates of pulmonary hypertension, including cardiomegaly, right heart enlargement, and muscularization of the pulmonary arteries and arterioles. These monocrotaline reactions were accompanied by decreased lung activities of angiotensin converting enzyme (ACE) and plasminogen activator (PLA), indicative of endothelial dysfunction; and by increased lung hydroxyproline concentration, indicative of interstitial fibrosis. The presence of interstitial fibrosis was confirmed by electron microscopy. When given concomitantly with monocrotaline, both Captopril and penicillamine partially prevented the cardiomegaly, right heart enlargement, and vascular muscularization. Both agents also diminished the decreased lung PLA activity and increased hydroxyproline concentration observed in monocrotaline-treated animals. Neither modifying agent influenced the monocrotaline-induced decrease in lung ACE activity. Compared with control rats, the rats receiving Captopril alone exhibited decreased heart weight and increased serum ACE activity, and animals receiving penicillamine alone did not differ significantly from control animals for any of the endpoints studied. These data demonstrate that Captopril and penicillamine ameliorate monocrotaline-induced pulmonary fibrosis in rats. Penicillamine, known to inhibit radiation-induced lung injury, thus is shown to be effective in a second model of pulmonary fibrosis. Perhaps more importantly, the hydroxyproline data demonstrate that the ACE inhibitor Captropril exhibits antifibrotic activity in monocrotaline-treated rat lung.  相似文献   

3.
Progressive pulmonary inflammation and emphysema have been implicated in the progression of chronic obstructive pulmonary disease (COPD), while current pharmacological treatments are not effective. Transplantation of bone marrow mesenchymal stem cells (MSCs) has been identified as one such possible strategy for treatment of lung diseases including acute lung injury (ALI) and pulmonary fibrosis. However, their role in COPD still requires further investigation. The aim of this study is to test the effect of administration of rat MSCs (rMSCs) on emphysema and pulmonary function. To accomplish this study, the rats were exposed to cigarette smoke (CS) for 11 weeks, followed by administration of rMSCs into the lungs. Here we show that rMSCs infusion mediates a down‐regulation of pro‐inflammatory mediators (TNF‐α, IL‐1β, MCP‐1, and IL‐6) and proteases (MMP9 and MMP12) in lung, an up‐regulation of vascular endothelial growth factor (VEGF), VEGF receptor 2, and transforming growth factor (TGFβ‐1), while reducing pulmonary cell apoptosis. More importantly, rMSCs administration improves emphysema and destructive pulmonary function induced by CS exposure. In vitro co‐culture system study of human umbilical endothelial vein cells (EA.hy926) and human MSCs (hMSCs) provides the evidence that hMSCs mediates an anti‐apoptosis effect, which partly depends on an up‐regulation of VEGF. These findings suggest that MSCs have a therapeutic potential in emphysematous rats by suppressing the inflammatory response, excessive protease expression, and cell apoptosis, as well as up‐regulating VEGF, VEGF receptor 2, and TGFβ‐1. J. Cell. Biochem. 114: 323–335, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Lung injury induced in rats by the pyrrolizidine alkaloid monocrotaline is a well-documented model of pulmonary hypertension. To our knowledge, however, monocrotaline-induced cardiopulmonary injury has rarely been described and has never been quantitated in mice. In the present study, adult male mice received 2.4, 4.8, or 24.0 mg monocrotaline/kg body weight/day in the drinking water continuously for 6 weeks. These doses represent 1, 2, and 10 times the severely pneumotoxic regimen in rats. Pulmonary endothelial function was monitored by right lung angiotensin converting enzyme (ACE) activity, plasminogen activator (PLA) activity, and prostacyclin (PGI2) and thromboxane (TXA2) production. Light and electron microscopy were performed on the left lungs. Cardiac right ventricular hypertrophy was evaluated by the right ventricle to left ventricle plus septum weight ratio (RV/LV + S). Monocrotalinetreated mice exhibited a dose-dependent decrease in lung ACE and PLA activities and an increase in PGI2 and TXA2 production, indicative of endothelial dysfunction. However, these responses were significant only after the highest monocrotaline dose. Light and electron microscopy revealed dosedependent pulmonary inflammatory and exudative reactions. Unlike previous studies in rats, however, monocrotaline-treated mice developed relatively little lung fibrosis, cardiomegaly, or right ventricular hypertrophy, and no occlusive medial thickening of the pulmonary arteries, even at the highest dose level. These and previous data indicate that there are quantitative biochemical and qualitative morphological differences between mice and rats with respect to monocrotaline pneumotoxicity. Furthermore, in monocrotaline-treated mice (but not in rats) there appears to be a dissociation between lung endothelial dysfunction and inflammation on the one hand, and pulmonary hypertension and fibrosis on the other.  相似文献   

5.
Pulmonary injury induced by the plant alkaloid monocrotaline is partially prevented by the angiotensin-converting enzyme (ACE) inhibitor captopril. CL242817 [(S-[R*,S*])-1-([3-acetylthio]-3-benzoyl-2-methyl-propionyl)- L-proline] is a new orally active ACE inhibitor under evaluation as an antihypertensive agent. To determine whether CL242817 also can modify monocrotaline-induced pulmonary injury, male rats were divided into four groups: control; CL242817 (60 mg/kg/day, po); monocrotaline (2.4 mg/kg/day, po); or monocrotaline plus CL242817, and were sacrificed after 6 weeks of continuous treatment. Rats receiving monocrotaline alone exhibited occlusive medial thickening of the pulmonary arteries, cardiomegaly, and right ventricular hypertrophy. Electron micrographs of monocrotaline-treated lung revealed degeneration of both endothelial and Type I epithelial cells, as well as marked interstitial hypercellularity and fibrosis. Hydroxyproline (collagen) content of monocrotaline-treated lung also increased significantly, confirming the fibrosis observed in the electron micrographs. These structural changes were accompanied by decreased lung ACE and plasminogen activator (PLA) activities, indicative of pulmonary endothelial dysfunction. Concomitant CL242817 treatment ameliorated all anatomic manifestations of monocrotaline injury, particularly the right ventricular hypertrophy, pulmonary arterial occlusion, epithelial degeneration, and interstitial fibrosis. CL242817 also significantly prevented the monocrotaline-induced increase in lung hydroxyproline content. In contrast, concomitant CL242817 did not significantly influence the suppressed lung ACE and PLA activities in monocrotaline-treated rats. CL242817 alone produced retarded weight gain, decreased heart weight relative to body weight, decreased lung hydroxyproline content and ACE activity, and increased serum ACE activity and plasma AII concentration. Thus CL242817 resembles captopril, both in its ability to ameliorate monocrotaline-induced pulmonary injury in rats, and in many of its side effects.  相似文献   

6.
Lung injury induced in rats by the pyrrolizidine alkaloid monocrotaline is a well-documented model of pulmonary hypertension. To our knowledge, however, monocrotaline-induced cardiopulmonary injury has rarely been described and has never been quantitated in mice. In the present study, adult male mice received 2.4, 4.8, or 24.0 mg monocrotaline/kg body weight/day in the drinking water continuously for 6 weeks. These doses represent 1, 2, and 10 times the severely pneumotoxic regimen in rats. Pulmonary endothelial function was monitored by right lung angiotensin converting enzyme (ACE) activity, plasminogen activator (PLA) activity, and prostacyclin (PGI2) and thromboxane (TXA2) production. Light and electron microscopy were performed on the left lungs. Cardiac right ventricular hypertrophy was evaluated by the right ventricle to left ventricle plus septum weight ratio (RV/LV + S). Monocrotaline-treated mice exhibited a dose-dependent decrease in lung ACE and PLA activities and an increase in PGI2 and TXA2 production, indicative of endothelial dysfunction. However, these responses were significant only after the highest monocrotaline dose. Light and electron microscopy revealed dose-dependent pulmonary inflammatory and exudative reactions. Unlike previous studies in rats, however, monocrotaline-treated mice developed relatively little lung fibrosis, cardiomegaly, or right ventricular hypertrophy, and no occlusive medial thickening of the pulmonary arteries, even at the highest dose level. These and previous data indicate that there are quantitative biochemical and qualitative morphological differences between mice and rats with respect to monocrotaline pneumotoxicity. Furthermore, in monocrotaline-treated mice (but not in rats) there appears to be a dissociation between lung endothelial dysfunction and inflammation on the one hand, and pulmonary hypertension and fibrosis on the other.  相似文献   

7.
We recently reported that increased vascular endothelial nitric oxide production could protect against the development of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) and right ventricular hypertrophy (RVH) in rats (32). The present study investigated whether the pleiotropic action of 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors in upregulating endothelial function could also protect against the MCT-induced end-organ damages. Rosuvastatin (2 mg kg(-1) day(-1) via oral gavage) or placebo was initiated 1 wk before or 1 wk after MCT (60 mg/kg ip) administration. One month after MCT, significant PAH developed in the placebo rats, which were accompanied by histological evidence of pulmonary vascular thickening and right ventricular hypertrophy. The coronary endothelial vasodilatory function, assessed with endothelial/nitric oxide-dependent responses to acetylcholine and N(G)-nitro-L-arginine methyl ester (L-NAME), was depressed, while the constrictory responses to known coronary constrictors was enhanced. In rats that received rosuvastatin treatment 1 wk before MCT administration, a significantly reduced PAH and RVH was observed, as well as reduced pulmonary vascular and right ventricular remodelings. Rosuvastatin 1-wk posttreatment had no effect on PAH, but inhibited RVH. Right coronary endothelial dysfunction, which was shown in placebo rats, was effectively prevented by both pre- and postrosuvastatin treatment, while this effect was more dramatic in the pretreated group. Left coronary endothelial function, which was not affected by MCT, also showed an upregulation by rosuvastatin. Taken together, our results demonstrated the pleiotropic protection of rosuvastatin against the development of PAH and RVH and confirmed our previous finding that the targeted preservation of coronary endothelial function and vasoactivity may provide a novel approach to protect against cardiac remodeling.  相似文献   

8.
Mesenchymal stem cells (MSCs) can be used in adult stem cell-based gene therapy for vascular diseases. To test the hypothesis that MSCs alone or endothelial nitric oxide synthase (eNOS)-modified MSCs can be used for treatment of erectile dysfunction (ED), syngeneic rat MSCs (rMSCs) were isolated, ex vivo expanded, transduced with adenovirus containing eNOS, and injected into the penis of aged rats. Histological analysis demonstrated that rMSCs survived for at least 21 days in corporal tissue after intracavernous injection, and an inflammatory response was not induced. Intracavernous administration of eNOS-modified rMSCs improved the erectile response in aged rats at 7 and 21 days after injection. The increase in erectile function was associated with increased eNOS protein, NOS activity, and cGMP levels. rMSCs alone increased erectile function of aged rats at day 21, but not at day 7, with the transplanted cells exhibiting positive immunostaining for several endothelial and smooth muscle cell markers. This change in rMSC phenotype was accompanied by upregulation of penile eNOS protein expression/activity and elevated cGMP levels. These findings demonstrate that an adenovirus can be used to transduce ex vivo expanded rMSCs to express eNOS and that eNOS-modified rMSCs improve erectile function in the aged rat. Intracavernous injection of unmodified wildtype rMSCs improved erectile function 21 days after injection through mechanisms involving improved endothelium-derived NO/cGMP signaling and rMSC differentiation into penile cells expressing endothelial and smooth muscle markers. These data highlight the potential clinical use of adult stem cell-based therapy for the treatment of ED.  相似文献   

9.
Vascular tissues express heme oxygenase (HO), which metabolizes heme to form carbon monoxide (CO). Heme-derived CO inhibits nitric oxide synthase and promotes endothelium-dependent vasoconstriction. After 4 wk of high-salt diet, Dahl salt-sensitive (Dahl-S) rats display hypertension, increased vascular HO-1 expression, and attenuated vasodilator responses to ACh that can be completely restored by acute treatment with an inhibitor of HO. In this study, we examined the temporal development of HO-mediated endothelial dysfunction in isolated pressurized first-order gracilis muscle arterioles, identified the HO product responsible, and studied the blood pressure effects of HO inhibition in Dahl-S rats on a high-salt diet. Male Dahl-S rats (5-6 wk) were placed on high-salt (8% NaCl) or low-salt (0.3% NaCl) diets for 0-4 wk. Blood pressure increased gradually, and responses to an endothelium-dependent vasodilator, ACh, decreased gradually with the length of high-salt diet. Flow-induced dilation was abolished in hypertensive Dahl-S rats. Acute in vitro pretreatment with an inhibitor of HO, chromium mesoporphyrin (CrMP), restored endothelium-dependent vasodilation and abolished the differences between groups. The HO product CO prevented the restoration of endothelium-dependent dilation by CrMP. Furthermore, administration of an HO inhibitor lowered blood pressure in Dahl-S rats with salt-induced hypertension but did not do so in low-salt control rats. These results suggest that hypertension and HO-mediated endothelial dysfunction develop gradually and simultaneously in Dahl-S rats on high-salt diets. They also suggest that HO-derived CO underlies the impaired endothelial dysfunction and contributes to hypertension in Dahl-S rats on high-salt diets.  相似文献   

10.
The administration of monocrotaline to rats causes pulmonary vascular leak within 1 wk followed in 2-3 wk by perivascular proliferation and fatal pulmonary hypertension. Possibly blocking the proliferation might block the pulmonary hypertension, providing insight into its mechanism. Because heparin, given as an antiproliferative agent, reduced hypoxic pulmonary hypertension in mice, it might also block monocrotaline-induced pulmonary hypertension. Alternatively, anticoagulation could worsen the lung injury. We found that heparin (300 and 600 U/kg sc twice daily) inhibited clotting in rats given monocrotaline but did not change the vascular leak, the right ventricular pressure, the right ventricular hypertrophy, the increased medial thickness of the pulmonary arterioles, or the production of a slow-reacting substance of anaphylaxis-like material by the lungs. A nonanticoagulant heparin fragment (2 mg/kg sc twice daily), given to avoid anticoagulation also did not influence the monocrotaline injury. Thus neither anticoagulant nor nonanticoagulant heparin either attenuated or worsened the measured effects of monocrotaline.  相似文献   

11.
Ischemic preconditioning (IP) may protect the lung from ischemia-reperfusion (I/R) injury following cardiopulmonary by-pass and lung or heart transplantation. The present study was undertaken to investigate the role of ATP-dependent potassium channels (K(ATP)) in IP in the isolated buffer-perfused rat lung (IBPR) under conditions of elevated pulmonary vasoconstrictor tone (PVT). Since pulmonary arterial perfusion flow and left atrial pressure were constant, changes in pulmonary arterial pressure (PAP) directly reflect changes in pulmonary vascular resistance (PVR). When compared to control value, the pulmonary vasodilator responses to histamine and acetylcholine (ACh) following 2 h of hypothermic ischemia were significantly attenuated, whereas the pulmonary vasodilator response to sodium nitroprusside (SNP) was not altered. IP in the form of two cycles of 5 min of ischemia and reperfusion applied prior to the two-hour interval of ischemia, prevented the decrease in the pulmonary vasodilator responses to histamine and ACh. Pretreatment with glybenclamide (GLB) or HMR-1098, but not 5-hydroxydecanoic acid (5-HD), prior to IP abolished the protective effect of IP. In contrast, GLB or 5-HD did not significantly alter the pulmonary vasodilator response to histamine without IP pretreatment. The present data demonstrate that IP prevents impairment of endothelium-dependent vasodilator responses in the rat pulmonary vascular bed. The present data further suggest that IP may alter the mediation of the pulmonary vasodilator response to histamine and thereby trigger a mechanism dependent on activation of sarcolemmal, and not mitochondrial, K(ATP) channels to preserve endothelial-dependent vasodilator responses and protect against I/R injury in the lung.  相似文献   

12.
The effects of tumor necrosis factor (TNF) on hypoxic pulmonary vasoconstriction (HPV) and endothelium-dependent relaxation were examined in a blood-perfused rat lung preparation. Lungs from TNF-treated rats (0.26 mg/kg iv 12 h before experimentation) had a significantly greater HPV and a reduced vasorelaxant response to the endothelium-dependent vasodilator acetylcholine (ACh) but a similar vasorelaxant response to the endothelium-independent vasodilator nitroprusside compared with lungs from control rats (pretreated with 0.1 ml saline iv). Pentoxifylline (20 mg/kg iv and ip 20 min before administration of TNF) had no detectable effect on either HPV or ACh-induced relaxation but completely negated the augmentation on HPV and the inhibiting action on ACh-induced relaxation caused by TNF. The TNF effect on ACh relaxation was unaffected by pretreatment with L-arginine. These results indicate that TNF induces endothelial dysfunction and enhances HPV, effects that are inhibited by pentoxifylline.  相似文献   

13.
The purpose of the present study was to determine the influence of NG-nitro-L-arginine methyl ester (L-NAME) on pulmonary vascular responses to endothelium-dependent relaxing factor- (EDRF) dependent and EDRF-independent substances in the pulmonary vascular bed of the anesthetized cat. Because pulmonary blood flow and left atrial pressure were kept constant, changes in lobar arterial pressure directly reflect changes in pulmonary vascular resistance. When pulmonary vasomotor tone was actively increased by intralobar infusion of U-46619, intralobar bolus injections of acetylcholine, bradykinin, serotonin, and 5-carboxyamidotryptamine (a serotonin1A receptor agonist) decreased lobar arterial pressure in a dose-related manner. The pulmonary vasodilator response to serotonin, but not to 5-carboxyamidotryptamine, acetylcholine, and bradykinin, was significantly decreased by L-NAME (100 mg/kg i.v.). Administration of ritanserin (0.5 mg/kg i.v.), but not L-arginine (1 g/kg i.v. with 60 mg.kg-1 x min-1 i.v. infusion), reversed the inhibitory effects of L-NAME on the pulmonary vasodilator response to serotonin and abolished the enhanced pulmonary vasoconstrictor response to (+-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminoproprane hydrochloride (a serotonin2 receptor agonist) after L-NAME administration. In conclusion, the present experiments suggest that L-NAME inhibits the pulmonary vasodilator response to serotonin by increasing the sensitivity of serotonin2 receptor-mediated vasoconstriction and not by inhibiting EDRF formation. Because the pulmonary vasodilator responses to bolus administration of acetylcholine and bradykinin were not inhibited by L-NAME, these data suggest that L-NAME does not appear to be an adequate probe to study the role of endogenous EDRF in the adult feline pulmonary vascular bed in vivo.  相似文献   

14.
Methylene blue selectively inhibits pulmonary vasodilator responses in cats   总被引:5,自引:0,他引:5  
The effects of methylene blue on vascular tone and the responses to pressor and depressor substances were investigated in the constricted feline pulmonary vascular bed under conditions of controlled blood flow and constant left atrial pressure. When tone was elevated with U46619, intralobar injections of acetylcholine, bradykinin, nitroglycerin, isoproterenol, epinephrine, and 8-bromoguanosine-3',5'-cyclic monophosphate (8-bromo-cGMP) dilated the pulmonary vascular bed. Intralobar infusions of methylene blue elevated lobar arterial pressure without altering base-line left atrial or aortic pressure, heart rate, or cardiac output. When methylene blue was infused in concentrations that raised lobar arterial pressure to values similar to those attained during U46619 infusion, the pulmonary vasodilator responses to acetylcholine, bradykinin, and nitroglycerin were reduced significantly, whereas vasodilator responses to isoproterenol, epinephrine, and 8-bromo-cGMP were not altered. Moreover, the pressor responses to angiotensin II and BAY K 8644 during U46619 infusion and during methylene blue infusion were similar. The enhancing effects of methylene blue on vascular tone and inhibiting effects of this agent on responses to acetylcholine, bradykinin, and nitroglycerin were reversible. These responses returned to control value when tone was again increased with U46619, 30-45 min after the methylene blue infusion was terminated. The present data are consistent with the hypothesis that cGMP may play a role in the regulation of tone in the feline pulmonary vascular bed and in the mediation of vasodilator responses to the endothelium-dependent vasodilators, acetylcholine and bradykinin, and to nitrogen oxide-containing vasodilators such as nitroglycerin.  相似文献   

15.
Vascular tissues express arginase that metabolizes L-arginine to L-ornithine and urea and thus reduces substrate availability for nitric oxide formation. Dahl salt-sensitive (Dahl-S) rats with salt-induced hypertension show endothelial dysfunction, including decreased vascular nitric oxide formation. This study tests the hypothesis that increased vascular arginase activity contributes to endothelial dysfunction in hypertensive Dahl-S rats. Male Dahl-S rats (5-6 wk) were placed on high (8%) or low (0.3%) NaCl diets for 4 wk. With respect to the low-salt group, mean arterial blood pressure was increased in the high-salt animals. Immunohistochemical stainings for arginase I and II were enhanced in arterioles isolated from high-salt Dahl-S rats. Experiments used isolated Krebs buffer-superfused first-order gracilis muscle arterioles with constant pressure (80 mmHg) and no luminal flow or constant midpoint but altered endpoint pressures to establish graded levels of luminal flow (0-50 microl/min). In high-salt arterioles, responses to an endothelium-dependent vasodilator acetylcholine (1 nmol/l to 3 micromol/l) and flow-induced dilation were decreased. Acute in vitro treatment with an inhibitor of arginase, 100 micromol/l (S)-(2-boronoethyl)-L-cystine, or the nitric oxide precursor, 1 mmol/l L-arginine, similarly enhanced acetylcholine and flow-induced maximal dilations and abolished the differences between high- and low-salt arterioles. These data show that arteriolar arginase expression is increased and that endothelium-dependent vasodilation is decreased in high-salt Dahl-S rats. Acute pretreatment with an arginase inhibitor or with L-arginine restores endothelium-dependent vasodilation and abolishes the differences between high- and low-salt groups. These results suggest that enhanced vascular arginase activity contributes to endothelial dysfunction in Dahl-S rats with salt-induced hypertension and identifies arginase as a potential therapeutic target to prevent endothelial dysfunction.  相似文献   

16.
The present study was designed to determine whether there is a causal relationship between noise-induced hypertension and changes of endothelial function. Rats were exposed to noise stress (100 dB, 1 kHz, 4 h/day, 6 days/week) for 1–4 weeks. The systolic blood pressure was significantly increased after rats were exposed to noise stress for 3 weeks. The relaxant responses of isolated mesenteric arterial rings to endothelium-dependent vasodilators (A23187 and acetylcholine) in noise-treated rats were significantly less than those in control rats. This difference in response to acetylcholine still existed in the presence of methylene blue or N-nitro-L-arginine. On the other hand, the responses to the endothelium-independent vasodilator nitroglycerin were not affected in rats exposed to noise stress. The attenuation to endothelium-dependent vasodilators during noise stress may result in increasing peripheral vascular resistance and thus elevate blood pressure. This indicates that noise-induced hypertension may be partly due to the alterations of endothelial activity.  相似文献   

17.
Rats with established monocrotaline (MCT)-induced pulmonary hypertension also exhibit a profound increase in lung resistance (RL) and a decrease in lung compliance. Because airway/lung dysfunction could precede and influence the evolution of MCT-induced pulmonary vascular disease, it is important to establish the temporal relationship between development of pulmonary hypertension and altered ventilatory function in MCT-treated rats. To resolve this issue, we segregated 47 young Sprague-Dawley rats into four groups: control (n = 13), MCT1 (n = 9), MCT2 (n = 11), and MCT3 (n = 14). Each MCT rat received a single subcutaneous injection of MCT (60 mg/kg) 1 MCT1), 2 (MCT2), or 3 (MCT3) wk before the functional study. At 1 wk after MCT, significant increases in RL and alveolar wall thickness were observed, as was a significant decrease in carbon monoxide diffusing capacity (DLCO). Medial thickness of pulmonary arteries (50-100 microns OD) and right ventricular hypertrophy were not observed until 2 and 3 wk post-MCT, respectively. Coincident with the right ventricular hypertrophy at 3 wk post-MCT were decreased DLCO and increased alveolar wall thickness and lung dry weight. Pressure-volume curves of air-filled and saline-filled lungs showed marked rightward shifts during the 1st and 2nd wk after MCT administration and then decreased at the 3rd wk. These data suggest that MCT-induced alterations in airway/lung function preceded those of pulmonary vasculature and, therefore, implicate airway/lung dysfunctions as potentially contributing to the later development of pulmonary vascular abnormalities.  相似文献   

18.
The aim of this study was to analyze the contribution of nitric oxide, prostacyclin and endothelium-dependent hyperpolarizing factor to endothelium-dependent vasodilation induced by acetylcholine in rat aorta from control and ouabain-induced hypertensive rats. Preincubation with the nitric oxide synthase inhibitor N-omega-nitro-l-arginine methyl esther (L-NAME) inhibited the vasodilator response to acetylcholine in segments from both groups but to a greater extent in segments from ouabain-treated rats. Basal and acetylcholine-induced nitric oxide release were higher in segments from ouabain-treated rats. Preincubation with the prostacyclin synthesis inhibitor tranylcypromine or with the cyclooxygenase inhibitor indomethacin inhibited the vasodilator response to acetylcholine in aortic segments from both groups. The Ca2+-dependent potassium channel blocker charybdotoxin inhibited the vasodilator response to acetylcholine only in segments from control rats. These results indicate that hypertension induced by chronic ouabain treatment is accompanied by increased endothelial nitric oxide participation and impaired endothelium-dependent hyperpolarizing factor contribution in acetylcholine-induced relaxation. These effects might explain the lack of effect of ouabain treatment on acetylcholine responses in rat aorta.  相似文献   

19.
Pulmonary hypertension (PH) is characterized by pulmonary arteriolar remodeling with excessive pulmonary vascular smooth muscle cell (VSMC) proliferation. This results in decreased responsiveness of pulmonary circulation to vasodilator therapies. We have shown that extracellular acidosis inhibits VSMC proliferation and migration in vitro. Here we tested whether induction of nonhypercapnic acidosis in vivo ameliorates PH and the underlying pulmonary vascular remodeling and dysfunction. Adult male Sprague-Dawley rats were exposed to hypoxia (8.5% O(2)) for 2 wk, or injected subcutaneously with monocrotaline (MCT, 60 mg/kg) to develop PH. Acidosis was induced with NH(4)Cl (1.5%) in the drinking water 5 days prior to and during the 2 wk of hypoxic exposure (prevention protocol), or after MCT injection from day 21 to 28 (reversal protocol). Right ventricular systolic pressure (RVSP) and Fulton's index were measured, and pulmonary arteriolar remodeling was analyzed. Pulmonary and mesenteric artery contraction to phenylephrine (Phe) and high KCl, and relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) were examined ex vivo. Hypoxic and MCT-treated rats demonstrated increased RVSP, Fulton's index, and pulmonary arteriolar thickening. In pulmonary arteries of hypoxic and MCT rats there was reduced contraction to Phe and KCl and reduced vasodilation to ACh and SNP. Acidosis prevented hypoxia-induced PH, reversed MCT-induced PH, and resulted in reduction in all indexes of PH including RVSP, Fulton's index, and pulmonary arteriolar remodeling. Pulmonary artery contraction to Phe and KCl was preserved or improved, and relaxation to ACh and SNP was enhanced in NH(4)Cl-treated PH animals. Acidosis alone did not affect the hemodynamics or pulmonary vascular function. Phe and KCl contraction and ACh and SNP relaxation were not different in mesenteric arteries of all groups. Thus nonhypercapnic acidosis ameliorates experimental PH, attenuates pulmonary arteriolar thickening, and enhances pulmonary vascular responsiveness to vasoconstrictor and vasodilator stimuli. Together with our finding that acidosis decreases VSMC proliferation, the results are consistent with the possibility that nonhypercapnic acidosis promotes differentiation of pulmonary VSMCs to a more contractile phenotype, which may enhance the effectiveness of vasodilator therapies in PH.  相似文献   

20.
We tested the hypothesis that aging decreases endothelium-dependent vasodilation in feed arteries perfusing rat skeletal muscle. In addition, we tested the hypothesis that attenuated vasodilator responses are associated with decreased endothelial nitric oxide synthase (eNOS) and superoxide dismutase-1 (SOD-1) expression. Soleus feed arteries (SFA) and gastrocnemius feed arteries (GFA) were isolated from young (4 mo) and old (24 mo) male Fischer 344 rats. Feed arteries from the right hindlimb were cannulated with two glass micropipettes for examination of endothelium-dependent [acetylcholine (ACh)] and endothelium-independent [adenosine (Ado) or sodium nitroprusside (SNP)] vasodilator function. Feed arteries from the left hindlimb were frozen and used to assess eNOS and SOD-1 protein and mRNA expression. In SFA, endothelium-dependent dilation to ACh was reduced in old rats (0.9 +/- 0.04 vs. 0.8 +/- 0.03), whereas dilator responses to Ado and SNP were similar in SFA of young and old rats. In GFA, vasodilator responses to ACh, Ado, and SNP were not altered by age. eNOS and SOD-1 protein expression declined with age in SFA (-71 and -54%, respectively) but not in GFA. eNOS and SOD-1 mRNA expression were not altered by age in SFA or GFA. Collectively, these data indicate aging induces muscle-specific impairment of endothelium-dependent vascular function in SFA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号