首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of on-line viable yeast biomass with a capacitance biomass monitor   总被引:1,自引:0,他引:1  
A commercially available biomass monitor has been employed in a number of applications. For capacitance monitors, a relationship between capacitance measurement and cell counts or colony forming units has been reported in the literature. However, for use as an online instrument, a more practical correlation with the biomass concentration is needed. In this study, we followed the batch growth of brewer's yeast and a correlation with viable biomass concentration (g DW/L) was demonstrated. This correlation was utilized with the capacitance biomass monitor in a control loop to maintain setpoint biomass levels in a cyclic reactor under perturbations. Not only did the system demonstrate the capability of the biomass monitor to control biomass in such a system, but it also confirmed the correlation reported in our earlier work. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
The effect of different initial acetic acid concentrations on the growth of and lipid and gamma-linolenic acid (GLA) production byMucor circinelloides CBS 203.28 was determined in a 14 litre stirred tank reactor operated in a fedbatch, pH-stat mode with acetic acid as carbon source and pH titrant. Increased acetic acid concentrations in the culture resulted in a significant increase in the crude oil content of the biomass. By contrast, all the other parameters such as the biomass concentration, GLA and oil yield on acetic acid, the GLA content of the biomass and oil, the growth rate and volumetric rate of GLA production decreased with an increase in acetic acid concentration. The best results were obtained with acetic acid at 2 g/1, which gave 39.8 mg GLA/g biomass and 15.6% GLA in the neutral lipid fraction, amounting to 340 mg GLA/1 culture. A decrease in the glyco- and phospho-lipid fractions during the cultivation coincided with an increase in the neutral lipid fraction. The GLA content of the biomass remained within rather narrow limits of 3.5% to 4% of the biomass, irrespective of the oil content of the biomass. The fatty acid profile was not greatly affected by the acetic acid concentration. The hyphae of the fungus were characterized by the accumulation of large intracellular oil droplets and some septa delimited the hyphae.  相似文献   

3.
The use of F(420) as a parameter for growth or metabolic activity of methanogenic bacteria was investigated. Two representative species of methanogens were grown in batch culture: Methanobacterium bryantii (strain M.o.H.G.) on H(2) and CO(2), and Methanosarcina barkeri (strain Fusaro) on methanol or acetate. The total intracellular content of coenzyme F(420) was followed by high-resolution fluorescence spectroscopy. F(420) concentration in M. bryantii ranged from 1.84 to 3.65 mumol . g of protein; and in M. barkeri grown with methanol it ranged from 0.84 to 1.54 mumol . g depending on growth conditions. The content of F(420) in M. barkeri was influenced by a factor of 2 depending on the composition of the medium (minimal or complex) and by a factor of 3 to 4 depending on whether methanol or acetate was used as the carbon source. A comparison of F(420) content with protein, cell dry weight, optical density, and specific methane production rate showed that the intracellular content of F(420) approximately followed the increase in biomass in both strains. In contrast, no correlation was found between specific methane production rate and intracellular F(420) content. However, qCH(4)(F(420)), calculated by dividing the methane production rate by the coenzyme F(420) concentration, almost paralleled qCH(4)(protein). These results suggest that F(420) may be used as a specific parameter for estimating the biomass, but not the metabolic activity, of methanogens; hence qCH(4)(F(420)) determined in mixed populations with complex carbon substrates must be considered as measure of the actual methanogenic activity and not as a measure of potential activity.  相似文献   

4.
The effect of aeration on growth and production of extra- and intracellular lipids was studied in the yeast Rhodotorula glutinis. Oxygen concentration in the medium optimal for biomass formation did not favour the maximal lipid yield. Changes in the fatty acid composition of the both lipid types as a function of aeration are discussed.  相似文献   

5.
Chlorella vulgaris accumulates lipid under nitrogen limitation, but at the expense of biomass productivity. Due to this tradeoff, improved lipid productivity may be compromised, despite higher lipid content. To determine the optimal degree of nitrogen limitation for lipid productivity, batch cultures of C. vulgaris were grown at different nitrate concentrations. The growth rate, lipid content, lipid productivity and biochemical and elemental composition of the cultures were monitored for 20 days. A starting nitrate concentration of 170 mg L?1 provided the optimal tradeoff between biomass and lipid production under the experimental conditions. Volumetric lipid yield (in milligram lipid per liter algal culture) was more than double that under nitrogen-replete conditions. Interpolation of the data indicated that the highest volumetric lipid concentration and lipid productivity would occur at nitrate concentrations of 305 and 241 mg L?1, respectively. There was a strong correlation between the nitrogen content of the cells and the pigment, protein and lipid content, as well as biomass and lipid productivity. Knowledge of the relationships between cell nitrogen content, growth, and cell composition assists in the prediction of the nitrogen regime required for optimal productivity in batch or continuous culture. In addition to enhancing lipid productivity, nitrogen limitation improves the lipid profile for biodiesel production and reduces the requirement for nitrogen fertilizers, resulting in cost and energy savings and a reduction in the environmental burden of the process.  相似文献   

6.
A suitable strain and important factors influencing citric acid formation in yeasts were identified. Candida oleophila ATCC 20177 was chosen as the best citric acid producer from several Candida strains. Yields of 50 g/l citric acid were produced in shake flask and 80 g/l in fed-batch fermentations with 1.5 and 3 g/l NH(4)Cl under non-optimized conditions. Ammonium nitrogen was identified as the limiting substrate for citrate formation. Citric acid excretion begins a few hours after exhaustion of nitrogen in the medium. The importance of intracellular nitrogen limitation was clarified by elemental analysis of C. oleophila biomass. The nitrogen content of C. oleophila biomass decreased from 7.45% during the growth phase to 3.96% in the production phase. The biomass contained less carbon and more trace elements in the growth phase compared with the production phase. Relatively high intracellular NH(4)(+) concentration of about 1.2 mg/g biomass (~37.4 mM) was found during the production phase. The low intracellular nitrogen content and increase of intracellular NH(4)(+) concentration, possibly caused by proteolysis following extracellular nitrogen exhaustion, trigger citric acid production. Intracellular nitrogen limitation and the increase in intracellular NH(4)(+) concentration are the most important factors influencing citric acid formation in yeasts.  相似文献   

7.
考察了8种含氮培养基对湛江等鞭金藻(I. zhanjiangensis)生长、PSⅡ活性、油脂及碳水化合物积累的影响。结果显示,当培养基中氮浓度为1.5 g/L,藻细胞的总脂肪含量和产量分别达到最高值为39.8 %和 0.92 g/L, 碳水化合物的含量为最低11.6 %;而当培养基中氮浓度为 0.016 g/L,藻细胞的总脂肪含量和产量分别达到最低值为21.1 %和0.16 g/L。而此时总碳水化合物含量最高达到44.4 %。同时线性拟合方程的结果表明培养基中NO3-的浓度与藻细胞的总脂含量呈较好的正相关性。因此,通过研究不同含氮水平的培养基实现了脂肪或碳水化合物产量的调控。  相似文献   

8.
Microalgal lipids are the oils of future for sustainable biodiesel production. However, relatively high production costs due to low lipid productivity have been one of the major obstacles impeding their commercial production. We studied the effects of nitrogen sources and their concentrations on cell growth and lipid accumulation of Neochloris oleoabundans, one of the most promising oil-rich microalgal species. While the highest lipid cell content of 0.40 g/g was obtained at the lowest sodium nitrate concentration (3 mM), a remarkable lipid productivity of 0.133 g l−1 day−1 was achieved at 5 mM with a lipid cell content of 0.34 g/g and a biomass productivity of 0.40 g l−1 day−1. The highest biomass productivity was obtained at 10 mM sodium nitrate, with a biomass concentration of 3.2 g/l and a biomass productivity of 0.63 g l−1 day−1. It was observed that cell growth continued after the exhaustion of external nitrogen pool, hypothetically supported by the consumption of intracellular nitrogen pools such as chlorophyll molecules. The relationship among nitrate depletion, cell growth, lipid cell content, and cell chlorophyll content are discussed.  相似文献   

9.
Measurement of capacitance, also referred to as dielectric permittivity, is a new method of estimating the concentration of cells, monitoring the growth and detecting the physiological changes during the cultivation of organisms in various bioprocess. Several types of biological cells were studied, namely; Saccharomyces cerevisiae, Escherichia coli, Perilla frutescens (plant cells) and AFP-27 hybridoma cells. Generally, a linear correlation between cell capacitance (C) and other biomass measurement technique such as optical density (OD) and dry weight (DW) was obtained using the different types of cell suspension. Therefore, this method could be used to monitor the growth of the organism during the active growth. It could be conveniently used to make a rapid estimate of the cell concentration such as in plant cell suspension culture. The capacitance sensor could also be designed to be installed and autoclaved in-situ in a bioreactor and used for on-line monitoring of cell growth. On the other hand, distinct deviations in the capacitance value were observed in relation with the growth stage of the organism. This was observed in all the organisms studied but the type of deviation depends on the physiology of the organism. This variation in cell capacitance showed the possibility of using this method as a means to indicate changes in the physiological state of cells during cultivation. This capability would be very useful in designing control strategies that would depend on the physiological states in the bioprocess. Present address: Miles Inc., Berkeley, CA 94701 U.S.A.The authors sincerely appreciated the generosity of Dr. K. Mishima and Dr. A. Mimura of Kobe Steel Co., Japan. The useful discussions with M. Nakajima and technical assistance of J. Zhong and R. Pambayun were also acknowledged. The work in hybridoma cell culture was done through the collaboration with C. Perusich-Kussow and Prof. W. S. Hu, University of Minnesota, USA.  相似文献   

10.
Lipids, proteins, and carbohydrates are the major constituents found in microalga cells, in varying proportions, and these biomolecules find applications in different industries. During microalga cultivation, to efficiently manipulate, control, and optimize the productivity of a specific compound for a specific application, real-time monitoring of these three cell components is essential. In this study, a method using measurement of electrical capacitance was developed to simultaneously determine the lipid, protein, and carbohydrate content of microalga cells without the requirement for any pre-processing steps. The marine microalga Nannochloropsis oculata was cultivated under nitrogen starvation conditions to induce lipid accumulation over a period of 22 days. The correlation between the electrical capacitance of the microalga culture and the intracellular biomolecule content (determined by standard techniques) was investigated, enabling subsequent deduction of microalga intracellular content from electrical capacitance of the culture. The accuracy and precision of the technique were proven by validating an independent sample. The main advantage of the proposed technique is its capability of quantifying microalga composition within a few minutes, significantly faster than currently available conventional techniques.  相似文献   

11.
Biomass measurement by inductive permittivity   总被引:2,自引:0,他引:2  
An electrodeless, inductive permittivity probe is shown to reliably indicate fermentation biomass. By designing the probe based on electromagnetic induction, the electrode polarization artifact-common to electrode-based permittivity measurements of conductive solutions-is eliminated. The measurement of viable biomass concentration (X(V)) is precise and linear, with negligible interference, as shown for two bacteria, two yeasts, and two mammalian cells. The permittivity spectra often can be described by the three parameters of the Cole-Cole equation: the maximum (low-frequency) permittivity, the characteristic frequency (f(C)), and the Cole-Cole alpha. The f(C) and alpha have potential as relative indicators of cell size and morphology, respectively. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 289-304, 1997.  相似文献   

12.
The present study aimed to investigate the effects of organic carbon sources, cultivation methods, and environmental factors on growth and lipid content of Pavlova lutheri for biodiesel production. In the 250-mL flask bioreactors, P. lutheri was cultivated in the modified artificial seawater (ASW) medium containing glucose, glycerol, sodium acetate, or sucrose as an organic carbon substrate. The effects of different growth conditions (phototrophic, mixotrophic, and heterotrophic) and environmental factors such as photoperiod, light intensity, and salinity were evaluated. Growth of P. lutheri was inhibited under heterotrophy but was enhanced in mixotrophy as compared to phototrophy. Biomass and lipid content of P. lutheri were significantly (p < 0.05) affected by changing photoperiod, light intensity, and salinity. Higher biomass concentration and lipid content were observed at a light intensity of 100 ± 2 μmol photons m−2 s−1, 18 h photoperiod, and 30% salinity, in a modified ASW medium supplemented with 10 mmol sucrose. An increase in biomass concentration from 320 ± 25.53 to 1106 ± 18.52 mg L−1 and high lipid content of 31.11 ± 1.65% (w/w) were observed with the optimized culture conditions, demonstrating a significant (p < 0.05) enhancement in biomass and lipid content due to the improved culture conditions. The present study emphasizes the possible use of sucrose for biomass and lipid production with P. lutheri under the optimized culture conditions. Using low-cost and relatively easy accessible feedstock such as sucrose would be a valuable alternative for growing microalgae with enhanced lipid content.  相似文献   

13.
Aims:  To develop mathematical models for mycelium growth and ergosterol formation in conditions of periodic stationary culture; to verify possibilities of applying a model describing the relationship between ergosterol content and mycelium quantity.
Methods and Results:  The mould growth and ergosterol formation models covering all phases of mould growth are described using a modified logistic equation with the addition of an exponential function. The correlation between ergosterol and mycelium biomass depended on the growth phase of mould. Meaningful relation was obtained for initial two phases, when both parameters were growing equally. The quadratic function for estimation of the biomass based on ergosterol content was formulated. The error resulting from the application of this function in initial phases of moulds growth was small at 5–7%, in the following phases it was at 11–31%.
Conclusions:  Mycelium biomass can be precisely determined basing on the ergosterol content, when we know the moulds growth phase. In natural environments, without the information about growth phases, it will be possible, but with the higher error.
Significance and Impact of the Study:  Presented model based on the ergosterol content making possible to estimate the quantity of mycelium in moulds cultures and natural environments.  相似文献   

14.
Microbial lipids produced by Rhodotorula gracilis NRRL Y-1091 grown in continuous culture under nitrogen-limiting condition were evaluated and the effects of growth rate and oxygen concentration on the degree of unsaturatoin of fatty acids studied. As the growth rate increased the protein content of the biomass increased but cell biomass, lipid content, and lipid productivity decreased; the specific lipid production rate remained constant at about 0.012 g lipid/g dry biomass/h. The maximum lipid content recorded was 49.8% (w/w) of the cell mass at a growth rate of 0.02 h(-1). The growth rate also affected fatty acid composition; polyunsaturated fatty acids (C18:2 and C18:3) increaded with growth rate while other fatty acids (C16:0, C18:0, C18:1) decreased. Increase in oxygen concentration between 5 and 234muM increased the lipid content without significantly affecting its degree of unsaturation. On the other hand, the degree of unsaturation was significantly affected by specific oxygen uptake rate for this obligate aerobe, Rh. gracilis.  相似文献   

15.
A modeling approach was used to quantify the kinetic behavior of a Yarrowia lipolytica strain capable of producing significant lipid amounts when cultivated on industrial fats. Biomass and cellular lipid evolution were successfully simulated, while the optimized parameter values were similar to those experimentally measured. The maximum specific formation rate of fat-free biomass seemed unaffected by the substrate fatty acid composition. On the contrary, the maximum concentration of lipid accumulated inside the yeast cell, as well as the maximum specific accumulation rate of cellular lipids, was favored in high stearic acid content media. The microorganism presented the tendency to degrade its accumulated lipids, although remarkable substrate fat amounts remained unconsummated in the culture medium. This degradation slowly occurred in the yeast cell as the specific rate of the intracellular carbon pool (storage lipid consumption) was significantly lower compared with that of the extracellular carbon pool (substrate fat). However, the fat-free biomass yield on storage lipids (g of fat-free biomass formed per g of storage lipids consumed) was higher than the one on the substrate (g of fat-free biomass formed per g of medium fat consumed).  相似文献   

16.
17.
Several studies point to the existence of an inverse correlation between cellular lipid peroxidation and both cell proliferation and neoplastic transformation. Furthermore, numerous results demonstrate that lipid peroxidation products affect central biochemical pathways and intracellular signalling at physiological concentrations. 4-Hydroxynonenal (HNE) is one of the most active products of lipid peroxidation. This work has focused on the evaluation of HNE nuclear content, so far never directly measured, by electrospray-ionization-mass-spectrometry (ESI/MS) and on the correlation between its concentration and the induced effects after exogenous administration. In a human osteosarcoma cell line (SaOS2), HNE exhibited an early cytotoxic effect characterized by apoptosis, cytostatic and differentiating effects characterized by slow growth, increase in alkaline phosphatase (ALP), and alpha5 integrin subunit content with decrease in tumorigenicity.  相似文献   

18.
Lipid formation and γ-linolenic acid (GLA) production by 48 species of Mucorales fungi grown on sunflower oil (which consists of 70% linoleic acid ; LA) were studied. The strains accumulated 42·7–65·8% lipid in biomass (7·66–13·39 g l−1). Eight cultures produced more than 200 mg GLA l−1. Highest GLA yields exhibited Mucor mucedo CCF-1384 and Cunninghamella echinulata CCF-103 (379 and 373 mg l−1, respectively). Mortierella alpina CCF-185 synthesized 465 mg l−1 arachidonic acid. While the decrease of LA utilization index (ratio of LA content of cell lipid/LA content of oil source) was accompanied with growth of delipidized biomass and with reduction of lipid accumulation within the cells, high lipid yield was as a consequence of the direct oil source incorporation into intracellular lipid.  相似文献   

19.
On-line monitoring biomass concentration in mycelial fed-batch cultivations of Streptomyces clavuligerus grown with soluble and partially insoluble complex media, was investigated with an in-situ capacitance probe fitted to an industrial pilot-plant tank. Standard off-line and on-line biomass determinations, including cell dry weight, packed mycelial volume, viscosity, DNA concentration and total CO(2) evolution in the exhaust gases, were performed throughout the experiments and compared to on-line capacitance measurements. Linear relations between capacitance and all other measurements were developed for both media that hold only in defined process phases, depending on the biomass state and the amount of insoluble matter present. For the industrial complex culture media good linear relations were obtained in the fast growth phase between capacitance and DNA concentration and total CO(2) evolution, while in the subsequent transition and stationary phases only with apparent viscosity was a reasonable correlation found. The capacitance probe was shown to be a valuable tool for real-time monitoring biomass concentration in industrial-like cultivation of mycelial streptomycetes.  相似文献   

20.
A modeling approach was used to quantify the kinetic behavior of a Yarrowia lipolytica strain capable of producing significant lipid amounts when cultivated on industrial fats. Biomass and cellular lipid evolution were successfully simulated, while the optimized parameter values were similar to those experimentally measured. The maximum specific formation rate of fat-free biomass seemed unaffected by the substrate fatty acid composition. On the contrary, the maximum concentration of lipid accumulated inside the yeast cell, as well as the maximum specific accumulation rate of cellular lipids, was favored in high stearic acid content media. The microorganism presented the tendency to degrade its accumulated lipids, although remarkable substrate fat amounts remained unconsummated in the culture medium. This degradation slowly occurred in the yeast cell as the specific rate of the intracellular carbon pool (storage lipid consumption) was significantly lower compared with that of the extracellular carbon pool (substrate fat). However, the fat-free biomass yield on storage lipids (g of fat-free biomass formed per g of storage lipids consumed) was higher than the one on the substrate (g of fat-free biomass formed per g of medium fat consumed). Received: 26 June 2002 / Accepted: 22 July 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号