首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Understanding speciation depends on an accurate assessment of the reproductive barriers separating newly diverged populations. In several taxonomic groups, prezygotic barriers, especially preferences for conspecific mates, are thought to play the dominant role in speciation. However, the importance of postzygotic barriers (i.e., low fitness of hybrid offspring) may be widely underestimated. In this study, we examined how well the widely used proxy of postzygotic isolation (reproductive output of F1 hybrids) reflects the long‐term fitness consequences of hybridization between two closely related species of birds. Using 40 species‐specific single nucleotide polymorphism (SNP) markers, we genotyped a mixed population of collared and pied flycatchers (Ficedula albicollis and F. hypoleuca) to identify grand‐ and great grand‐offspring from interspecific crosses to derive an accurate, multigeneration estimate of postzygotic isolation. Two independent estimates of fitness show that hybridization results in 2.4% and 2.7% of the number of descendents typical of conspecific pairing. This postzygotic isolation was considerably stronger than estimates based on F1 hybrids. Our results demonstrate that, in nature, combined selection against hybrids and backcrossed individuals may result in almost complete postzygotic isolation between two comparatively young species. If these findings are general, postzygotic barriers separating hybridizing populations may be much stronger than previously thought.  相似文献   

4.
The orchid Ophrys sphegodes Miller is pollinated by sexually excited males of the solitary bee Andrena nigroaenea, which are lured to the flowers by visual cues and volatile semiochemicals. In O. sphegodes, visits by pollinators are rare. Because of this low frequency of pollination, one would expect the evolution of strategies that increase the chance that males will visit more than one flower on the same plant; this would increase the number of pollination events on a plant and therefore the number of seeds produced. Using gas chromatography-mass spectrometry (GC-MS) analyses, we identified more than 100 compounds in the odor bouquets of labellum extracts from O. sphegodes; 24 compounds were found to be biologically active in male olfactory receptors based on gas chromatography with electroantennographic detection (GC-EAD). Gas chromatography (GC) analyses of odors from individual flowers showed less intraspecific variation in the odor bouquets of the biologically active compounds as compared to nonactive compounds. This can be explained by a higher selective pressure on the pollinator-attracting communication signal. Furthermore, we found a characteristic variation in the GC-EAD active esters and aldehydes among flowers of different stem positions within an inflorescence and in the n-alkanes and n-alkenes among plants from different populations. In our behavioral field tests, we showed that male bees learn the odor bouquets of individual flowers during mating attempts and recognize them in later encounters. Bees thereby avoid trying to mate with flowers they have visited previously, but do not avoid other flowers either of a different or the same plant. By varying the relative proportions of saturated esters and aldehydes between flowers of different stem positions, we demonstrated that a plant may take advantage of the learning abilities of the pollinators and influence flower visitation behavior. Sixty-seven percent of the males that visited one flower in an inflorescence returned to visit a second flower of the same inflorescence. However, geitonogamy is prevented and the likelihood of cross-fertilization is enhanced by the time required for the pollinium deposited on the pollinator to complete its bending movement, which is necessary for pollination to occur. Cross-fertilization is furthermore enhanced by the high degree of odor variation between plants. This variation minimizes learned avoidance of the flowers and increases the likelihood that a given pollinator would visit several to many different plants within a population.  相似文献   

5.
We tested the prediction that, if hoverflies are Batesian mimics, this may extend to behavioral mimicry such that their numerical abundance at each hour of the day (the daily activity pattern) is related to the numbers of their hymenopteran models. After accounting for site, season, microclimatic responses, and general hoverfly abundance at three sites in northwestern England, the residual numbers of mimics were significantly correlated positively with their models nine times of 17. Sixteen of 17 relationships were positive, itself a highly significant nonrandom pattern. Several eristaline flies showed significant relationships with honeybees even though some of them mimic wasps or bumblebees, perhaps reflecting an ancestral resemblance to honeybees. There was no evidence that good and poor mimics differed in their daily activity pattern relationships with models. However, the common mimics showed significant activity pattern relationships with their models, whereas the rarer mimics did not. We conclude that many hoverflies show behavioral mimicry of their hymenopteran models.  相似文献   

6.
7.
8.
9.
The importance of contingency versus predictability in evolution has been a long-standing issue, particularly the interaction between genetic background, founder effects, and selection. Here we address experimentally the effects of genetic background and founder events on the repeatability of laboratory adaptation in Drosophila subobscura populations for several functional traits. We found disparate starting points for adaptation among laboratory populations derived from independently sampled wild populations for all traits. With respect to the subsequent evolutionary rate during laboratory adaptation, starvation resistance varied considerably among foundations such that the outcome of laboratory evolution is rather unpredictable for this particular trait, even in direction. In contrast, the laboratory evolution of traits closely related to fitness was less contingent on the circumstances of foundation. These findings suggest that the initial laboratory evolution of weakly selected characters may be unpredictable, even when the key adaptations under evolutionary domestication are predictable with respect to their trajectories.  相似文献   

10.
DOES TOTAL REPRODUCTIVE EFFORT EVOLVE INDEPENDENTLY OF OFFSPRING SIZE?   总被引:6,自引:0,他引:6  
In all species, patterns of reproductive allocation have important fitness consequences and therefore important implications for life-history evolution. Nearly universally, theory in this field has modeled as independent the evolution of total allocation to offspring and the subsequent division of this allocation into many small versus few large offspring. Yet, some theory and a very small amount of experimental evidence suggest that these life-history traits may be evolutionarily linked. Using comparative analyses of copepod life histories, we illustrate that rather than being evolutionarily independent these traits can be linked, in this case, across a very large clade of invertebrates. Our results indicate that a more complete understanding of the evolution of these traits will require greater consideration of simultaneous allocation decisions, rather than sequential ones, and other genetic and selective mechanisms.  相似文献   

11.
Abstract— Elevated K+0 elicited a substantial Ca-independent efflux of accumulated GABA from cortical synaptosomal fractions. Efflux from tissue labelled with either NE or choline was affected considerably less by elevated K+ pulses in the absence of calcium. K-facilitated Ca-dependent efflux was large for all three of the accumulated substances. K-dependent (Ca-independent) efflux of accumulated GABA was associated with all subcellular fractions exhibiting GABA accumulation whereas K-facilitated Ca-dependent efflux was restricted to fractions containing synaptosomes. Eighty per cent of both GABA accumulation and K-dependent efflux was, however, recovered in a purified synaptosomal fraction. Alanine slightly decreased GABA accumulation, but % K-dependent efflux was not affected.
Elevated K+, in the absence of calcium, released GABA from accumulated pools in preference to endogenous pools, whereas the Ca-dependent efflux, facilitated by K+, was similar for both accumulated and endogenous GABA.
The Ca-independent efflux of accumulated GABA increased linearly with log [K+]0 between 10 and 70 mM-K+ in sodium-containing media. Prior treatment with veratridine or Na-free medium substantially decreased the Ca-independent but not the Ca-dependent GABA efflux produced by elevated K+ pulses.
The Ca-dependent and Ca-independent efflux of accumulated GABA in response to elevated K+ pulses is suggested to arise not only via different flux mechanisms but also from different GABA pools. The Ca-dependent efflux is interpreted to reflect stimulus-secretion coupling processes whereas the Ca-independent efflux may reflect membrane transport processes.  相似文献   

12.
Morphogenesis is an old, and one of the latest, fascinating fields in biological science and a huge number of papers on molecular mechanisms underlying it have been published. But most of the works and reviews on these mechanisms pertain to molecules of, as it were, the planning or design of morphogenesis, such as morphogens and homeodomain proteins. In this review, I will describe the function of extracellular matrix (ECM) and other cell adhesion molecules in morphogenesis as that of actual morpho-creating molecules, morphocreators, and discuss their roles as positional information-pertaining molecules.  相似文献   

13.
14.
Meiotic recombination is a critical genetic process as well as a pivotal evolutionary force. Rates of crossing over are highly variable within and between species, due to both genetic and environmental factors. Early studies in Drosophila implicated female genetic background as a major determinant of crossover rate and recent work has highlighted male genetic background as a possible mediator as well. Our study employed classical genetics to address how female and male genetic backgrounds individually and jointly affect crossover rates. We measured rates of crossing over in a 33 cM region of the Drosophila melanogaster X chromosome using a two‐step crossing scheme exploiting visible markers. In total, we measured crossover rates of 10 inbred lines in a full diallel cross. Our experimental design facilitates measuring the contributions of female genetic background, male genetic background, and female by male genetic background interaction effects on rates of crossing over in females. Our results indicate that although female genetic background significantly affects female meiotic crossover rates in Drosophila, male genetic background and the interaction of female and male genetic backgrounds have no significant effect. These findings thus suggest that male‐mediated effects are unlikely to contribute greatly to variation in recombination rates in natural populations of Drosophila.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号