首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most cancers are characterized by multiple molecular alterations, but identification of the key proteins involved in these signaling pathways is currently beyond reach. We show that the inhibitor PU-H71 preferentially targets tumor-enriched Hsp90 complexes and affinity captures Hsp90-dependent oncogenic client proteins. We have used PU-H71 affinity capture to design a proteomic approach that, when combined with bioinformatic pathway analysis, identifies dysregulated signaling networks and key oncoproteins in chronic myeloid leukemia. The identified interactome overlaps with the well-characterized altered proteome in this cancer, indicating that this method can provide global insights into the biology of individual tumors, including primary patient specimens. In addition, we show that this approach can be used to identify previously uncharacterized oncoproteins and mechanisms, potentially leading to new targeted therapies. We further show that the abundance of the PU-H71-enriched Hsp90 species, which is not dictated by Hsp90 expression alone, is predictive of the cell's sensitivity to Hsp90 inhibition.  相似文献   

2.
3.
Described is the synthesis of three different fluorescein-tagged derivatives of a macrocycle, and their binding affinity to heat shock protein 90 (Hsp90). Using fluorescence polarization anisotropy, we report the binding affinity of these fluorescein-labeled compounds to Hsp90 in its open state and ATP-dependent closed state. We show that the compounds demonstrate a conformation-dependent preference for binding to the closed state.  相似文献   

4.
Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE). We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins.  相似文献   

5.
The recent crystallization and structural analysis of the ATP(ADP)-complex of the N-terminal domain of the 90 kDa heat shock protein (Hsp90) confirmed our earlier findings on the ATP-binding properties of Hsp90. Here we further characterize the nucleotide binding of Hsp90 by demonstrating that surface plasmon resonance measurements also indicate a low-affinity binding of ATP to Hsp90 and that [α-32P]ATP seems to have an equal preference for monomers, dimers and oligomers of Hsp90 on native polyacrylamide gels. Finally we discuss some of our results which raise the possibility that Hsp90 has two nucleotide binding sites (one in its N-terminal and another in the C-terminal domain) and that the nucleotide binding to Hsp90 dimers may display a positive cooperativity under some special conditions. The submillimolar binding affinity of ATP to Hsp90 allows the regulation of some Hsp90-related functions just in the range of ATP-level fluctuations during stress or during the cell cycle.  相似文献   

6.
Wang X  Lu XA  Song X  Zhuo W  Jia L  Jiang Y  Luo Y 《The Biochemical journal》2012,441(1):387-397
Hsp90 (heat-shock protein 90) is one of the most important molecular chaperones in eukaryotes. Hsp90 facilitates the maturation, activation or degradation of its client proteins. It is now well accepted that both ATP binding and co-chaperone association are involved in regulating the Hsp90 chaperone machinery. However, other factors such as post-translational modifications are becoming increasingly recognized as being involved in this process. Recent studies have reported that phosphorylation of Hsp90 plays an unanticipated role in this process. In the present study, we systematically investigated the impact of phosphorylation of a single residue (Thr90) of Hsp90α (pThr90-Hsp90α) on its chaperone machinery. We demonstrate that protein kinase A specifically phosphorylates Hsp90α at Thr90, and that the pThr9090-Hsp90α level is significantly elevated in proliferating cells. Thr90 phosphorylation affects the binding affinity of Hsp90α to ATP. Subsequent examination of the interactions of Hsp90α with co-chaperones reveals that Thr90 phosphorylation specifically regulates the association of a subset of co-chaperones with Hsp90α. The Hsp90α T90E phosphor-mimic mutant exhibits increased association with Aha1 (activator of Hsp90 ATPase homologue 1), p23, PP5 (protein phosphatase 5) and CHIP (C-terminus of Hsp70-interacting protein), and decreased binding affinity with Hsp70, Cdc37 (cell division cycle 37) and Hop [Hsc70 (heat-shock cognate protein 70)/Hsp90-organizing protein], whereas its interaction with FKBP52 (FK506-binding protein 4) is only moderately affected. Moreover, we find that the ability of the T90E mutant to form complexes with its clients, such as Src, Akt or PKCγ (protein kinase Cγ), is dramatically impaired, suggesting that phosphorylation affects its chaperoning activity. Taken together, the results of the present study demonstrate that Thr90 phosphorylation is actively engaged in the regulation of the Hsp90α chaperone machinery and should be a generic determinant for the cycling of Hsp90α chaperone function.  相似文献   

7.
The ATPase activity of the molecular chaperone Hsp90 is essential for its function in the assembly of client proteins. To understand the mechanism of human Hsp90, we have carried out a detailed kinetic analysis of ATP binding, hydrolysis and product release. ATP binds rapidly in a two-step process involving the formation of a diffusion-collision complex followed by a conformational change. The rate-determining step was shown to be ATP hydrolysis and not subsequent ADP dissociation. There was no evidence from any of the biophysical measurements for cooperativity in either nucleotide binding or hydrolysis for the dimeric protein. A monomeric fragment, lacking the C-terminal dimerisation domain, showed no dependence on protein concentration and, therefore, subunit association for activity. The thermodynamic linkage between client protein binding and nucleotide affinity revealed ATP bound Hsp90 has a higher affinity for client proteins than the ADP bound form. The kinetics are consistent with independent Michaelis-Menten catalysis in each subunit of the Hsp90 dimer. We propose that Hsp90 functions in an open-ring configuration for client protein activation.  相似文献   

8.
Heat shock protein 90 (Hsp90) is a molecular chaperone that is required for the maturation and activation of a number of client proteins, many of which are involved in cancer development. The ansamycin family of natural products and their derivatives, such as geldanamycin (GA), are well-known inhibitors of the essential ATPase activity of Hsp90. Despite structural studies on the complexes of ansamycin derivatives with the ATPase domain of Hsp90, certain aspects of their inhibitory mechanism remain unresolved. For example, it is known that GA in solution exists in an extended conformation with a trans amide bond; however, it binds to Hsp90 in a significantly more compact conformation with a cis amide bond. GA and its derivatives have been shown to bind to Hsp90 with low micromolar affinity in vitro, in contrast to the low nanomolar anti-proliferative activity that these drugs exhibit in vivo. In addition, they show selectivity towards tumour cells. We have studied both the equilibrium binding, and the association and dissociation kinetics of GA derivative, 17-DMAG, and the fluorescently labelled analogue BDGA to both wild-type and mutant Hsp90. The mutants were made in order to test the hypothesis that conserved residues near the ATP-binding site may catalyse the trans-cis isomerisation of GA. Our results show that Hsp90 does not catalyse the trans-cis isomerisation of GA, and suggests that there is no isomerisation step before binding to Hsp90. Experiments with BDGA measured over a wide range of conditions, in the absence and in the presence of reducing agents, confirm recent studies that have suggested that the reduced dihydroquinone form of the drug binds to Hsp90 considerably more tightly than the non-reduced quinone species.  相似文献   

9.
The molecular chaperone Hsp90 mediates the ATP-dependent activation of a large number of proteins involved in signal transduction. During this process, Hsp90 was found to associate transiently with several accessory factors, such as p23/Sba1, Hop/Sti1, and prolyl isomerases. It has been shown that ATP hydrolysis triggers conformational changes within Hsp90, which in turn are thought to mediate conformational changes in the substrate proteins, thereby causing their activation. The specific role of the partner proteins in this process is unknown. Using proteins from Saccharomyces cerevisiae, we characterized the interaction of Hsp90 with its partner protein p23/Sba1. Our results show that the nucleotide-dependent N-terminal dimerization of Hsp90 is necessary for the binding of Sba1 to Hsp90 with an affinity in the nanomolar range. Two Sba1 molecules were found to bind per Hsp90 dimer. Sba1 binding to Hsp90 resulted in a decreased ATPase activity, presumably by trapping the hydrolysis state of Hsp90ATP. Ternary complexes of Hsp90Sba1 could be formed with the prolyl isomerase Cpr6, but not with Sti1. Based on these findings, we propose a model that correlates the ordered assembly of the Hsp90 co-chaperones with distinct steps of the ATP hydrolysis reaction during the chaperone cycle.  相似文献   

10.
Interaction of smooth muscle calponin with 90 kDa heat shock protein (hsp90) was analyzed by means of native gel electrophoresis and affinity chromatography. Under conditions used, calponin and hsp90 form a complex with an apparent dissociation constant in the micromolar range. The major hsp90-binding site is located in the N-terminal (residues 7-144) part of calponin. Addition of calponin to actin-tropomyosin complex results in formation of actin bundles. Hsp90 partially prevents bundle formation without affecting the molar ratio calponin/actin in single actin filaments or actin bundles. At low ionic strength, calponin induces polymerization of G-actin. Hsp90 decreases calponin-induced polymerization of G-actin. It is supposed that hsp90 may be involved in the assembly of actin filaments.  相似文献   

11.
12.
Hsp90 and tubulin are among the most abundant proteins in the cytosol of eukaryotic cells. Although Hsp90 plays key roles in maintaining its client proteins in their active state, tubulin is essential for fundamental processes such as cell morphogenesis and division. Several studies have suggested a possible connection between Hsp90 and the microtubule cytoskeleton. Because tubulin is a labile protein in its soluble form, we investigated whether Hsp90 protects it against thermal denaturation. Both proteins were purified from porcine brain, and their interaction was characterized in vitro by using spectrophotometry, sedimentation assays, video-enhanced differential interference contrast light microscopy, and native polyacrylamide gel electrophoresis. Our results show that Hsp90 protects tubulin against thermal denaturation and keeps it in a state compatible with microtubule polymerization. We demonstrate that Hsp90 cannot resolve tubulin aggregates but that it likely binds early unfolding intermediates, preventing their aggregation. Protection was maximal at a stoichiometry of two molecules of Hsp90 for one of tubulin. This protection does not require ATP binding and hydrolysis by Hsp90, but it is counteracted by geldanamycin, a specific inhibitor of Hsp90.  相似文献   

13.
The role of Hsp70 chaperones in yeast prion propagation is well established. Highly conserved Hsp90 chaperones participate in a number of cellular processes, such as client protein maturation, protein degradation, cellular signalling and apoptosis, but little is known about their role in propagation of infectious prion like aggregates. Here, we examine the influence of Hsp90 in the maintenance of yeast prion [URE3] which is a prion form of native protein Ure2, and reveal a previously unknown role of Hsp90 as an important regulator of [URE3] stability. We show that the C-terminal MEEVD pentapeptide motif, but not the client maturation activity of Hsp90, is essential for [URE3] prion stability. In testing deletions of various Hsp90 co-chaperones known to bind this motif, we find the immunophilin homolog Cpr7 is essential for [URE3] propagation. We show that Cpr7 interacts with Ure2 and enhances its fibrillation. The requirement of Cpr7 is specific for [URE3] as its deletion does not antagonize both strong and weak variant of another yeast prion [PSI +], suggesting a distinct role of the Hsp90 co-chaperone with different yeast prions. Our data show that, similar to the Hsp70 family, the Hsp90 chaperones also influence yeast prion maintenance, and that immunophilins could regulate protein multimerization independently of their activity as peptidyl-prolyl isomerases.  相似文献   

14.
Cdc37 is a molecular chaperone required for folding of protein kinases. It functions in association with Hsp90, although little is known of its mechanism of action or where it fits into a folding pathway involving other Hsp90 cochaperones. Using a genetic approach with Saccharomyces cerevisiae, we show that CDC37 overexpression suppressed a defect in v-Src folding in yeast deleted for STI1, which recruits Hsp90 to misfolded clients. Expression of CDC37 truncation mutants that were deleted for the Hsp90-binding site stabilized v-Src and led to some folding in both sti1Delta and hsc82Delta strains. The protein kinase-binding domain of Cdc37 was sufficient for yeast cell viability and permitted efficient signaling through the yeast MAP kinase-signaling pathway. We propose a model in which Cdc37 can function independently of Hsp90, although its ability to do so is restricted by its normally low expression levels. This may be a form of regulation by which cells restrict access to Cdc37 until it has passed through a triage involving other chaperones such as Hsp70 and Hsp90.  相似文献   

15.
Heat shock protein 90 (Hsp90) is a molecular chaperone with essential functions in maintaining transformation, and there is increasing interest in developing Hsp90 inhibitors as cancer therapeutics. In this study, the authors describe the development and optimization of a novel assay for the identification of Hsp90 inhibitors using fluorescence polarization. The assay is based on the competition of fluorescently (BODIPY) labeled geldanamycin (GM) for binding to purified recombinant Hsp90alpha (GM is a natural product that binds to the ATP/ADP pocket in the amino terminal of Hsp90). The authors show that GM-BODIPY binds Hsp90alpha with high affinity. Even at low Hsp90alpha concentrations (30 nM), the measured polarization value is close to the maximum assay range of 160 mP, making measurements very sensitive. Its performance, as judged by signal-to-noise ratios (> 10) and Z and Z' values (> 0.5), suggests that this is a robust and reliable assay. GM, PU24FCl, ADP, and ATP, all known to bind to the Hsp90 pocket, compete with GM-BODIPY for binding to Hsp90alpha with EC(50)s in agreement with reported values. These data demonstrate that the Hsp90-FP-based assay can be used for high-throughput screening in aiding the identification of novel Hsp90 inhibitors.  相似文献   

16.
Most mitochondrial membrane proteins are synthesized in the cytosol and must be delivered to the organelle in an unfolded, import competent form. In mammalian cells, the cytosolic chaperones Hsp90 and Hsp70 are part of a large cytosolic complex that deliver the membrane protein to the mitochondrion by docking with the import receptor Tom70. These two abundant chaperones have other functions in the cell suggesting that the specificity for the targeting of mitochondrial proteins requires the addition of specific factors within the targeting complex. We identify Tom34 as a cochaperone of Hsp70/Hsp90 in mitochondrial protein import. We show that Tom34 is an integral component with Hsp70 and Hsp90 in the large complex. We also demonstrate the role of Tom34 in the mitochondrial import process, as the addition of an excess of Tom34 prevents efficient mitochondrial translocation of precursor proteins that have requirements for Hsp70/Hsp90. Tom34 exhibits an affinity for mitochondrial preproteins of the Tom70 translocation pathway as demonstrated by binding assays using in vitro translated proteins as baits. In addition, we examined the specificity and the size of different complex cytosolic machines. Separation of different radiolabeled cell-free translated proteins on Native-PAGE showed the presence of a high molecular weight complex which binds hydrophobic proteins. Importantly we show that the formation of the chaperone cytosolic complex that mediates the targeting of proteins to the mitochondria contains Tom34 and assembles in the presence of a fully translated substrate protein.  相似文献   

17.
Ppt1 is the yeast member of a novel family of protein phosphatases, which is characterized by the presence of a tetratricopeptide repeat (TPR) domain. Ppt1 is known to bind to Hsp90, a molecular chaperone that performs essential functions in the folding and activation of a large number of client proteins. The function of Ppt1 in the Hsp90 chaperone cycle remained unknown. Here, we analyzed the function of Ppt1 in vivo and in vitro. We show that purified Ppt1 specifically dephosphorylates Hsp90. This activity requires Hsp90 to be directly attached to Ppt1 via its TPR domain. Deletion of the ppt1 gene leads to hyperphosphorylation of Hsp90 in vivo and an apparent decrease in the efficiency of the Hsp90 chaperone system. Interestingly, several Hsp90 client proteins were affected in a distinct manner. Our findings indicate that the Hsp90 multichaperone cycle is more complex than was previously thought. Besides its regulation via the Hsp90 ATPase activity and the sequential binding and release of cochaperones, with Ppt1, a specific phosphatase exists, which positively modulates the maturation of Hsp90 client proteins.  相似文献   

18.
The structural basis for the coupling of ATP binding and hydrolysis to chaperone activity remains a central question in Hsp90 biology. By analogy to MutL, ATP binding to Hsp90 is thought to promote intramolecular N-terminal dimerization, yielding a molecular clamp functioning in substrate protein activation. Though observed in studies with recombinant domains, whether such quaternary states are present in native Hsp90s is unknown. In this study, native subunit interactions in GRP94, the endoplasmic reticulum Hsp90, were analyzed using chemical cross-linking in conjunction with tandem mass spectrometry. We report the identification of two distinct intermolecular interaction sites. Consistent with previous studies, one site comprises the C-terminal dimerization domain. The remaining site represents a novel intermolecular contact between the N-terminal and middle (M) domains of opposing subunits. This N+M domain interaction was present in the nucleotide-empty, ADP-, ATP-, or geldanamycin-bound states and could be selectively disrupted upon addition of synthetic geldanamycin dimers. These results identify a compact, intertwined quaternary conformation of native GRP94 and suggest that intersubunit N+M interactions are integral to the structural biology of Hsp90.  相似文献   

19.
20.
We have previously shown that the proteasome activator PA28 is essential to Hsp90-dependent protein refolding in vitro, where PA28 mediates transfer of the Hsp90-bound substrate protein to the Hsc70/Hsp40 chaperone machine for its correct refolding. This observation suggests that PA28 may also collaborate with Hsp90 in cells. To examine this possibility, here we have used double-stranded RNA interference (RNAi) against PA28 in Caenorhabditis elegans mutants of daf-21, which encodes Hsp90. We show that C. elegans PA28 facilitates Hsp90-initiated protein refolding, albeit with an activity lower than that of mouse PA28 proteins. RNAi-mediated knockdown of PA28 significantly suppresses the Daf-c (dauer formation constitutive) phenotype of the daf-21 mutant, but it has no affect on the distinct defects of this mutant in sensing odorants. Taking these results together, we conclude that PA28 is likely to function in collaboration with Hsp90 in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号