首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We designed and validated a novel device for applying flexion-extension cycles to a rat knee in an in vivo model of anterior cruciate ligament reconstruction (ACL-R). Our device is intended to simulate rehabilitation motion and exercise post ACL-R to optimize physical rehabilitation treatments for the improved healing of tendon graft ligament reconstructions. The device was validated for repeatability of the knee kinematic motion by measuring the force versus angular rotation response from repeated trials using cadaver rats. The average maximum force required for rotating an ACL reconstructed rat knee through 100 degrees of flexion-extension was 0.4 N with 95% variability for all trials within ±0.1 N.  相似文献   

2.
Anterior Cruciate Ligament (ACL) injury is one of the most serious and costly injuries of the lower extremity, occurring more frequently in females than males. Injury prevention training programs have reported the ability to reduce non-contact ACL injury occurrence. These programs have also been shown to alter an athletes' lower extremity position at initial contact with the ground and throughout the deceleration phase of landing. The purpose of this study was to determine the influence of single-leg landing technique on ACL loading in recreationally active females. Participants were asked to perform "soft" and "stiff" drop landings. A series of musculoskeletal models were then used to estimate muscle, joint, and ACL forces. Dependent t-tests were conducted to investigate differences between the two landing techniques (p<0.05). Instructing participants to land 'softly' resulted in a significant decrease in peak ACL force (p=0.05), and a significant increase in hip and knee flexion both at initial contact (IC) and the time of peak ACL force (F(PACL)). These findings suggest that altering landing technique using simple verbal instruction may result in lower extremity alignment that decreases the resultant load on the ACL. Along with supporting the findings of reduced ACL force with alterations in sagittal plane landing mechanics in the current literature, the results of this study suggest that simple verbal instruction may reduce the ACL force experienced by athletes when landing.  相似文献   

3.
There appears a linear relationship between small increases in running speed and cardiovascular health benefits. Encouraging or coaching recreational runners to increase their running speed to derive these health benefits might be more effective if their joint level kinematic and kinetic strategy was understood. The aim of this investigation was to compare the peak sagittal plane motions, moments, and powers of the hip, knee and ankle at 85%, 100%, 115% and 130% of self-selected running speed. Overground running data were collected in 12 recreational runners (6 women, 6 men) with a full body marker set using a 12-camera Vicon MX system with an AMTI force plate. Kinematics and kinetics were analyzed with Vicon Nexus software. Participants chose to run at 2.6 ± 0.5 m/s (85%); 3.0 ± 0.5 m/s (100%); 3.3 ± 0.5 m/s (115%); and 3.7 ± 0.5 m/s (130%); these four speeds approximately correspond to 6:24-, 5:33-, 5:03-, and 4:30-min kilometer running paces. Running speed had a significant effect (P < 0.05) on peak kinematic and kinetic variables of the hips, knees and ankles, with peak sagittal hip moments invariant (P > 0.54) and the peak sagittal ankle power generation (P < 0.0001) the most highly responsive variable. The timing of the peak sagittal extensor moments and powers at the hip, knee and ankle were distributed across stance in a sequential manner. This study shows that running speed affects lower limb joint kinematics and kinetics and suggests that specific intersegmental kinetic strategies might exist across the narrow range of running speeds.  相似文献   

4.
The anterior cruciate ligament (ACL) is the most commonly-injured knee ligament during sporting activities. After injury, most individuals experience episodes of the knee giving way during daily activities (non-copers). Non-copers demonstrate asymmetrical quadriceps strength and movement patterns, which could have long-term deleterious effects on the integrity of the knee joint. The purpose of this study was to determine if non-copers resolve their strength and movement asymmetries within two years after surgery. 26 Non-copers were recruited to undergo pre-operative quadriceps strength testing and 3-dimensional gait analysis. Subjects underwent surgery to reconstruct the ligament followed by physical therapy focused on restoring normal range of motion, quadriceps strength, and function. Subjects returned for quadriceps strength testing and gait analysis six months and two years after surgery. Acutely after injury, quadriceps strength was asymmetric between limbs, but resolved six months after surgery. Asymmetric knee angles, knee moments, and knee and hip power profiles were also observed acutely after injury and persisted six months after surgery despite subjects achieving symmetrical quadriceps strength. Two years after surgery, quadriceps strength in the involved limb continued to improve and most kinematic and kinetic asymmetries resolved. These findings suggest that adequate quadriceps strength does not immediately resolve gait asymmetries in non-copers. They also suggest that non-copers have the capacity to improve their quadriceps strength and gait symmetry long after ACL reconstruction.  相似文献   

5.
Non-contact anterior cruciate ligament (ACL) injuries account for 70% of all ACL injuries, and can lead to missed time from activity for athletes and a predisposition for knee osteoarthritis. Prior research has shown that athletes who land in a stiff manner, with larger internal knee adduction and extension moments, are at greater risk for an ACL injury. A three-dimensional accelerometer placed at the tibial tuberosity may prove to be a low-cost means of assessing these risk factors. The primary purpose of this study was to compare tibial accelerations during drop landings with kinematic and kinetic risk factors for ACL injury measured with three-dimensional motion capture. The secondary purpose of this study was to compare these measures between soft and stiff landings. Participants were instructed to land bilaterally in preferred, soft, and stiff manners. Peak knee flexion decreased significantly from soft to stiff landings. Peak internal knee extension moment, peak anterior/posterior knee acceleration, and peak medial knee acceleration all increased significantly from soft to stiff landings. No associations were found between landing condition and either frontal plane knee angle at maximum vertical ground reaction force or peak internal knee adduction moment. Significant positive associations between kinetics and accelerations were found only in the sagittal plane. As such, while a three-dimensional accelerometer could discern between soft and stiff landings in both planes, it may be better suited to predict kinetic risk factors in the sagittal plane.  相似文献   

6.
目的:分析膝骨性关节炎患者(KOA)登梯时下肢肌群肌电活动与关节角冲量与正常人的差异,为康复方案设计提供生物力学参考。方法:采用Qualisys三维运动分析系统以及Delsys无线表面肌电系统对招募10名符合纳排标准的膝骨性关节炎患者和10名正常人进行登梯活动的步态检测,采用下肢肌群均方根值、股内外侧肌协同收缩比值、股二头肌和股外侧肌共同活动比值和髋、膝关节在冠状面和矢状面上角冲量对比分析与两组登梯时下肢肌群收缩模式对关节负荷的影响。结果:与正常对照相比,上梯时膝骨性关节炎患者股直肌均方根值RMS(Root Mean Square)增大(P0.05),膝骨性关节炎患者股内外侧肌收缩均方根值比值(RMS(Vastus Medialis)VM/(Vastus Lateralis)VL)减小(P0.05),膝骨性关节炎患者腘绳肌与股外侧肌收缩比值(RMS(Biceps Femoris)BF/VL增大(P0.05)。下梯时,膝骨性关节炎患者股直肌均方根值(RMS)增大(P0.05),臀大肌均方根值(RMS)减小(P0.05),股内外侧肌收缩均方根比值(RMS VM/VL)减小(P0.05)。上梯时,膝骨性关节炎患者髋、膝关节冠状面上的关节角冲量大于正常人(P0.05),膝关节在矢状面上关节角冲量大于正常组(P0.05),下梯髋、膝关节冠状面、矢状面上的角冲量无统计学差异(P0.05)。KOA组VM/VL、BF/VL与膝关节在冠状面和矢状面上的角冲量的改变没有直接的相关性(P0.05)。结论:膝骨性关节炎患者在登梯活动时股直肌的收缩活动增加,股内外侧肌的协同收缩下降,主动肌与拮抗肌的共同收缩增加,膝骨性关节炎患者在面对登梯活动时下肢肌群选择性激活和高激活状态协调一致,促进关节稳定。虽然下肢神经肌肉的收缩模式和膝关节负荷之间没有直接的相关性,可能是对膝关节负荷产生影响的生物力学因素较多,神经肌肉的收缩模式只是部分影响因素,后续将增加其他生物力学因素进一步研究。  相似文献   

7.
目的:探讨前交叉韧带(anterior cruciate ligament,ACL)在膝关节不同屈曲角度时的方位角变化,为ACL损伤诊断和重建研究提供解剖学支持。方法:成人膝关节标本10具,解剖观察ACL形态,用Photoshop软件测量膝关节不同屈曲角度下ACL方位角变化。结果:0°、30°位膝关节中ACL胫骨角大于ACL股骨角,有显著性差异(P0.01);60°、90°位膝关节中的ACL胫骨角小于股骨角,有显著性差异(P0.01)。膝关节0°、30°、60°、90°ACL胫骨角由大渐小,各角度间均有显著性差异(均P0.01)。膝关节0°和30°的ACL股骨角比60°和90°时小,有显著性差异(均P0.01),0°与30°间无显著性差异(P0.05),60°小于90°,有显著性差异(P0.01)。结论:ACL于膝关节0°和30°位时,后外侧束(posterolateral bundle,PLB)发挥主要作用,ACL诊断或重建主要参考胫骨角;60°、90°时ACL前内侧束(anteromedial bundle,AMB)发挥主要作用,ACL诊断或重建主要参考股骨角。ACL方位角可作为ACL损伤诊断和手术重建的重要参考。  相似文献   

8.
The purpose of this study was to determine if females and males use different hip and knee mechanics when walking with standardized military-relevant symmetric loads. Fifteen females and fifteen males walked on a treadmill for 2-min at a constant speed under three symmetric load conditions (unloaded: 1.71 kg, medium: 15 kg, heavy: 26 kg). Kinematic and kinetics of the hip and knee were calculated in the sagittal and frontal planes of the dominant limb. In females, hip abduction moments (normalized to total mass) and sagittal knee excursion decreased with increased load (p ≤ 0.024). In males, hip frontal excursion and adduction angle increased with load (p ≤ 0.003). Females had greater peak hip adduction angle than males in the unloaded and medium load conditions (p ≤ 0.036). Across sex, sagittal hip and knee excursion, peak knee extension angle, and peak hip and knee flexion angles increased with increased load (p ≤ 0.005). When normalized to body mass, all peak joint moments increased with each load (p ≤ 0.016) except peak hip adduction moment. When normalized to total mass, peak hip adduction moment and knee flexion, extension, and adduction moments decreased with each load (p < 0.001). While hip frontal plane kinetic alterations to load were only noted in females, kinematic changes were noted in males at the hip and females at the knee. Differences in strategies may increase the risk of hip and knee injuries in females compared to males. This study noted load and sex effects that were previously undetected, highlighting the importance of using military-relevant standardized loads and investigating frontal plane adaptations.  相似文献   

9.
The increased number of women participating in sports has led to a higher knee injury rate in women compared with men. Among these injuries, those occurring to the ACL are commonly observed during landing maneuvers. The purpose of this study was to determine gender differences in landing strategies during unilateral and bilateral landings. Sixteen male and 17 female recreational athletes were recruited to perform unilateral and bilateral landings from a raised platform, scaled to match their individual jumping abilities. Three-dimensional kinematics and kinetics of the dominant leg were calculated during the landing phase and reported as initial ground contact angle, ranges of motion (ROM) and peak moments. Lower extremity energy absorption was also calculated for the duration of the landing phase. Results showed that gender differences were only observed in sagittal plane hip and knee ROM, potentially due to the use of a relative drop height versus the commonly used absolute drop height. Unilateral landings were characterized by significant differences in hip and knee kinematics that have been linked to increased injury risk and would best be classified as "stiff" landings. The ankle musculature was used more for impact absorption during unilateral landing, which required increased joint extension at touchdown and may increase injury risk during an unbalanced landing. In addition, there was only an 11% increase in total energy absorption during unilateral landings, suggesting that there was a substantial amount of passive energy transfer during unilateral landings.  相似文献   

10.
Female athletes participating in high-risk sports suffer anterior cruciate ligament (ACL) knee injury at a 4- to 6-fold greater rate than do male athletes. ACL injuries result either from contact mechanisms or from certain unexplained non-contact mechanisms occurring during daily professional sports activities. The occurrence of non-contact injuries points to the existence of certain factors intrinsic to the knee that can lead to ACL rupture. When knee joint movement overcomes the static and the dynamic constraint systems, non-contact ACL injury may occur. Certain recent results suggest that balance and neuromuscular control play a central role in knee joint stability, protection and prevention of ACL injuries. The purpose of this study is to evaluate balance neuromuscular skills in healthy Croatian female athletes by measuring their balance index score, as well as to estimate a possible correlation between their balance index score and balance effectiveness. This study is conducted in an effort to reduce the risk of future injuries and thus prevent female athletes from withdrawing from sports prematurely. We analysed fifty-two female athletes in the high-risk sports of handball and volleyball, measuring for their static and dynamic balance index scores, using the Sport KAT 2000 testing system. This method may be used to monitor balance and coordination systems and may help to develop simpler measurements of neuromuscular control, which can be used to estimate risk predictors in athletes who withdraw from sports due to lower sports results or ruptured anterior cruciate ligament and to direct female athletes to more effective, targeted preventive interventions. The tested Croatian female athletes with lower sports results and ACL knee injury incurred after the testing were found to have a higher balance index score compared to healthy athletes. We therefore suggest that a higher balance index score can be used as an effective risk predictor for lower sports results and lesser sports motivation, anterior cruciate ligament injury and the ultimate decision to withdraw from active participation in sports. If the balance testing results prove to be effective in predicting the occurrence of ligament injuries during future sports activities, we suggest that prophylactic training programs be introduced during athlete training, since the prevention of an initial injury will be more effective than prevention of injury recurrence.  相似文献   

11.
This study investigated the mechanical consequences of differences in dynamic frontal plane alignment of the support limb and the influence of anticipatory muscle activation at the hip and ankle on reducing the potential for non-contact ACL injury during single-limb landing. A frontal plane, three-link passive dynamic model was used to estimate an ACL non-contact injury threshold. This threshold was defined as the maximum axial force that the knee could sustain before the joint opened 8 degrees either medially or laterally, which was deemed sufficient to cause injury. The limb alignment and hip and ankle muscle contractions were varied to determine their effects on the ACL injury threshold. Valgus or varus alignment reduced the injury threshold compared to neutral alignment, but increasing the anticipatory contraction of hip abduction and adduction muscle groups increased the injury threshold. Increasing anticipatory ankle inversion/eversion muscle contraction had no effect. This study provides a mechanical rationale for the conclusion that a neutral limb alignment (compared to valgus or varus) during landing and increasing hip muscle contraction (abductors/adductors) prior to landing can reduce the possibility of ACL rupture through a valgus or varus opening mechanism.  相似文献   

12.
Core stability has received considerable attention with regards to functional training in sports. Core stability provides the foundation from which power is generated in cycling. No research has described the relationship between core stability and cycling mechanics of the lower extremity. The purpose of this study was to determine the relationship between cycling mechanics and core stability. Hip, knee, and ankle joint kinematic and pedal force data were collected on 15 competitive cyclists while cycling untethered on a high-speed treadmill. The exhaustive cycling protocol consisted of cycling at 25.8 km x h(-1) while the grade was increased 1% every 3 minutes. A core fatigue workout was performed before the second treadmill test. Total frontal plane knee motion (test 1: 15.1 +/- 6.0 degrees ; test 2: 23.3 +/- 12.5 degrees), sagittal plane knee motion (test 1: 69.9 +/- 4.9 degrees ; test 2: 79.3 +/- 10.1 degrees), and sagittal plane ankle motion (test 1: 29.0 +/- 8.5 degrees ; test 2: 43.0 +/- 22.9 degrees) increased after the core fatigue protocol. No significant differences were demonstrated for pedaling forces. Core fatigue resulted in altered cycling mechanics that might increase the risk of injury because the knee joint is potentially exposed to greater stress. Improved core stability and endurance could promote greater alignment of the lower extremity when riding for extended durations as the core is more resistant to fatigue.  相似文献   

13.
A two-dimensional dynamical model of the human body was developed and used to simulate muscle and knee-ligament loading during a fast rising movement. The hip, ankle, and toes were each modeled as a simple hinge joint. Relative movements of the femur, tibia, and patella in the sagittal plane were described using a more detailed representation of the knee. The geometry of the model bones was adapted from cadaver data. Eleven elastic elements described the geometric and mechanical properties of the knee ligaments and joint capsule. The patella was assumed to be massless. Smooth hypersurfaces were constructed and used to calculate the position and orientation of the patella during a forward integration of the model. Each hypersurface was formed by applying the principle of static equilibrium to approximate patellofemoral mechanics during the simulation. The model was actuated by 22 musculotendinous units, each unit represented as a three-element muscle in series with tendon. A first-order process was assumed to model muscle excitation-contraction dynamics. Dynamic optimization theory was used to calculate the pattern of muscle excitations that produces a coordinated rising movement from an initial squatting position in minimum time. The calculations support the contention that squatting is a relatively safe exercise for rehabilitation following ACL reconstruction. ACL forces remain less than 20 N for the duration of the task.  相似文献   

14.
Understanding the potential causes of both reduced gait speed and compensatory frontal plane kinematics during walking in individuals post-stroke may be useful in developing effective rehabilitation strategies. Multiple linear regression analysis was used to select the combination of paretic limb impairments (frontal and sagittal plane hip strength, sagittal plane knee and ankle strength, and multi-joint knee/hip torque coupling) which best estimate gait speed and compensatory pelvic obliquity velocities at toeoff. Compensatory behaviors were defined as deviations from control subjects’ values. The gait speed model (n=18; p=0.003) revealed that greater hip abduction strength and multi-joint coupling of sagittal plane knee and frontal plane hip torques were associated with decreased velocity; however, gait speed was positively associated with paretic hip extension strength. Multi-joint coupling was the most influential predictor of gait speed. The second model (n=15; p<0.001) revealed that multi-joint coupling was associated with increased compensatory pelvic movement at toeoff; while hip extension and flexion and knee flexion strength were associated with reduced frontal plane pelvic compensations. In this case, hip extension strength had the greatest influence on pelvic behavior. The analyses revealed that different yet overlapping sets of single joint strength and multi-joint coupling measures were associated with gait speed and compensatory pelvic behavior during walking post-stroke. These findings provide insight regarding the potential impact of targeted rehabilitation paradigms on improving speed and compensatory kinematics following stroke.  相似文献   

15.
Stair ascent and descent requires large knee motions and muscle forces that can be challenging for people with anterior cruciate ligament (ACL) deficiency. Movement and muscle activity patterns were compared in two groups of ACL deficient subjects and a group of uninjured subjects. The ACL deficient subjects were prospectively classified according to functional ability. "Copers" were defined as individuals with complete ACL rupture and no symptoms of knee instability and participated in high-level sports without difficulty. "Non-copers" were defined as ACL deficient individuals who had instability with low-level daily activities and were not able to participate in sports. Sagittal plane kinematic and kinetic data from the hip, knee and ankle and electromyographic data from the vastus lateralis, lateral hamstring, medial gastrocnemius, and soleus were collected as subjects stepped up and over a 26 cm high step. Both coper and non-coper subjects had altered movement patterns as they controlled the rapid movement from step ascent to descent with their involved limbs. Only non-copers used significantly different movement patterns on their involved limb compared to controls after they had descended from the step and their involved side accepted the weight of the body. Classifying subjects by functional ability resulted in more pronounced differences in movement patterns between non-copers and copers. Copers moved more like uninjured subjects.  相似文献   

16.
As a cost-effective, clinician-friendly gait assessment tool, the Kinect v2 sensor may be effective for assessing lower extremity joint kinematics. This study aims to examine the validity of time series kinematical data as measured by the Kinect v2 on a flatland for gait assessment. In this study, 51 healthy subjects walked on a flatland while kinematic data were extracted concurrently using the Kinect and Vicon systems. The kinematic outcomes comprised the hip and knee joint angles. Parallel translation of Kinect data obtained throughout the gait cycle was performed to minimize the differences between the Kinect and Vicon data. The ensemble curves of the hip and knee joint angles were compared to investigate whether the Kinect sensor can consistently and accurately assess lower extremity joint motion throughout the gait cycle. Relative consistency was assessed using Pearson correlation coefficients. Joint angles measured by the Kinect v2 followed the trend of the trajectories made by the Vicon data in both the hip and knee joints in the sagittal plane. The trajectories of the hip and knee joint angles in the frontal plane differed between the Kinect and Vicon data. We observed moderate to high correlation coefficients of 20%–60% of the gait cycle, and the largest difference between Kinect and Vicon data was 4.2°. Kinect v2 time series kinematical data obtained on the flatland are validated if the appropriate correction procedures are performed. Future studies are warranted to examine the reproducibility and systematic bias of the Kinect v2.  相似文献   

17.
摘要 目的:探讨常规肌力康复训练联合血流限制训练对前交叉韧带(ACL)重建术后患者膝关节功能、股四头肌功能和平衡功能的影响。方法:选取2020年9月-2022年7月期间我院收治的ACL重建术患者82例。根据随机数字表法分为对照组(n=41,接受常规肌力康复训练)和研究组(n=41,接受常规肌力康复训练联合血流限制训练)。比较两组膝关节功能、股四头肌功能、平衡功能和并发症发生率。结果:治疗6周后,研究组膝关节Lysholm评分高于对照组,膝关节肿胀程度、大腿周径差值小于对照组,膝关节最大屈曲角度大于对照组(P<0.05)。治疗6周后,研究组股四头肌厚度薄于对照组,平均功率、峰力矩大于对照组(P<0.05)。治疗6周后,研究组站立平衡平均压力峰值差、缓慢弯膝平均压力峰值差、向下蹲位平均压力峰值差小于对照组(P<0.05)。研究组(4.88%)的并发症发生率低于对照组(24.39%)(P<0.05)。结论:ACL重建术后患者应用血流限制训练联合常规肌力康复训练进行干预,可有效改善患者膝关节功能、股四头肌功能和平衡功能,降低并发症发生率。  相似文献   

18.
The purpose of this study was to determine if gender differences exist in the variability of various lower extremity (LE) segment and joint couplings during an unanticipated cutting maneuver. 3-D kinematics were collected on 24 college soccer players (12 M, 12 F) while each performed the cutting maneuver. The following intralimb couplings were studied: thigh rotation (rot)/leg rot; thigh abduction-adduction/leg abd-add; hip abd-add/knee rot; hip rot/knee abd-add; knee flexion-extension/knee rot; knee flx-ext/hip rot. A vector-coding technique applied to angle-angle plots was used to quantify the coordination of each coupling. The average between-trial standard deviation of the coordination pattern during the initial 40 % of stance was used to indicate the coordination variability. One-tailed t-tests were used to determine differences between genders in coordination variability for each coupling. Women had decreased variability in four couplings: 32 % less thigh rot/leg rot variability; 40 % less thigh abd-add/leg abd-add variability; 46 % less knee flx-ext/knee rot variability; and 44 % less knee flx-ext/hip rot variability. These gender differences in LE coordination variability may be associated with the increased incidence of ACL injury in women. If women exhibit less flexible coordination patterns during competition, they may be less able to adapt to the environmental perturbations experienced during sports. These perturbations applied to a less flexible system may result in ligament injury.  相似文献   

19.
Whilst anterior cruciate ligament injury commonly occurs during change of direction (CoD) tasks, there is little research on how athletes execute CoD after anterior cruciate ligament reconstruction (ACLR). The aims of this study were to determine between-limb and between-test differences in performance (time) and joint kinematics and kinetics during planned and unplanned CoD. One hundred and fifty-six male subjects carried out 90° maximal effort, planned and unplanned CoD tests in a 3D motion capture laboratory 9 months after ACLR. Statistical parametric mapping (2 × 2 ANOVA; limb × test) was used to identify differences in CoD time and biomechanical measures between limbs and between tests. There was no interaction effect but a main effect for limb and task. There was no between-limb difference in the time to complete both CoD tests. Between-limb differences were found for internal knee valgus moment, knee internal rotation and flexion angle, knee extension and external rotation moment and ankle external rotation moment with lower values on the ACLR side (effect size 0.72–0.5). Between test differences were found with less contralateral pelvis rotation, distance from centre of mass to the ankle in frontal plane, posterior ground reaction force and greater hip abduction during the unplanned CoD (effect size 0.75–0.5). Findings demonstrated that kinematic and kinetic differences between limbs are evident during both CoD tests 9 months after surgery, despite no statistical differences in performance time. Biomechanical differences between tests were found in variables, which have previously been associated with ACL injury mechanism during unplanned CoD.  相似文献   

20.
Patients with knee OA show altered gait patterns, affecting their quality of living. The current study aimed to quantify the effects of bilateral knee OA on the intra-limb and inter-limb sharing of the support of the body during gait. Fifteen patients with mild, 15 with severe bilateral knee OA, and 15 healthy controls walked along a walkway while the kinematic and kinetic data were measured. Compared with the controls, the patients significantly reduced their knee extensor moments and the corresponding contributions to the total support moment in the sagittal plane (p<0.05). For compensation, the mild OA group significantly increased the hip extensor moments (p<0.05) to maintain close-to-normal support and a more symmetrical inter-limb load-sharing during double-limb support. The severe OA group involved compensatory actions of both the ankle and hip, but did not succeed in maintaining a normal sagittal total support moment during late stance, nor a symmetrical inter-limb load-sharing during double-limb support. In the frontal plane, the knee abductor moments and the corresponding contributions to the total support moment were not affected by the changes in the other joints, regardless of the severity of the disease. The observed compensatory changes suggest that strengthening of weak hip muscles is essential for body support during gait in patients with knee OA, but that training of weak ankle muscles may also be needed for patients with severe knee OA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号