首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inducible nitric oxide synthase (iNOS) participates in many pathological events, and selective inhibition of iNOS has been shown to reduce ischemia-reperfusion (I/R) injury in different tissues. To further confirm its role in this injury process, I/R injury was observed in denervated cremaster muscles of iNOS-deficient (iNOS-/-) and wild-type mice. After 3-h ischemia and 90-min reperfusion, blood flow in reperfused muscle was 80 +/- 8.5% (mean +/- SE) of baseline at 10-min reperfusion and completely returned to the preischemia baseline after 20 min in iNOS-/- mice. In contrast, blood flow was 32 +/- 7.4% at 10 min and increased to 60 +/- 20% of the baseline level at 90 min in wild-type mice (P < 0.001 vs. iNOS-/- mice at all time points). The increased muscle blood flow in iNOS-/- mice was associated with significantly less vasospasm in all three sizes of arterial vessel size categories. The weight ratio to the contralateral muscle not subjected to I/R was greater in wild-type mice (173 +/- 11%) than in iNOS-/- mice (117 +/- 3%; P < 0.01). Inflammation and neutrophil extravasation were also more severe in wild-type mice. Western blot analysis demonstrated an absence of iNOS protein band in iNOS-/- mice and upregulation of iNOS protein expression in wild-type mice. Our results confirm the importance of iNOS in I/R injury. Upregulated iNOS exacerbates I/R injury and appears to be a therapeutic target in protection of tissues against this type of injury.  相似文献   

2.
Thompson, Marita, Lisa Becker, Debbie Bryant, Gary Williams,Daniel Levin, Linda Margraf, and Brett P. Giroir. Expression ofthe inducible nitric oxide synthase gene in diaphragm and skeletal muscle. J. Appl. Physiol. 81(6):2415-2420, 1996.Nitric oxide (NO) is a pluripotent molecule thatcan be secreted by skeletal muscle through the activity of the neuronalconstitutive isoform of NO synthase. To determine whether skeletalmuscle and diaphragm might also express the macrophage-inducible formof NO synthase (iNOS) during provocative states, we examined tissuefrom mice at serial times after intravenous administration ofEscherichia coli endotoxin. In thesestudies, iNOS mRNA was strongly expressed in the diaphragm and skeletalmuscle of mice 4 h after intravenous endotoxin and was significantlydiminished by 8 h after challenge. Induction of iNOS mRNA was followedby expression of iNOS immunoreactive protein on Western immunoblots.Increased iNOS activity was demonstrated by conversion of arginine tocitrulline. Immunochemical analysis of diaphragmatic explants exposedto endotoxin in vitro revealed specific iNOS staining in myocytes, inaddition to macrophages and endothelium. These results may be importantin understanding the pathogenesis of respiratory pump failure duringseptic shock, as well as skeletal muscle injury during inflammation ormetabolic stress.

  相似文献   

3.
The present study has been designed to pharmacologically expound the significance of inducible nitric oxide synthase in the pathophysiological progression of seizures using mouse models of chemically induced kindled epilepsy and status epilepticus induced spontaneous recurrent seizures. Pentylenetetrazole (40 mg kg−1) (PTZ) administration every second day for a period of 15 days was used to elicit kindled seizure activity in mice. Severity of kindled seizures was assessed in terms of a composite kindled seizure severity score (KSSS). Pilocarpine (100 mg kg−1) was injected every 20 min until the onset of status epilepticus. A spontaneous recurrent seizure severity score (SRSSS) was recorded as a measure of quantitative assessment of the progressive development of spontaneous recurrent seizures induced after pilocarpine status epilepticus. Sub-acute PTZ administration induced the development of severe form of kindled seizures in mice. Further, pharmacological status epilepticus elicited a progressive evolution of spontaneous recurrent seizures in the animals. However, treatment of aminoguanidine, a relatively selective inhibitor of inducible nitric oxide synthase, markedly and dose dependently suppressed the development of both PTZ induced kindled seizures as well as pilocarpine induced spontaneous recurrent seizures. Therefore inducible nitric oxide synthase may be implicated in the development of seizures.  相似文献   

4.
Inducible NO synthase (iNOS) present in human atherosclerotic plaques could contribute to the inflammatory process of plaque development. The role of iNOS in atherosclerosis was tested directly by evaluating the development of lesions in atherosclerosis-susceptible apolipoprotein E (apoE)-/- mice that were also deficient in iNOS. ApoE-/- and iNOS-/- mice were cross-bred to produce apoE-/-/iNOS-/- mice and apoE-/-/iNOS+/+ controls. Males and females were placed on a high fat diet at the time of weaning, and atherosclerosis was evaluated at two time points by different methods. The deficiency in iNOS had no effect on plasma cholesterol, triglyceride, or nitrate levels. Morphometric measurement of lesion area in the aortic root at 16 wk showed a 30-50% reduction in apoE-/-/iNOS-/- mice compared with apoE-/-/iNOS+/+ mice. Although the size of the lesions in apoE-/-/iNOS-/- mice was reduced, the lesions maintained a ratio of fibrotic:foam cell-rich:necrotic areas that was similar to controls. Biochemical measurements of aortic cholesterol in additional groups of mice at 22 wk revealed significant 45-70% reductions in both male and female apoE-/-/iNOS-/- mice compared with control mice. The results indicate that iNOS contributes to the size of atherosclerotic lesions in apoE-deficient mice, perhaps through a direct effect at the site of the lesion.  相似文献   

5.
The role of inducible nitric oxide synthase (iNOS) in the progression of fibrosis during nonalcoholic steatohepatitis remains to be elucidated. This study examined the role of iNOS in the progression of fibrosis during steatohepatitis by comparing iNOS knockout (iNOS(-/-)) and wild-type (iNOS(+/+)) mice that were fed a high-fat diet. Severe fatty metamorphosis developed in the liver of iNOS(+/+) and iNOS(-/-) mice. Fibrotic changes were marked in iNOS(-/-) mice. Gelatin zymography showed that pro MMP-2 and pro MMP-9 protein expressions were more highly induced in iNOS(+/+) mice than in iNOS(-/-) mice. Active forms of MMP-2 and MMP-9 were clearly present only in the liver tissue of iNOS(+/+) mice. In situ zymography showed strong gelatinolytic activities in the liver tissue of iNOS(+/+) mice, but only spotty activity in iNOS(-/-)mice. iNOS may attenuate the progression of liver fibrosis in steatohepatitis, in part by inducing MMP-2 and MMP-9 expression and augmenting their activity.  相似文献   

6.
Prolonged periods of muscular inactivity (e.g., limb immobilization) result in skeletal muscle atrophy. Although it is established that reactive oxygen species (ROS) play a role in inactivity-induced skeletal muscle atrophy, the cellular pathway(s) responsible for inactivity-induced ROS production remain(s) unclear. To investigate this important issue, we tested the hypothesis that elevated mitochondrial ROS production contributes to immobilization-induced increases in oxidative stress, protease activation, and myofiber atrophy in skeletal muscle. Cause-and-effect was determined by administration of a novel mitochondrial-targeted antioxidant (SS-31) to prevent immobilization-induced mitochondrial ROS production in skeletal muscle fibers. Compared with ambulatory controls, 14 days of muscle immobilization resulted in significant muscle atrophy, along with increased mitochondrial ROS production, muscle oxidative damage, and protease activation. Importantly, treatment with a mitochondrial-targeted antioxidant attenuated the inactivity-induced increase in mitochondrial ROS production and prevented oxidative stress, protease activation, and myofiber atrophy. These results support the hypothesis that redox disturbances contribute to immobilization-induced skeletal muscle atrophy and that mitochondria are an important source of ROS production in muscle fibers during prolonged periods of inactivity.  相似文献   

7.
The role of inducible nitric oxide synthase (iNOS) in the progression of fibrosis during nonalcoholic steatohepatitis remains to be elucidated. This study examined the role of iNOS in the progression of fibrosis during steatohepatitis by comparing iNOS knockout (iNOS−/−) and wild-type (iNOS+/+) mice that were fed a high-fat diet. Severe fatty metamorphosis developed in the liver of iNOS+/+ and iNOS−/− mice. Fibrotic changes were marked in iNOS−/− mice. Gelatin zymography showed that pro MMP-2 and pro MMP-9 protein expressions were more highly induced in iNOS+/+ mice than in iNOS−/− mice. Active forms of MMP-2 and MMP-9 were clearly present only in the liver tissue of iNOS+/+ mice. In situ zymography showed strong gelatinolytic activities in the liver tissue of iNOS+/+ mice, but only spotty activity in iNOS−/−mice. iNOS may attenuate the progression of liver fibrosis in steatohepatitis, in part by inducing MMP-2 and MMP-9 expression and augmenting their activity.  相似文献   

8.
9.
This study evaluated the effects of the selective inducible nitric oxide synthase (iNOS) inhibitor N-[3-(aminomethyl)benzyl]acetamidine (1400W) on the microcirculation in reperfused skeletal muscle. The cremaster muscles from 32 rats underwent 5 h of ischemia followed by 90 min of reperfusion. Rats received either 3 mg/kg 1400W or PBS subcutaneously before reperfusion. We found that blood flow in reperfused muscles was <45% of baseline in controls but sharply recovered to near baseline levels in 1400W-treated animals. There was a significant (P < 0.01 to P < 0.001) difference between the two groups at each time point throughout the 90 min of reperfusion. Vessel diameters remained <80% of baseline in controls during reperfusion, but recovered to the baseline level in the 1400W group by 20 min, and reached a maximum of 121 +/- 14% (mean +/- SD) of baseline in 10- to 20-micro m arterioles, 121 +/- 6% in 21- to 40-micro m arterioles, and 115 +/- 8% in 41- to 70-micro m arteries (P < 0.01 to P < 0.001). The muscle weight ratio between ischemia-reperfused (left) and non-ischemia-reperfused (right) cremaster muscles was 193 +/- 42% of normal in controls and 124 +/- 12% in the 1400W group (P < 0.001). Histology showed that neutrophil extravasation and edema were markedly reduced in 1400W-treated muscles compared with controls. We conclude that ischemia-reperfusion leads to increased generation of NO from iNOS in skeletal muscle and that the selective iNOS inhibitor 1400W reduces the negative effects of ischemia-reperfusion on vessel diameter and muscle blood flow. Thus 1400W may have therapeutic potential in treatment of ischemia-reperfusion injury.  相似文献   

10.
The plant-derived polyphenol resveratrol (RSV) modulates life span and metabolism, and it is thought that these effects are largely mediated by activating the deacetylase enzyme SIRT1. However, RSV also activates the cell energy sensor AMP-activated protein kinase (AMPK). We have previously reported that AMPK activators inhibit inducible nitric oxide synthase (iNOS), a key proinflammatory mediator of insulin resistance in endotoxemia and obesity. The aim of this study was to evaluate whether RSV inhibits iNOS induction in insulin target tissues and to determine the role of SIRT1 and AMPK activation in this effect. We found that RSV (40 mg/kg ip) treatment decreased iNOS induction and NO production in skeletal muscle and white adipose tissue, but not in liver, of endotoxin (LPS)-challenged mice. This effect of the polyphenol was recapitulated in vitro, where RSV (10-80 μM) robustly inhibited iNOS protein induction and NO production in cytokine/LPS-treated L6 myocytes and 3T3-L1 adipocytes. However, no effect of RSV was observed on iNOS induction in FAO hepatocytes. Further studies using inhibitors of SIRT1 revealed that the deacetylase enzyme is not involved in RSV action on iNOS. In marked contrast, RSV activates AMPK in L6 myocytes, and blunting its activation using Compound C or RNA interference partly blocked the inhibitory effect of RSV on NO production. These results show that RSV specifically inhibits iNOS induction in muscle through a mechanism involving AMPK but not SIRT1 activation. This anti-inflammatory action of RSV likely contributes to the therapeutic effect of this plant polyphenol.  相似文献   

11.
MPTP produces clinical, biochemical, and neuropathologic changes reminiscent of those that occur in idiopathic Parkinson's disease (PD). In the present study we show that MPTP treatment led to activation of microglia in the substantia nigra pars compacta (SNpc), which was associated and colocalized with an increase in inducible nitric oxide synthase (iNOS) expression. In iNOS-deficient mice the increase of iNOS expression but not the activation of microglia was blocked. Dopaminergic SNpc neurons of iNOS-deficient mice were almost completely protected from MPTP toxicity in a chronic paradigm of MPTP toxicity. Because the MPTP-induced decrease in striatal concentrations of dopamine and its metabolites did not differ between iNOS-deficient mice and their wild-type littermates, this protection was not associated with a preservation of nigrostriatal terminals. Our results suggest that iNOS-derived nitric oxide produced in microglia plays an important role in the death of dopaminergic neurons but that other mechanisms contribute to the loss of dopaminergic terminals in MPTP neurotoxicity. We conclude that inhibition of iNOS may be a promising target for the treatment of PD.  相似文献   

12.
13.
14.
Exercise enhances cardiac output and blood flow to working skeletal muscles but decreases visceral perfusion. The alterations in nitric oxide synthase (NOS) activity and/or expression of the cardiopulmonary, skeletal muscle, and visceral organs induced by swim training are unknown. In sedentary and swim-trained rats (60 min twice/day for 3-4 wk), we studied the alterations in NOS in different tissues along with hindquarter vasoreactivity in vivo during rest and mesenteric vascular bed reactivity in vitro. Hindquarter blood flow and conductance were reduced by norepinephrine in both groups to a similar degree, whereas N(G)-nitro-L-arginine methyl ester reduced both indexes to a greater extent in swim-trained rats. Vasodilator responses to ACh, but not bradykinin or S-nitroso-N-acetyl-penicillamine, were increased in swim-trained rats. Ca(2+)-dependent NOS activity was enhanced in the hindquarter skeletal muscle, lung, aorta, and atria of swim-trained rats together with increased expression of neuronal NOS in the hindquarter skeletal muscle and endothelial NOS in the cardiopulmonary organs. Mesenteric arterial bed vasoreactivity was unaltered by swim training. Physiological adaptations to swim training are characterized by enhanced hindquarter ACh-induced vasodilation with upregulation of neuronal NOS in skeletal muscle and endothelial NOS in the lung, atria, and aorta.  相似文献   

15.
GS Wu  M Jiang  YH Liu  Y Nagaoka  NA Rao 《PloS one》2012,7(8):e43089

Background

Unlike its constitutive isoforms, including neuronal and endothelial nitric oxide synthase, inducible nitric oxide synthase (iNOS) along with a series of cytokines are generated in inflammatory pathologic conditions in retinal photoreceptors. In this study, we constructed transgenic mice overexpressing iNOS in the retina to evaluate the effect of sustained, intense iNOS generation in the photoreceptor damage.

Methods

For construction of opsin/iNOS transgene in the CMVSport 6 expression vector, the 4.4 kb Acc65I/Xhol mouse rod opsin promoter was ligated upstream to a 4.1 kb fragment encoding the complete mouse cDNA of iNOS. From the four founders identified, two heterozygote lines and one homozygote line were established. The presence of iNOS in the retina was confirmed and the pathologic role of iNOS was assessed by detecting nitrotyrosine products and apoptosis. Commercial TUNEL kit was used to detect DNA strand breaks, a later step in a sequence of morphologic changes of apoptosis process.

Results

The insertion and translation of iNOS gene were demonstrated by an intense single 130 kDa band in Western blot and specific immunolocalization at the photoreceptors of the retina. Cellular toxicity in the retinas of transgenic animals was detected by a post-translational modification product, tyrosine-nitrated protein, the most significant one of which was nitrated cytochrome c. Following the accumulation of nitrated mitochondrial proteins and cytochrome c release, marked apoptosis was detected in the photoreceptor cell nuclei of the retina.

Conclusions

We have generated a pathologic phenotype with sustained iNOS overexpression and, therefore, high output of nitric oxide. Under basal conditions, such overexpression of iNOS causes marked mitochondrial cytochrome c nitration and release and subsequent photoreceptor apoptosis in the retina. Therefore, the modulation of pathways leading to iNOS generation or its effective neutralization can be of significant therapeutic benefit in the oxidative stress-mediated retinal degeneration, a leading cause of blindness.  相似文献   

16.
The molecular mechanisms responsible for impaired insulin action have yet to be fully identified. Rodent models demonstrate a strong relationship between insulin resistance and an elevation in skeletal muscle inducible nitric oxide synthase (iNOS) expression; the purpose of this investigation was to explore this potential relationship in humans. Sedentary men and women were recruited to participate (means ± SE: nonobese, body mass index = 25.5 ± 0.3 kg/m(2), n = 13; obese, body mass index = 36.6 ± 0.4 kg/m(2), n = 14). Insulin sensitivity was measured using an intravenous glucose tolerance test with the subsequent modeling of an insulin sensitivity index (S(I)). Skeletal muscle was obtained from the vastus lateralis, and iNOS, endothelial nitric oxide synthase (eNOS), and neuronal nitric oxide synthase (nNOS) content were determined by Western blot. S(I) was significantly lower in the obese compared with the nonobese group (~43%; P < 0.05), yet skeletal muscle iNOS protein expression was not different between nonobese and obese groups. Skeletal muscle eNOS protein was significantly higher in the nonobese than the obese group, and skeletal muscle nNOS protein tended to be higher (P = 0.054) in the obese compared with the nonobese group. Alternative analysis based on S(I) (high and low tertile) indicated that the most insulin-resistant group did not have significantly more skeletal muscle iNOS protein than the most insulin-sensitive group. In conclusion, human insulin resistance does not appear to be associated with an elevation in skeletal muscle iNOS protein in middle-aged individuals under fasting conditions.  相似文献   

17.
Atria from mice fed a selenium-deficient (Se(-)) diet have a diminished beta-adrenoceptor-inotropic cardiac response to isoproterenol or norepinephrine compared with atria from mice fed the same diet supplemented with 0.2 mg/kg Se as sodium selenite (Se(+)). This diminished response could be reversed by feeding Se(-) mice the Se(+) diet for 1 wk or by pretreatment with nitric oxide synthase (NOS) inhibitors such as N(G)-monomethyl-l-arginine or aminopyridine. Elevated serum concentrations of nitrite/nitrate as well as a threefold increase in the atrial NOS activity were seen in the Se(-) versus Se(+) mice. Western blotting and indirect immunofluorescence indicated an enhanced expression of inducible NOS in hearts from Se(-) mice. Increased expression and activity of NOS and increased nitrite/nitrate levels from Se(-) mice correlated with an impaired response to beta-adrenoceptor inotropic cardiac stimulation. Elevated nitric oxide levels may account for some of the pathophysiological effects of Se deficiency on the heart.  相似文献   

18.
Inducible nitric oxide synthase (iNOS) is induced by inflammatory cytokines in skeletal muscle and fat. It has been proposed that chronic iNOS induction may cause muscle insulin resistance. Here we show that iNOS expression is increased in muscle and fat of genetic and dietary models of obesity. Moreover, mice in which the gene encoding iNOS was disrupted (Nos2-/- mice) are protected from high-fat-induced insulin resistance. Whereas both wild-type and Nos2-/- mice developed obesity on the high-fat diet, obese Nos2-/- mice exhibited improved glucose tolerance, normal insulin sensitivity in vivo and normal insulin-stimulated glucose uptake in muscles. iNOS induction in obese wild-type mice was associated with impairments in phosphatidylinositol 3-kinase and Akt activation by insulin in muscle. These defects were fully prevented in obese Nos2-/- mice. These findings provide genetic evidence that iNOS is involved in the development of muscle insulin resistance in diet-induced obesity.  相似文献   

19.
The inducible isoform of nitric oxide synthase (iNOS) and three zinc tetrathiolate mutants (C104A, C109A, and C104A/C109A) were expressed in Escherichia coli and purified. The mutants were found by ICP-AES and the zinc-specific PAR colorimetric assay to be zinc free, whereas the wild-type iNOS zinc content was 0.38 +/- 0.01 mol of Zn/mol of iNOS dimer. The cysteine mutants (C104A and C109A) had an activity within error of wild-type iNOS (2.24 +/- 0.12 micromol of NO min(-1) mg(-1)), but the double cysteine mutant had a modestly decreased activity (1.75 +/- 0.14 micromol of NO min(-1) mg(-1)). To determine if NO could stimulate release of zinc and dimer dissociation, wild-type protein was allowed to react with an NO donor, DEA/NO, followed by buffer exchange. ICP-AES of samples treated with 10 microM DEA/NO showed a decrease in zinc content (0.23 +/- 0.01 to 0.09 +/- 0.01 mol of Zn/mol of iNOS dimer) with no loss of heme iron. Gel filtration of wild-type iNOS treated similarly resulted in approximately 20% more monomeric iNOS compared to a DEA-treated sample. Only wild-type iNOS had decreased activity (42 +/- 2%) after reaction with 50 microM DEA/NO compared to a control sample. Using the biotin switch method under the same conditions, only wild-type iNOS had increased levels of S-biotinylation. S-Biotinylation was mapped to C104 and C109 on wild-type iNOS using LysC digestion and MALDI-TOF/TOF MS. Immunoprecipitation of iNOS from the mouse macrophage cell line, RAW-264.7, and the biotin switch method were used to confirm endogenous S-nitrosation of iNOS. The data show that S-nitrosation of the zinc tetrathiolate cysteine results in zinc release from the dimer interface and formation of inactive monomers, suggesting that this mode of inhibition might occur in vivo.  相似文献   

20.
Antifibrotic role of inducible nitric oxide synthase.   总被引:4,自引:0,他引:4  
Long-term treatment in rats with l-NAME, an isoform-non-specific inhibitor of nitric oxide synthase (NOS), leads to fibrosis of the heart and kidney, suggesting that nitric oxide (NO) may play a role in preventing tissue fibrosis. In this process, a likely target of NO is the quenching of reactive oxygen species (ROS) through peroxynitrite formation, and one possible source for this NO is inducible NOS (iNOS). Using Peyronie's disease (PD) tissue from both human specimens and from a rat model of PD as the source of fibrotic tissue, we investigated if NO derived from iNOS could act as such an antifibrogenic defense mechanism by determining whether: (a) tunical ROS and iNOS are increased in PD; and (b) the long-term inhibition of iNOS activity decreases the NO/ROS balance in the tunica albuginea thereby promoting collagen deposition. It was determined that in the human PD plaque, iNOS mRNA and protein, ROS, collagen, and the peroxynitrite marker, nitrotyrosine, were all increased in comparison to the normal tunica. In the rat model of PD, the fibrotic plaque also showed significant increases in iNOS mRNA and protein, nitrotyrosine, ROS as measured by heme oxygenase-1, and collagen when compared with the normal control tunica. When a selective inhibitor of iNOS, L-NIL, was given to rats with the PD-like plaque, this resulted in a decrease in nitrotyrosine levels but intensified ROS levels and collagen deposition. These data demonstrate that: (a) iNOS induction occurs in both the human and rat PD fibrotic plaque; and (b) that the NO derived from iNOS appears to counteract ROS formation and collagen deposition. Because the inhibition of iNOS activity leads to a decrease in the NO/ROS ratio, thereby favoring the development of fibrosis, it is proposed that iNOS induction in this tissue may be a protective mechanism against fibrosis and abnormal wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号