首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recently, it has been suggested that Alzheimer's disease is associated with a duplication of the amyloid precursor protein gene localized to chromosome 21q21. In this study, a cloned DNA probe (B2.3), complementary to the sequence coding the beta-amyloid peptide, and DNA polymorphisms adjacent to this sequence were used to determine the number of copies of the beta-amyloid gene in DNA isolated from human blood and brain. Individuals with trisomy 21 (Down syndrome) who were heterozygous for the polymorphisms showed a gene-dosage effect, with one allele exhibiting twice the autoradiographic intensity as the other. Heterozygous individuals with Alzheimer's disease and controls showed equal intensities of the two allelic bands, suggesting that there are only two copies of the beta-amyloid gene in these individuals. In individuals with Alzheimer's disease and in controls who were homozygous for these polymorphisms, the number of copies of the beta-amyloid gene was determined by comparing the autoradiographic intensity of beta-amyloid alleles to that of DNA fragments detected by a reference probe. No difference was detected between these two groups.  相似文献   

2.
B. C. Lamb 《Genetica》1985,67(1):39-49
Disparity in the direction of meiotic gene conversion can change allele frequencies, favouring one allele of a pair in heterozygotes. Equilibrium allele frequencies for large diploid populations are examined by means of equations relating them to meiotic gene conversion, selection and mutation for deleterious recessives, deleterious dominants, and deleterious alleles with no dominance. Using observed conversion parameters from various fungi,Zea mays andDrosophila, it is shown that conversion is generally much more important than mutation pressure and may be of greater or lesser importance than selection, depending on dominance and the strength of selection and conversion forces for the alleles involved.  相似文献   

3.
The HindIII RFLP in the human phenylalanine hydroxylase (PAH) gene is caused by the presence of an AT-rich (70%) minisatellite region. This region contains various multiple of 30-bp tandem repeats and is located 3 kb downstream of the final exon of the gene. PCR-mediated amplification of this region from haplotyped PAH chromosomes indicates that the previously reported 4.0-kb HindIII allele contains three of these repeats, while the 4.4-kb HindIII allele contains 12 of these repeats. The 4.2-kb HindIII fragment can contain six, seven, eight, or nine copies of this repeat. These variations permit more detailed analysis of mutant haplotypes 1, 5, 6, and, possibly, others. Kindred analysis in phenylketonuria families demonstrates Mendelian segregation of these VNTR alleles, as well as associations between these alleles and certain PAH mutations. The R261Q mutation, associated with haplotype 1, is associated almost exclusively with an allele containing eight repeats; the R408W mutation, when occurring on a haplotype 1 background, may also be associated with the eight-repeat VNTR allele. Other PAH mutations associated with haplotype 1, R252W and P281L, do not appear to segregate with specific VNTR alleles. The IVS-10 mutation, when associated with haplotype 6, is associated exclusively with an allele containing seven repeats. The combined use of this VNTR system and the existing RFLP haplotype system will increase the performance of prenatal diagnostic tests based on haplotype analysis. In addition, this VNTR may prove useful in studies concerning the origins and distributions of PAH mutations in different human populations.  相似文献   

4.
Recently, it has been suggested that Alzheimer's disease is associated with a duplication of the amyloid precursor protein gene localized to chromosome 21q21. In this study, a cloned DNA probe (B2.3), complementary to the sequence coding the β-amyloid peptide, and DNA polymorphisms adjacent to this sequence were used to determine the number of copies of the β-amyloid gene in DNA isolated from human blood and brain. Individuals with trisomy 21 (Down syndrome) who were heterozygous for the polymorphisms showed a gene-dosage effect, with one allele exhibiting twice the autoradiographic intensity as the other. Heterozygous individuals with Alzheimer's disease and controls showed equal intensities of the two allelic bands, suggesting that there are only two copies of the β-amyloid gene in these individuals. In individuals with Alzheimer's disease and in controls who were homozygous for these polymorphisms, the number of copies of the β-amyloid gene was determined by comparing the autoradiographic intensity of β-amyloid alleles to that of DNA fragments detected by a reference probe. No difference was detected between these two groups.  相似文献   

5.
Killer Ig-like receptor (KIR) genes constitute a multigene family whose genomic diversity is achieved through differences in gene content and allelic polymorphism. KIR haplotypes containing a single activating KIR gene (A-haplotypes), and KIR haplotypes with multiple activating receptor genes (B-haplotypes) have been described. We report the evaluation of KIR gene content in extended families, sibling pairs, and an unrelated Caucasian panel through identification of the presence or absence of 14 KIR genes and 2 pseudogenes. Haplotype definition included subtyping for the expressed and nonexpressed KIR2DL5 variants, for two alleles of pseudogene 3DP1, and for two alleles of 2DS4, including a novel 2DS4 allele, KIR1D. KIR1D appears functionally homologous to the rhesus monkey KIR1D and likely arose as a consequence of a 22 nucleotide deletion in the coding sequence of 2DS4, leading to disruption of Ig-domain 2D and a premature termination codon following the first amino acid in the putative transmembrane domain. Our investigations identified 11 haplotypes within 12 families. From 49 sibling pairs and 17 consanguineous DNA samples, an additional 12 haplotypes were predicted. Our studies support a model for KIR haplotype diversity based on six basic gene compositions. We suggest that the centromeric half of the KIR genomic region is comprised of three major combinations, while the telomeric half can assume a short form with either 2DS4 or KIR1D or a long form with multiple combinations of several stimulatory KIR genes. Additional rare haplotypes can be identified, and may have arisen by gene duplication, intergenic recombination, or deletions.  相似文献   

6.
Y Li  J Xiao  J Wu  J Duan  Y Liu  X Ye  X Zhang  X Guo  Y Gu  L Zhang  J Jia  X Kong 《The New phytologist》2012,196(1):282-291
? Rht-D1c (Rht10) carried by Chinese wheat (Triticum aestivum) line Aibian 1 is an allele at the Rht-D1 locus. Among the Rht-1 alleles, little is known about Rht-D1c although it determines an extreme dwarf phenotype in wheat. ? Here, we cloned and functionally characterized Rht-D1c using a combination of Southern blotting, target region sequencing, gene expression analysis and transgenic experiments. ? We found that the Rht-D1c allele was generated through a tandem segmental duplication (TSD) of a >?1?Mb region, resulting in two copies of the Rht-D1b. Two copies of Rht-D1b in the TSD were three-fold more effective in reducing plant height than a single copy, and transformation with a segment containing the tandemly duplicated copy of Rht-D1b resulted in the same level of reduction of plant height as the original copy in Aibian 1. ? Our results suggest that changes in gene copy number are one of the important sources of genetic diversity and some of these changes could be directly associated with important traits in crops.  相似文献   

7.
Proulx SR 《Genetics》2012,190(2):737-751
Gene duplication is arguably the most significant source of new functional genetic material. A better understanding of the processes that lead to the stable incorporation of gene duplications into the genome is important both because it relates to interspecific differences in genome composition and because it can shed light on why some classes of gene are more prone to duplication than others. Typically, models of gene duplication consider the periods before duplication, during the spread and fixation of a new duplicate, and following duplication as distinct phases without a common underlying selective environment. I consider a scenario where a gene that is initially expressed in multiple contexts can undergo mutations that alter its expression profile or its functional coding sequence. The selective regime that acts on the functional output of the allele copies carried by an individual is constant. If there is a potential selective benefit to having different coding sequences expressed in each context, then, regardless of the constraints on functional variation at the single-locus gene, the waiting time until a gene duplication is incorporated goes down as population size increases.  相似文献   

8.
G L Murphy  W S Dallas 《Gene》1991,103(1):37-43
A clinical isolate of Escherichia coli harbored two copies of the heat-labile toxin (LT)-encoding gene (elt) on a 157-kb plasmid. The arrangement of the gene copies is different from the cholera toxin-encoding gene duplication described for some strains of Vibrio cholerae. The nucleotide sequences of the elt alleles are not identical (differing by 2 bp) and the duplicated region flanking the alleles extends 314 bp on one side and 1122 bp on the other side of each copy. Different partial copies of IS600 were identified 280 bp 3' to the stop codon of each allele. Partial and complete copies of other IS were also identified near the elt alleles. The data suggest that the regions surrounding the genes are hot spots for IS which would account for the observed heterogeneity in DNA flanking elt genes.  相似文献   

9.
Suppose one chromosome in one member of a population somehow acquires a duplicate copy of the gene, fully linked to the original gene's locus. Preservation is the event that eventually every chromosome in the population is a descendant of the one which initially carried the duplicate. For a haploid population in which the absence of all copies of the gene is lethal, the probability of preservation has recently been estimated via a diffusion approximation. That approximation is shown to carry over to the case of diploids and arbitrary strong selection against the absence of the gene. The techniques used lead to some new results. In the large population limit, it is shown that the relative probability that descendants of a small number of individuals carrying multiple copies of the gene fix in the population is proportional to the number of copies carried. The probability of preservation is approximated when chromosomes carrying two copies of the gene are subject to additional, fully non-functionalizing mutations, thereby modelling either an additional cost of replicating a longer genome, or a partial duplication of the gene. In the latter case the preservation probability depends only on the mutation rate to null for the duplicated portion of the gene.  相似文献   

10.
Gamma-glutamylcysteine synthetase encoded by GSH1 is the rate-limiting enzyme in the biosynthesis of glutathione and trypanothione in Leishmania. Attempts to generate GSH1 null mutants by gene disruption failed in Leishmania infantum. Removal of even a single allele invariably led to the generation of an extra copy of GSH1, maintaining two intact wild-type alleles. In the second and even third round of inactivation, the markers integrated at the homologous locus but always preserved two intact copies of GSH1. We probed into the mechanism of GSH1 duplication. GSH1 is subtelomeric on chromosome 18 and Southern blot analysis indicated that a 10-kb fragment flanked by 466-bp direct repeated sequences was duplicated in tandem on the same chromosomal allele each time GSH1 was targeted. Polymerase chain reaction analysis and sequencing confirmed the generation of novel junctions created at the level of the 466-bp repeats consequent to locus duplication. In loss of heterozygosity attempts, the same repeated sequences were utilized for generating extrachromosomal circular amplicons. Our results are consistent with break-induced replication as a mechanism for the generation of this regional polyploidy to compensate for the inactivation of an essential gene. This chromosomal repeat expansion through repeated sequences could be implicated in locus duplication in Leishmania.  相似文献   

11.
Duplication of the human immunoglobulin heavy chain gamma 2 gene.   总被引:4,自引:1,他引:3       下载免费PDF全文
The five C gamma genes in the human immunoglobulin heavy chain region show nonrandom association and segregation as haplotypes. From the study of genetic variation in C gamma genes of 58 healthy Caucasian volunteers, we have identified a haplotype that involves a duplication of C gamma 2. This haplotype contains both the 13.5-kilobase (kb) and 25-kb BamHI fragment alleles of C gamma 2. In addition, the patterns and relative intensity of BamHI fragments containing C gamma genes were those expected for genomic DNA containing three copies of C gamma 2 for every two copies of the four other C gamma genes. A new EcoRI polymorphism in C gamma 4 was useful in defining the haplotype containing the duplication. Alleles of the C gamma genes in the duplication haplotype, including Gm markers of C gamma 1 and C gamma 3 and DNA polymorphisms of C psi gamma, C gamma 2, and C gamma 4, were consistent with its origin from an unequal crossover between the two common C gamma haplotypes, H1 and H2. This recombinant haplotype, which has been designated H2;1(gamma 2 dup) to reflect its origin, occurred with a frequency of .043 in a random sample of 116 chromosomes.  相似文献   

12.
Two divergent routes of evolution gave rise to the DRw13 haplotypes   总被引:1,自引:0,他引:1  
The HLA class II genes and haplotypes have evolved over a long period of evolutionary time by mechanisms such as gene conversion, reciprocal recombination and point mutation. The extent of the diversity generated is most clearly evident in an analysis of the HLA class II alleles present within DRw13 haplotypes. This study uses cDNA sequencing to examine the first domains of DRB1, DRB3, DQA1, and DQB1 alleles from several American black individuals expressing seven different DRw13 haplotypes, five with undefined HLA-D specificities (i.e., not Dw18 or Dw19). Two new DRw13 alleles described in this study are the first examples of convergent evolution of DR alleles in which gene conversion has apparently combined segments of DRB1 alleles encoding DRw11 and DRw8 to generate two new DRB1 alleles, DRB1*1303 and DRB1*1304, that encode molecules bearing serologic determinants of a third allele, DRw13. These new DRw13 alleles are found embedded in haplotypes of DRw11 origin distinct from haplotypes encoding previously identified DRw13 alleles, DRB1*1301 and DRB1*1302. These data suggest that two evolutionary pathways may have given rise to two subgroups of alleles encoding molecules that share DRw13 serologic determinants yet which possess different structural and, likely, functional motifs. Reciprocal gene recombination events resulting in different DR, DRw52 and DQ allele combinations also appear to have played a crucial role in augmenting the level of diversity found in DRw13 haplotypes. Recombination has resulted in the association of one of the new DRw13 alleles with a DQw2 allele normally found associated with DR7 and the association of the DRw52c-associated DRw13 allele (DRB1*1302) with three different DQw1 alleles. The seven DRw13 haplotypes that have resulted from the effect of recombination on haplotypes formed by the two pathways of DRw13 allelic diversification have resulted in different repertoires of class II molecules and, most likely, different immune response profiles in individuals with these haplotypes.  相似文献   

13.
Massese is an Italian dairy sheep breed characterized by animals with black skin and horns and black or apparent grey hairs. Owing to the presence of these two coat colour types, this breed can be considered an interesting model to evaluate the effects of coat colour gene polymorphisms on this phenotypic trait. Two main loci have been already shown to affect coat colour in sheep: Agouti and Extension coding for the agouti signalling protein (ASIP) and melanocortin 1 receptor (MC1R) genes, respectively. The Agouti locus is affected by a large duplication including the ASIP gene that may determine the Agouti white and tan allele (A(Wt)). Other disrupting or partially inactivating mutations have been identified in exon 2 (a deletion of 5 bp, D(5); and a deletion of 9 bp, D(9)) and in exon 4 (g.5172T>A, p.C126S) of the ASIP gene. Three missense mutations in the sheep MC1R gene cause the dominant black E(D) allele (p.M73K and p.D121N) and the putative recessive e allele (p.R67C). Here, we analysed these ASIP and MC1R mutations in 161 Massese sheep collected from four flocks. The presence of one duplicated copy allele including the ASIP gene was associated with grey coat colour (P = 9.4E-30). Almost all animals with a duplicated copy allele (37 out of 41) showed uniform apparent grey hair and almost all animals without a duplicated allele (117 out of 120) were completely black. Different forms of duplicated alleles were identified in Massese sheep including, in almost all cases, copies with exon 2 disrupting or partially inactivating mutations making these alleles different from the A(Wt) allele. A few exceptions were observed in the association between ASIP polymorphisms and coat colour: three grey sheep did not carry any duplicated copy allele and four black animals carried a duplicated copy allele. Of the latter four sheep, two carried the E(D) allele of the MC1R gene that may be the cause of their black coat colour. The coat colour of all other black animals may be determined by non-functional ASIP alleles (non-agouti alleles, A(a)) and in a few cases by the E(D) Extension allele. At least three frequent ASIP haplotypes ([D(5):g.5172T], [N:g.5172A] and [D(5):g.5172A]) were detected (organized into six different diplotypes). In conclusion, the results indicated that coat colours in the Massese sheep breed are mainly derived by combining ASIP and MC1R mutations.  相似文献   

14.
The spinal muscular atrophy (SMA) region on chromosome 5q13 contains an inverted duplication of about 500 kb, and deleterious mutations in the survival motor neuron 1 (SMN1) gene cause SMA, a common lethal childhood neuropathy. We have used a number of approaches to probe the evolutionary history of these genes and show that SMN gene duplication and the appearance of SMN2 occurred at very distinct evolutionary times. Molecular fossil and molecular clock data suggest that this duplication may have occurred as recently as 3 million years ago in that the position and identity repetitive elements are identical for both human SMN genes and overall sequence divergence ranged from 0.15% to 0.34%. However, these approaches ignore the possibility of sequence homogenization by means of gene conversion. Consequently, we have used quantitative polymerase chain rection and analysis of allelic variants to provide physical evidence for or against SMN gene duplication in the chimpanzee, mankind's closest relative. These studies have revealed that chimpanzees have 2-7 copies of the SMN gene per diploid genome; however, the two nucleotides diagnostic for exons 7-8 and the SMNdelta7 mRNA product of the SMN2 gene are absent in non-human primates. In contrast, the SMN2 gene has been detected in all extant human populations studied to date, including representatives from Europe, the Central African Republic, and the Congo. These data provide conclusive evidence that SMN gene duplication occurred more than 5 million years ago, before the separation of human and chimpanzee lineages, but that SMN2 appears for the first time in Homo sapiens.  相似文献   

15.
16.
The effect of deleterious alleles on adaptation in asexual populations   总被引:4,自引:0,他引:4  
Johnson T  Barton NH 《Genetics》2002,162(1):395-411
We calculate the fixation probability of a beneficial allele that arises as the result of a unique mutation in an asexual population that is subject to recurrent deleterious mutation at rate U. Our analysis is an extension of previous works, which make a biologically restrictive assumption that selection against deleterious alleles is stronger than that on the beneficial allele of interest. We show that when selection against deleterious alleles is weak, beneficial alleles that confer a selective advantage that is small relative to U have greatly reduced probabilities of fixation. We discuss the consequences of this effect for the distribution of effects of alleles fixed during adaptation. We show that a selective sweep will increase the fixation probabilities of other beneficial mutations arising during some short interval afterward. We use the calculated fixation probabilities to estimate the expected rate of fitness improvement in an asexual population when beneficial alleles arise continually at some low rate proportional to U. We estimate the rate of mutation that is optimal in the sense that it maximizes this rate of fitness improvement. Again, this analysis relaxes the assumption made previously that selection against deleterious alleles is stronger than on beneficial alleles.  相似文献   

17.
Mutations in KIT encoding the mast/stem cell growth factor receptor (MGF) are responsible for coat color variation in domestic pigs. The dominant white phenotype is caused by two mutations, a gene duplication and a splice mutation in one of the copies leading to skipping of exon 17. Here we applied minisequencing and pyrosequencing for quantitative analysis of the number of copies with the splice form. An unexpectedly high genetic diversity was revealed in white pigs. We found four different KIT alleles in a small sample of eight Large White females used as founder animals in a wild boar intercross. A similar number of KIT alleles was found in commercial populations of white Landrace and Large White pigs. We provide evidence for at least two new KIT alleles in pigs, both with a triplication of the gene. The results imply that KIT alleles with the duplication are genetically unstable and new alleles are most likely generated by unequal crossing over. This study provides an improved method for genotyping the complicated Dominant white/KIT locus in pigs. The results also suggest that some alleles may be associated with negative pleiotropic effects on other traits.  相似文献   

18.
Recombination and the Evolution of Diploidy   总被引:4,自引:0,他引:4       下载免费PDF全文
S. P. Otto  D. B. Goldstein 《Genetics》1992,131(3):745-751
With two copies of every gene, a diploid organism is able to mask recessive deleterious mutations. In this paper we present the analysis of a two-locus model designed to determine when the masking of deleterious alleles favors the evolution of a dominant diploid phase in organisms that alternate between haploid and diploid phases ("alternation of generations"). It is hypothesized that diploidy will be favored whenever masking occurs ("the masking hypothesis"). Using analytical methods, we confirm that this masking hypothesis is essentially correct under free recombination: as long as the heterozygous expression of deleterious alleles is sufficiently masked by the wild-type allele, diploidy is favored over haploidy. When the rate of recombination is lower, however, diploidy is much less likely to be favored over haploidy. In fact, according to our model, the evolution of diploidy is impossible without significant levels of recombination even when masking is fairly strong.  相似文献   

19.
Evolutionary forces like Hill-Robertson interference and negative epistasis can lead to deleterious mutations being found on distinct haplotypes. However, the extent to which these forces depend on the selection and dominance coefficients of deleterious mutations and shape genome-wide patterns of linkage disequilibrium (LD) in natural populations with complex demographic histories has not been tested. In this study, we first used forward-in-time simulations to predict how negative selection impacts LD. Under models where deleterious mutations have additive effects on fitness, deleterious variants less than 10 kb apart tend to be carried on different haplotypes relative to pairs of synonymous SNPs. In contrast, for recessive mutations, there is no consistent ordering of how selection coefficients affect LD decay, due to the complex interplay of different evolutionary effects. We then examined empirical data of modern humans from the 1000 Genomes Project. LD between derived alleles at nonsynonymous SNPs is lower compared to pairs of derived synonymous variants, suggesting that nonsynonymous derived alleles tend to occur on different haplotypes more than synonymous variants. This result holds when controlling for potential confounding factors by matching SNPs for frequency in the sample (allele count), physical distance, magnitude of background selection, and genetic distance between pairs of variants. Lastly, we introduce a new statistic HR(j) which allows us to detect interference using unphased genotypes. Application of this approach to high-coverage human genome sequences confirms our finding that nonsynonymous derived alleles tend to be located on different haplotypes more often than are synonymous derived alleles. Our findings suggest that interference may play a pervasive role in shaping patterns of LD between deleterious variants in the human genome, and consequently influences genome-wide patterns of LD.  相似文献   

20.
In contrast to the rest of the genome, the Y chromosome is restricted to males and lacks recombination. As a result, Y chromosomes are unable to respond efficiently to selection, and newly formed Y chromosomes degenerate until few genes remain. The rapid loss of genes from newly formed Y chromosomes has been well studied, but gene loss from highly degenerate Y chromosomes has only recently received attention. Here, we identify and characterize a Y to autosome duplication of the male fertility gene kl-5 that occurred during the evolution of the testacea group species of Drosophila. The duplication was likely DNA based, as other Y-linked genes remain on the Y chromosome, the locations of introns are conserved, and expression analyses suggest that regulatory elements remain linked. Genetic mapping reveals that the autosomal copy of kl-5 resides on the dot chromosome, a tiny autosome with strongly suppressed recombination. Molecular evolutionary analyses show that autosomal copies of kl-5 have reduced polymorphism and little recombination. Importantly, the rate of protein evolution of kl-5 has increased significantly in lineages where it is on the dot versus Y linked. Further analyses suggest this pattern is a consequence of relaxed purifying selection, rather than adaptive evolution. Thus, although the initial fixation of the kl-5 duplication may have been advantageous, slightly deleterious mutations have accumulated in the dot-linked copies of kl-5 faster than in the Y-linked copies. Because the dot chromosome contains seven times more genes than the Y and is exposed to selection in both males and females, these results suggest that the dot suffers the deleterious effects of genetic linkage to more selective targets compared with the Y chromosome. Thus, a highly degenerate Y chromosome may not be the worst environment in the genome, as is generally thought, but may in fact be protected from the accumulation of deleterious mutations relative to other nonrecombining regions that contain more genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号