首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intestinal cancer is a disease with high morbidity and high mortality in China. Previous studies have shown that Codonopsis foetens can inhibit cellular autophagy and promote the apoptosis of intestine cancer cells. Based on metabolomics method coupled with liquid chromatography-mass spectrometry (LC-MS) technology, we aimed to analyze intestinal small molecule metabolites in the intestinal cancer model group and the Codonopsis foetens treated group. Principal component analysis (PCA) and Partial Least Squares (PLS-DA) were used to identify the pattern of the data. And the metabolic characteristics of the cancer model group were explored based on the metabolic differences between the groups. Multivariate statistical analysis revealed that metabolites presented with differences included: Acetamide, Phosphoric acid, Hydrogen sulfite, Pyruvic acid, Cytosine, 2-Hydroxypyridine, Phosphoric acid, Uracil, Gamma-Aminobutyric acid, Glycerol alpha-monochlorohydrin, Thiosulfic acid, L-Valine, Cysteamine, Taurine, Creatine, Homocysteine, Hypoxanthine, Se-Methylselenocysteine, 5-Hydroxymethyluracil, Oxoglutaric acid, LysoPC(20:0), LysoPC(22:4(7Z,10Z,13Z,16Z)), LysoPC(18:2(9Z,12Z)), LysoPC(16:1(9Z)), LysoPE(0:0/16:0), LysoPE(0:0/18:2(9Z,12Z)), LysoPE(18:0/0:0), LysoPE(20:1(11Z)/0:0), etc. Combined with metabolic pathway analysis, pathways presented with differences included: Citrate cycle (TCA cycle), ABC transporters, 2-Oxocarboxylic acid metabolism, Taurine and hypotaurine metabolism, Butanoate metabolism), Phenylalanine, tyrosine and tryptophan biosynthesis, Biosynthesis of amino acids, Protein digestion and absorption, Aminoacyl-tRNA biosynthesis, C5-Branched dibasic acid metabolism, GABAergic synapse, Proximal tubule bicarbonate reclamation, Mineral absorption, Phenylalanine metabolism. The results showed that the proliferation of intestinal cancer cells caused cell metabolism disorders, manifesting as changes in metabolic pathways and resulting in changes in metabolites.  相似文献   

2.
An apolipoprotein A-I mimetic peptide, D-4F, has been shown to improve vasodilation and inhibit atherosclerosis in hypercholesterolemic low-density lipoprotein receptor-null (LDLr(-/-)) mice. To study the metabolic variations of D-4F ininhibiting atherosclerosis, metabonomics, a novel system biological strategy to investigate the pathogenesis, was developed. Female LDLr(-/-) mice were fed a Western diet and injected with or without D-4F intraperitoneally. Atherosclerotic lesion formation was measured, whereas plasma metabolic profiling was obtained on the basis of ultra-high-performance liquid chromatography in tandem with time-of-flight mass spectrometry operating in both positive and negative ion modes. Data were processed by multivariate statistical analysis to graphically demonstrate metabolic changes. The partial least-squares discriminate analysis model was validated with cross-validation and permutation tests to ensure the model's reliability. D-4F significantly inhibited the formation of atherosclerosis in a time-dependent manner. The metabolic profiling was altered dramatically in hypercholesterolemic LDLr(-/-) mice, and a significant metabolic profiling change in response to D-4F treatment was observed in both positive and negative ion modes. Thirty-six significantly changed metabolites were identified as potential biomarkers. A series of phospholipid metabolites, including lysophosphatidylcholine (LysoPC), lysophosphatidylethanolamine (LysoPE), phosphatidylcholine (PC), phatidylethanolamine (PE), sphingomyelin (SM), and diacylglycerol (DG), particularly the long-chain LysoPC, was elevated dramatically in hypercholesterolemic LDLr(-/-) mice but reduced by D-4F in a time-dependent manner. Quantitative analysis of LysoPC, LysoPE, PC, and DG using HPLC was chosen to validate the variation of these potential biomarkers, and the results were consistent with the metabonomics findings. Our findings demonstrated that D-4F may inhibit atherosclerosis by regulating phospholipid metabolites specifically by decreasing plasma long-chain LysoPC.  相似文献   

3.
为探寻白假丝酵母(又称白念珠菌)早期感染的血浆代谢标记,采用尾静脉注射白念珠菌方法建立大鼠白念珠菌感染模型。将20只大鼠按随机数字法分为对照组和白念珠菌组,每组10只。应用超高效液相色谱-四级杆飞行时间串联质谱(ultra-high performance liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry,UHPLC-Q-TOF-MS)技术结合数据依赖性采集方式检测大鼠血浆中的代谢物,采用SIMCA-P软件对所测数据分别进行偏最小二乘法判别分析(partial least squares discrimination analysis,PLS-DA)、正交偏最小二乘法判别分析(orthogonal PLS-DA,OPLS-DA)及主成分分析(principal component analysis,PCA),以进行模式识别,区分白念珠菌组与正常对照组血浆代谢物的差异。根据OPLS-DA模型的变量投影重要度(variable importance in the projection,VIP)筛选可能的代谢标记。结果显示,白念珠菌组与对照组的血浆代谢物存在明显差异,OPLS-DA、PLS-DA及PCA模型均可区分两组,初步确认了18个正离子模式鉴定的差异物,对应化合物可能是大鼠念珠菌感染的潜在标记。受试者工作特征曲线(receiver operating characteristic curve,ROC)分析发现,LysoPC(14∶0)、LysoPC(18∶1(9Z))、LysoPC(18∶0)、L-Tryptophan、L-Gulonic acid γ-lactone这5个代谢物ROC的曲线下面积均>0.90。本研究初步筛选出早期白念珠菌感染的可能代谢生物标记,可为白念珠菌感染早期诊断和治疗提供理论基础。  相似文献   

4.
Early findings propose that impaired neurotransmission in the brain plays a key role in the pathophysiology of schizophrenia. Recent advances in understanding its multiple etiologies and pathogenetic mechanisms provide more speculative hypotheses focused on even broader somatic systems. Using a targeted tandem mass spectrometry (MS/MS)-based metabolomic platform, we compared metabolic signatures consisting of monoamine and amino acid neurotransmitter (NT) metabolites in plasma/urine simultaneously between first-episode neuroleptic-na?ve schizophrenia patients (FENNS) and healthy controls before and after a 6-week risperidone monotherapy, which suggest that the patient NT profiles are restoring during treatment. To detect and identify potential biomarkers associated with schizophrenia and risperidone treatment, we also performed a combined ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) and (1)H nuclear magnetic resonance (NMR)-based metabolomic profiling of the same samples, indicating a further deviation of the patients' global metabolic profile from that of controls. The NTs and their metabolites together with the 32 identified biomarkers underpin that metabolic pathways including NT metabolism, amino acid metabolism, glucose metabolism, lipid metabolism, energy metabolism, antioxidant defense system, bowel microflora and endocrine system are disturbed in FENNS. Among them, pregnanediol, citrate and α-ketoglutarate (α-KG) were significantly associated with symptomatology of schizophrenia after Bonferroni correction and may be useful biomarkers for monitoring therapeutic efficacy. These findings promise to yield valuable insights into the pathophysiology of schizophrenia and may advance the approach to treatment, diagnosis and disease prevention of schizophrenia and related syndromes.  相似文献   

5.
Chagas disease is caused by Trypanosoma cruzi infection, being cardiomyopathy the more frequent manifestation. New chemotherapeutic drugs are needed but there are no good biomarkers for monitoring treatment efficacy. There is growing evidence linking immune response and metabolism in inflammatory processes and specifically in Chagas disease. Thus, some metabolites are able to enhance and/or inhibit the immune response. Metabolite levels found in the host during an ongoing infection could provide valuable information on the pathogenesis and/or identify deregulated metabolic pathway that can be potential candidates for treatment and being potential specific biomarkers of the disease. To gain more insight into those aspects in Chagas disease, we performed an unprecedented metabolomic analysis in heart and plasma of mice infected with T. cruzi. Many metabolic pathways were profoundly affected by T. cruzi infection, such as glucose uptake, sorbitol pathway, fatty acid and phospholipid synthesis that were increased in heart tissue but decreased in plasma. Tricarboxylic acid cycle was decreased in heart tissue and plasma whereas reactive oxygen species production and uric acid formation were also deeply increased in infected hearts suggesting a stressful condition in the heart. While specific metabolites allantoin, kynurenine and p-cresol sulfate, resulting from nucleotide, tryptophan and phenylalanine/tyrosine metabolism, respectively, were increased in heart tissue and also in plasma. These results provide new valuable information on the pathogenesis of acute Chagas disease, unravel several new metabolic pathways susceptible of clinical management and identify metabolites useful as potential specific biomarkers for monitoring treatment and clinical severity in patients.  相似文献   

6.
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor that regulates fatty acid transport and metabolism. Previous studies revealed that PPARα can affect bile acid metabolism; however, the mechanism by which PPARα regulates bile acid homeostasis is not understood. In this study, an ultraperformance liquid chromatography coupled with electrospray ionization qua dru pole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS)-based metabolomics approach was used to profile metabolites in urine, serum, and bile of wild-type and Ppara-null mice following cholic acid (CA) dietary challenge. Metabolomic analysis showed that the levels of several serum bile acids, such as CA (25-fold) and taurocholic acid (16-fold), were significantly increased in CA-treated Ppara-null mice compared with CA-treated wild-type mice. Phospholipid homeostasis, as revealed by decreased serum lysophos phati dylcholine (LPC) 16:0 (1.6-fold) and LPC 18:0 (1.6-fold), and corticosterone metabolism noted by increased urinary excretion of 11β-hydroxy-3,20-dioxopregn-4-en-21-oic acid (20-fold) and 11β,20α-dihydroxy-3-oxo-pregn-4-en-21-oic acid (3.6-fold), were disrupted in CA-treated Ppara-null mice. The hepatic levels of mRNA encoding transporters Abcb11, Abcb4, Abca1, Abcg5, and Abcg8 were diminished in Ppara-null mice, leading to the accumulation of bile acids in the liver during the CA challenge. These observations revealed that PPARα is an essential regulator of bile acid biosynthesis, transport, and secretion.  相似文献   

7.
A global metabolic profiling was generated with serum samples of patients with B-cell non-Hodgkin’s lymphoma (NHL) and healthy controls using two different analytical platforms for metabonomics, UPLC-QTOFMS and GC-TOFMS, in conjunction with multivariate data analysis and ROC analysis. Significant difference in metabolic characteristics was observed between B-cell NHL and healthy control by OPLS-DA. A total of 37 differential metabolites for B-cell NHL were identified. Some significant changes in metabolites were detected, indicating that there were disturbances of key metabolic pathways, including bile acids, glycerophospholipids, fatty acids metabolism, steroid biosynthesis, glycolysis, as well as glycine, serine and threonine metabolism associated with B-cell NHL. A panel of metabolite markers composed of choline, arachidonic acid, LysoPC (17:0), PA (16:0/16:0) and coproporphyrin from UPLC-QTOFMS and another panel of markers composed of benzenebutanoic acid, β-hydroxypyruvic acid, D-2-hydroxyoctanoic acid, pyruvic acid and arachidonic acid derived from GC-TOFMS were selected. A ROC curve analysis of these markers resulted in an AUC of 0.968 and 1.00 for the UPLC-QTOFMS and GC-TOFMS analysis, respectively. These biochemical changes provide a novel molecular diagnostic approach which could be helpful to further understand the pathogenesis and identify the therapeutic target of B-cell NHL.  相似文献   

8.
胆汁酸在人体的胆固醇代谢、脂质消化、宿主-微生物相互作用及通路调控等方面具有重要作用。大多数胆汁酸(95%)通过肝肠循环重回收,还有约5%作为结肠内细菌生物转化的基质。胆汁酸微生物转化中涉及的各种酶可通过肠道细菌培养而被验证,证明其有种属特异性。最近,生物信息学方法揭示了这些酶有多种亚型。因此,在胆汁酸转化中肠道菌群发挥重要的作用,微生物群落结构和功能对次级胆汁酸在胆汁酸池中的分布有深刻影响。研究认为胆汁酸和胆汁酸池的组成与几种疾病有关,包括炎症性肠病、代谢综合征和结直肠癌。最近,人们的重点放在肠道菌群如何改变胆汁酸进而导致或减轻某些疾病。本文总结了肠道菌群、胆汁酸生物转化和疾病状态之间的相互作用的研究进展。  相似文献   

9.
Metabolism of [6]-gingerol in rats   总被引:3,自引:0,他引:3  
Nakazawa T  Ohsawa K 《Life sciences》2002,70(18):2165-2175
The metabolic fate of [6]-gingerol, one of the active constituents of Zingiber officinale Roscoe, was investigated using rats. The bile of rats orally administered [6]-gingerol was shown to contain a major metabolite (1) by HPLC analysis. Although the metabolites derived from [6]-gingerol were not detected in the urine, the ethyl acetate extract of the urine after enzymatic hydrolysis was shown to contain six minor metabolites (2-7). Their structures were determined to be (S)-[6]-gingerol-4'-O-beta-glucuronide (1), vanillic acid (2), ferulic acid (3), (S)-(+)-4-hydroxy-6-oxo-8-(4-hydroxy-3-methoxyphenyl) octanoic acid (4), 4-(4-hydroxy-3-methoxyphenyl)butanoic acid (5), 9-hydroxy [6]-gingerol (6) and (S)-(+)-[6]-gingerol (7) based on spectroscopic and chemical data. The total cumulative amount of 1 excreted in the bile and 2-7 in the urine during 60 h after the oral administration of [6]-gingerol were approximately 48% and 16% of the dose, respectively. The excretion of 2-7 in the urine decreased after gut sterilization. On the other hand, the incubations of [6]-gingerol with rat liver showed the presence of 9-hydroxy [6]-gingerol, gingerdiol (8), and (S)-[6]-gingerol-4'-O-beta-glucuronide (1). These findings suggest that the gut flora and enzymes in the liver play an important part in the metabolism of [6]-gingerol.  相似文献   

10.
BackgroundThe processing of Chinese materia medica (CMM) is one of the characteristics and advantages of traditional Chinese medicine (TCM). Occasionally, the processing of CMM might reverse the cold/hot nature of CMM. For example, the nature of raw Rehmanniae Radix (RR) is cool, while the processed Rehmanniae Radix (PR) by steaming is hot. Because the cold/hot nature of CMM is defined by the body's response to CMMs, a metabolomics approach, allowing the monitoring of the fluctuation of endogenous metabolites related to an exogenous stimulus, might be an ideal tool to uncover the cold/hot nature of different forms of Rehmanniae Radix.PurposeAn integrated strategy combining metabolomics and network pharmacology was applied to illuminate the different natures of raw and processed Rehmanniae Radix.Study designMice were orally administered RR and PR once daily for ten days. The entire metabolic changes in the plasma of mice were profiled by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF MS). Furthermore, network pharmacology analysis was performed to identify the underlying targets related to iridoids that significantly changed during the processing.ResultsThe metabolomics analysis results demonstrated a clear separation of the metabolic phenotypes among the control, RR and two PR groups in both the positive and negative modes. Nine lysophosphatidylcholines (LysoPCs), LysoPC (16:0), LysoPC (18:2), LysoPC (18:1), LysoPC (22:6), LysoPC (20:2), LysoPC (18:0), LysoPC (16:1), LysoPC (20:4) and LysoPC (20:5), that decreased in the RR-treated group, but increased in the PR-treated group, were identified to be potential biomarkers related to the natures of RR and PR. The network pharmacology results indicated that four iridoids in Rehmanniae Radix, 8-epiloganic acid, 6-O-p-coumaroyl ajugol, 6-O-p-hydroxybenzoyl ajugol and ajugol, might play important roles in the different natures of raw and processed Rehmanniae Radix.ConclusionsThere might be a strong connection between the cold/hot nature of different forms of Rehmanniae Radix and LysoPC metabolism. This study offers new insight into the cold/hot nature of Rehmanniae Radix.  相似文献   

11.
3H-Testosterone (3H-T) plus 14C-androst-4-ene-3.17-dione (A-dione) and 3H-epi-testosterone (17α-hydroxy-4-androsten-3-one) (epiT) plus 14C-T were injected intravenously into two male sheep with bile fistulae, respectively. Urine and bile samples were collected at intervals for 4–8 hours and analyzed by the use of DEAE-Sephadex A-25 and Lipidex 5000 columns, TLC, and paper chromatography; the aglycones were identified by co-crystallization with authentic standards.Five fractions were obtained from urine and bile: unconjugated, glucosiduronates, sulfates, sulfo-glucosiduronates and disulfates. In urine, the major conjugates were glucosiduronates, while sulfates predominated in bile. About 80–90% of recovered radioactivity was found to be either glucosiduronates or sulfates. Among the metabolites identified, epi-T was the principal one, accounting for 10–15% of the administered doses. Conversion to 17α-hydroxysteroids thus appears to be a major route of metabolism of the androgens administered in sheep. Other metabolites in the glucosiduronate and sulfate fractions were androsterone, etiocholanolone (3α-hydroxy-5β-androstan-17-one), 5β-androstane-3α, 17β-diol, two unknown diols and polar metabolites. The results indicated that androgen metabolism is somewhat unusual in sheep, as compared with other animals and the human.  相似文献   

12.
Hepatocellular carcinoma (HCC) is a common malignancy in the world with high morbidity and mortality rate. Identification of novel biomarkers in HCC remains impeded primarily because of the heterogeneity of the disease in clinical presentations as well as the pathophysiological variations derived from underlying conditions such as cirrhosis and steatohepatitis. The aim of this study is to search for potential metabolite biomarkers of human HCC using serum and urine metabolomics approach. Sera and urine samples were collected from patients with HCC (n = 82), benign liver tumor patients (n = 24), and healthy controls (n = 71). Metabolite profiling was performed by gas chromatography time-of-flight mass spectrometry and ultra performance liquid chromatography-quadrupole time of flight mass spectrometry in conjunction with univariate and multivariate statistical analyses. Forty three serum metabolites and 31 urinary metabolites were identified in HCC patients involving several key metabolic pathways such as bile acids, free fatty acids, glycolysis, urea cycle, and methionine metabolism. Differentially expressed metabolites in HCC subjects, such as bile acids, histidine, and inosine are of great statistical significance and high fold changes, which warrant further validation as potential biomarkers for HCC. However, alterations of several bile acids seem to be affected by the condition of liver cirrhosis and hepatitis. Quantitative measurement and comparison of seven bile acids among benign liver tumor patients with liver cirrhosis and hepatitis, HCC patients with liver cirrhosis and hepatitis, HCC patients without liver cirrhosis and hepatitis, and healthy controls revealed that the abnormal levels of glycochenodeoxycholic acid, glycocholic acid, taurocholic acid, and chenodeoxycholic acid are associated with liver cirrhosis and hepatitis. HCC patients with alpha fetoprotein values lower than 20 ng/ml was successfully differentiated from healthy controls with an accuracy of 100% using a panel of metabolite markers. Our work shows that metabolomic profiling approach is a promising screening tool for the diagnosis and stratification of HCC patients.  相似文献   

13.
Metabolomic profiling can be used to study disease-induced changes in inflammatory bowel diseases (IBD). The aim of this study was to investigate the difference in the metabolomic profile of males and females as they developed IBD. Using the IL-10 gene-deficient mouse model of IBD and wild-type mice, urine at age 4, 6, 8, 12, 16, and 20 weeks was collected and analyzed by nuclear magnetic resonance (NMR) spectroscopy. Multivariate data analysis was employed to assess differences in metabolomic profiles that occurred as a consequence of IBD development and severity (at week 20). These changes were contrasted to those that occurred as a consequence of gender. Our results demonstrate that both IL-10 gene-deficient and wild-type mice exhibit gender-related changes in urinary metabolomic profile over time. Some male-female separating metabolites are common to both IL-10 gene-deficient and control wild-type mice and, therefore, appear to be related predominantly to gender maturation. In addition, we were able to identify gender-separating metabolites that are unique for IL-10 gene-deficient and wild-type mice and, therefore, may be indicative of a gender-specific involvement in the development and severity of the intestinal inflammation. The comparison of the gender-separating metabolomic profile from IL-10 gene-deficient mice and wild-type mice during the development of IBD allowed us to identify changes in profile patterns that appear to be imperative in the development of intestinal inflammation, but yet central to gender-related differences in IBD development. The knowledge of metabolomic profile differences by gender and by disease severity has potential clinical implications in the design of both biomarkers of disease as well as the development of optimal therapies.  相似文献   

14.
An ultra performance liquid chromatography coupled to mass spectrometry-based metabonomic approach, combined with pattern recognition methods including PCA, PLS-DA, RF and heatmap, has been developed to characterize the global serum metabolic profile associated with ionizing radiation (IR). As the VIP-value threshold cutoff of the metabolites was set to 2, metabolites above this threshold were filtered out as potential target biomarkers. Nineteen distinct potential biomarkers in rat plasma were identified. To further elucidate the pathophysiology of IR, related metabolic pathways have been studied. It was found that IR was closely related to disturbed fatty acid metabolism, taurine and hypotaurine metabolism, sphingolipid metabolism, purine metabolism, pyrimidine metabolism, phospholipid catabolism, tryptophan metabolism, phenylalanine metabolism, and bile acid metabolism. With the presented metabonomic method, we systematically analyzed the protective effects of Traditional Chinese Medicine Hong Shan Capsule (HSC). The results demonstrated that HSC administration could provide satisfactory effects on IR through partially regulating the perturbed metabolic pathways.  相似文献   

15.
To determine 15 bile acid metabolic products in human serum by liquid chromatography-tandem mass spectrometry (LC/MS/MS) and value their diagnostic outcome in primary biliary cholangitis (PBC). Serum from 20 healthy controls and 26 patients with PBC were collected and went LC/MS/MS analysis of 15 bile acid metabolic products. The test results were analyzed by bile acid metabolomics, and the potential biomarkers were screened and their diagnostic performance was judged by statistical methods such as principal component and partial least squares discriminant analysis and area under curve (AUC). 8 differential metabolites can be screened out: Deoxycholic acid (DCA), Glycine deoxycholic acid (GDCA), Lithocholic acid (LCA), Glycine ursodeoxycholic acid (GUDCA), Taurolithocholic acid (TLCA), Tauroursodeoxycholic acid (TUDCA), Taurodeoxycholic acid (TDCA), Glycine chenodeoxycholic acid (GCDCA). The performance of the biomarkers was evaluated by the AUC, specificity and sensitivity. In conclusion, DCA, GDCA, LCA, GUDCA, TLCA, TUDCA, TDCA and GCDCA were identified as eight potential biomarkers to distinguish between healthy people and PBC patients by multivariate statistical analysis, which provided reliable experimental basis for clinical practice.  相似文献   

16.
This study aimed to explore the clinical practice of phospholipid metabolic pathways in COVID-19. In this study, 48 COVID-19 patients and 17 healthy controls were included. Patients were divided into mild (n=40) and severe (n=8) according to their severity. Phospholipid metabolites, TCA circulating metabolites, eicosanoid metabolites, and closely associated enzymes and transfer proteins were detected in the plasma of all individuals using metabolomics and proteomics assays, respectively. 30 of the 33 metabolites found differed significantly (P<0.05) between patients and healthy controls (P<0.05), with D-dimmer significantly correlated with all of the lysophospholipid metabolites (LysoPE, LysoPC, LysoPI and LPA). In particular, we found that phosphatidylinositol (PI) and phosphatidylcholine (PC) could identify patients from healthy controls (AUC 0.771 and 0.745, respectively) and that the severity of the patients could be determined (AUC 0.663 and 0.809, respectively). The last measurement before discharge also revealed significant changes in both PI and PC. For the first time, our study explores the significance of the phospholipid metabolic system in COVID-19 patients. Based on molecular pathway mechanisms, three important phospholipid pathways related to Ceramide-Malate acid (Cer-SM), Lysophospholipid (LPs), and membrane function were established. Clinical values discovered included the role of Cer in maintaining the inflammatory internal environment, the modulation of procoagulant LPA by upstream fibrinolytic metabolites, and the role of PI and PC in predicting disease aggravation.  相似文献   

17.
Gut microbial metabolites of polyunsaturated fatty acids have attracted much attention because of their various physiological properties. Dysfunction of tight junction (TJ) in the intestine contributes to the pathogenesis of many disorders such as inflammatory bowel disease. We evaluated the effects of five novel gut microbial metabolites on tumor necrosis factor (TNF)-α-induced barrier impairment in Caco-2 cells and dextran sulfate sodium-induced colitis in mice. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a gut microbial metabolite of linoleic acid, suppressed TNF-α and dextran sulfate sodium-induced changes in the expression of TJ-related molecules, occludin, zonula occludens-1, and myosin light chain kinase. HYA also suppressed the expression of TNF receptor 2 (TNFR2) mRNA and protein expression in Caco-2 cells and colonic tissue. In addition, HYA suppressed the protein expression of TNFR2 in murine intestinal epithelial cells. Furthermore, HYA significantly up-regulated G protein-coupled receptor (GPR) 40 expression in Caco-2 cells. It also induced [Ca2+]i responses in HEK293 cells expressing human GPR40 with higher sensitivity than linoleic acid, its metabolic precursor. The barrier-recovering effects of HYA were abrogated by a GPR40 antagonist and MEK inhibitor in Caco-2 cells. Conversely, 10-hydroxyoctadacanoic acid, which is a gut microbial metabolite of oleic acid and lacks a carbon-carbon double bond at Δ12 position, did not show these TJ-restoring activities and down-regulated GPR40 expression. Therefore, HYA modulates TNFR2 expression, at least partially, via the GPR40-MEK-ERK pathway and may be useful in the treatment of TJ-related disorders such as inflammatory bowel disease.  相似文献   

18.
为了考查白及有效部位在肠道的可吸收成分及其代谢特征。基于在体肠灌流模型,采用超高效液相色谱-四极杆-飞行时间质谱仪(UPLC-Q-TOF/MS)对收集到的健康SD大鼠循环肠灌流液、血清、胆汁进行分析检测,并结合对照品、质谱碎片信息和Masslynx V4.1工作站中的Single Mass Analysis功能,初步推测吸收和代谢产物的结构式。在大鼠血清和胆汁中,初步鉴定出1,4-二[4-(葡萄糖氧)苄基]-2-异丁基苹果酸、4-(葡萄糖氧)苄基]-2-异丁基苹果酸酯、α-异丁基苹果酸酯原型产物。在大鼠循环肠灌流液、血清和胆汁中,共鉴定出4-(葡萄糖氧)苄基]-2-异丁基苹果酸酯的脱糖后硫酸化代谢产物和二氢菲5的葡萄糖醛酸化代谢产物,其代谢产物主要生水解和葡萄糖醛酸化反应。该方法初步探究了白及有效部位在大鼠循环肠灌流液中可吸收成分和代谢特征,为阐释白及药材的药效物质基础提供实验依据。  相似文献   

19.
Diabetes related cognitive dysfunction (DACD), one of the chronic complications of diabetes, seriously affect the quality of life in patients and increase family burden. Although the initial stage of DACD can lead to metabolic alterations or potential pathological changes, DACD is difficult to diagnose accurately. Moreover, the details of the molecular mechanism of DACD remain somewhat elusive. To understand the pathophysiological changes that underpin the development and progression of DACD, we carried out a global analysis of metabolic alterations in response to DACD. The metabolic alterations associated with DACD were first investigated in humans, using plasma metabonomics based on high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and multivariate statistical analysis. The related pathway of each metabolite of interest was searched in database online. The network diagrams were established KEGGSOAP software package. Receiver operating characteristic (ROC) analysis was used to evaluate diagnostic accuracy of metabolites. This is the first report of reliable biomarkers of DACD, which were identified using an integrated strategy. The identified biomarkers give new insights into the pathophysiological changes and molecular mechanisms of DACD. The disorders of sphingolipids metabolism, bile acids metabolism, and uric acid metabolism pathway were found in T2DM and DACD. On the other hand, differentially expressed plasma metabolites offer unique metabolic signatures for T2DM and DACD patients. These are potential biomarkers for disease monitoring and personalized medication complementary to the existing clinical modalities.  相似文献   

20.
Quantitative profiling of a large number of metabolic compounds is a promising method to detect biomarkers in inflammatory bowel diseases (IBD), such as ulcerative colitis (UC). We induced an experimental form of UC in mice by treatment with dextran sulfate sodium (DSS) and characterized 53 serum and 69 urine metabolites by use of (1)H NMR spectroscopy and quantitative ("targeted") analysis to distinguish between diseased and healthy animals. Hierarchical multivariate orthogonal partial least-squares (OPLS) models were developed to detect and predict separation of control and DSS-treated mice. DSS treatment resulted in weight loss, colonic inflammation, and increase in myeloperoxidase activity. Metabolomic patterns generated from the OPLS data clearly separated DSS-treated from control mice with a slightly higher predictive power (Q(2)) for serum (0.73) than urine (0.71). During DSS colitis, creatine, carnitine, and methylamines increased in urine while in serum, maximal increases were observed for ketone bodies, hypoxanthine, and tryptophan. Antioxidant metabolites decreased in urine whereas in serum, glucose and Krebs cycle intermediates decreased strongly. Quantitative metabolic profiling of serum and urine thus discriminates between healthy and DSS-treated mice. Analysis of serum or urine seems to be equally powerful for detecting experimental colitis, and a combined analysis offers only a minor improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号