首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of capacitative Ca2+ entry in bronchial contraction and remodeling.   总被引:4,自引:0,他引:4  
Asthma is characterized by airway inflammation, bronchial hyperresponsiveness, and airway obstruction by bronchospasm and bronchial wall thickening due to smooth muscle hypertrophy. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) may serve as a shared signal transduction element that causes bronchial constriction and bronchial wall thickening in asthma. In this study, we examined whether capacitative Ca2+ entry (CCE) induced by depletion of intracellular Ca2+ stores was involved in agonist-mediated bronchial constriction and bronchial smooth muscle cell (BSMC) proliferation. In isolated bronchial rings, acetylcholine (ACh) induced a transient contraction in the absence of extracellular Ca2+ because of Ca2+ release from intracellular Ca2+ stores. Restoration of extracellular Ca2+ in the presence of atropine, an M-receptor blocker, induced a further contraction that was apparently caused by a rise in [Ca2+]cyt due to CCE. In single BSMC, amplitudes of the store depletion-activated currents (I(SOC)) and CCE were both enhanced when the cells proliferate, whereas chelation of extracellular Ca2+ with EGTA significantly inhibited the cell growth in the presence of serum. Furthermore, the mRNA expression of TRPC1, a transient receptor potential channel gene, was much greater in proliferating BSMC than in growth-arrested cells. Blockade of the store-operated Ca2+ channels by Ni2+ decreased I(SOC) and CCE and markedly attenuated BSMC proliferation. These results suggest that upregulated TRPC1 expression, increased I(SOC), enhanced CCE, and elevated [Ca2+]cyt may play important roles in mediating bronchial constriction and BSMC proliferation.  相似文献   

2.
3.
We examined capacitative calcium entry (CCE) in Jurkat and in L6 skeletal muscle cells. We found that extracellular Ca2+ can enter the endoplasmic reticulum (ER) of both cell types even in the presence of thapsigargin, which blocks entry into the ER from the cytosol through the CaATPase. Moreover, extracellular Ca2+ entry into the ER was evident even when intracellular flow of Ca2+ was in the direction of ER to cytosol due to the presence of caffeine. ER Ca2+ content was assessed by two separate means. First, we used the Mag-Fura fluorescent dye, which is sensitive only to the relatively high concentrations of Ca2+ found in the ER. Second, we transiently expressed an ER-targeted derivative of aequorin, which reports Ca2+ by luminescence. In both cases, the Ca2+ concentration in the ER increased in response to extracellular Ca2+ after the ER had been previously depleted despite blockade by thapsigargin. We found two differences between the Jurkat and L6 cells. L6, but not Jurkat cells, inhibited Ca2+ uptake at very high Ca2+ concentrations. Second, ryanodine receptor blockers inhibited the appearance of cytosolic Ca2+ during CCE if added before Ca2+ in both cases, but the L6 cells were much more sensitive to ryanodine. Both of these can be explained by the known difference in ryanodine receptors between these cell types. These findings imply that the origin of cytosolic Ca2+ during CCE is the ER. Furthermore, kinetic data demonstrated that Ca2+ filled the ER before the cytosol during CCE. Our results suggest a plasma membrane Ca2+ channel and an ER Ca2+ channel joined in tandem, allowing Ca2+ to flow directly from the extracellular space to the ER. This explains CCE; any decrease in ER [Ca2+] relative to extracellular [Ca2+] would provide the gradient for refilling the ER through a mass-action mechanism.  相似文献   

4.
S Horie  S Yano  N Aimi  S Sakai  K Watanabe 《Life sciences》1992,50(7):491-498
The effects of hirsutine, an indole alkaloid from Uncaria rhynchophylla (MIQ.) Jackson, on cytosolic Ca2+ level ([Ca2+]cyt) were studied by using fura-2-Ca2+ fluorescence in smooth muscle of the isolated rat aorta. Noradrenaline and high K+ solution produced a sustained increase in [Ca2+]cyt. Application of hirsutine after the increases in [Ca2+]cyt induced by noradrenaline and high K+ notably decreased [Ca2+]cyt, suggesting that hirsutine inhibits Ca2+ influx mainly through a voltage-dependent Ca2+ channel. Furthermore, the effect of hirsutine on intracellular Ca2+ store was studied by using contractile responses to caffeine under the Ca(2+)-free nutrient condition in the rat aorta. When hirsutine was added at 30 microM before caffeine treatment, the agent slightly but significantly reduced the caffeine-induced contraction. When added during Ca2+ loading, hirsutine definitely augmented the contractile response to caffeine. These results suggest that hirsutine inhibits Ca2+ release from the Ca2+ store and increases Ca2+ uptake into the Ca2+ store, leading to a reduction of intracellular Ca2+ level. It is concluded that hirsutine reduces intracellular Ca2+ level through its effect on the Ca2+ store as well as through its effect on the voltage-dependent Ca2+ channel.  相似文献   

5.
Cytoplasmic free Ca2+ ([Ca2+]cyt) is essential for the contraction and relaxation of blood vessels. The role of plasma membrane Na+/Ca2+ exchange (NCX) activity in the regulation of vascular Ca2+ homeostasis was previously ascribed to the NCX1 protein. However, recent studies suggest that a relatively newly discovered K+-dependent Na+/Ca2+ exchanger, NCKX (gene family SLC24), is also present in vascular smooth muscle. The purpose of the present study was to identify the expression and function of NCKX in arteries. mRNA encoding NCKX3 and NCKX4 was demonstrated by RT-PCR and Northern blot in both rat mesenteric and aortic smooth muscle. NCXK3 and NCKX4 proteins were also demonstrated by immunoblot and immunofluorescence. After voltage-gated Ca2+ channels, store-operated Ca2+ channels, and Na+ pump were pharmacologically blocked, when the extracellular Na+ was replaced with Li+ (0 Na+) to induce reverse mode (Ca2+ entry) activity of Na+/Ca2+ exchangers, a large increase in [Ca2+]cyt signal was observed in primary cultured aortic smooth muscle cells. About one-half of this [Ca2+]cyt signal depended on the extracellular K+. In addition, after the activity of NCX was inhibited by KB-R7943, Na+ replacement-induced Ca2+ entry was absolutely dependent on extracellular K+. In arterial rings denuded of endothelium, a significant fraction of the phenylephrine-induced and nifedipine-resistant aortic or mesenteric contraction could be prevented by removal of extracellular K+. Taken together, these data provide strong evidence for the expression of NCKX proteins in the vascular smooth muscle and their novel role in mediating agonist-stimulated [Ca2+]cyt and thereby vascular tone.  相似文献   

6.
The process by which store-operated Ca2+ channels (SOCs) deliver Ca2+ to the endoplasmic reticulum (ER) and the role of (Ca2++Mg2+)ATP-ases of the ER in the activation of SOCs in H4-IIE liver cells were investigated using cell lines stably transfected with apo-aequorin targeted to the cytoplasmic space or the ER. In order to measure the concentration of Ca2+ in the ER ([Ca2+]er), cells were pre-treated with 2,5-di-tert-butylhydroquinone (DBHQ) to deplete Ca2+ in the ER before reconstitution of holo-aequorin. The addition of extracellular Ca2+ (Cao2+) to Ca2+-depleted cells induced refilling of the ER, which was complete within 5 min. This was associated with a sharp transient increase in the cytoplasmic Ca2+ concentration ([Ca2+]cyt) of about 15 s duration (a Cao2+-induced [Ca2+]cyt spike) after which [Ca2+]cyt remained elevated slightly above the basal value for a period of about 2 min (low [Ca2+]cyt plateau). The Cao2+-induced [Ca2+]cyt spike was inhibited by Gd3+, not affected by tetrakis-(2-pyridymethyl) ethylenediamine (TPEN), and broadened by ionomycin and the intracellular Ca2+ chelators BAPTA and EGTA. Refilling of the ER was inhibited by caffeine. Neither thapsigargin nor DBHQ caused a detectable inhibition or change in shape of the Cao2+-induced [Ca2+]cyt spike or the low [Ca2+]cyt plateau whereas each inhibited the inflow of Ca2+ to the ER by about 80%. Experiments conducted with carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) indicated that thapsigargin did not alter the amount of Ca2+ accumulated in mitochondria. The changes in [Ca2+]cyt reported by aequorin were compared with those reported by fura-2. It is concluded that (i) there are significant quantitative differences between the manner in which aequorin and fura-2 sense changes in [Ca2+]cyt and (ii) thapsigargin and DBHQ inhibit the uptake of Ca2+ to the bulk of the ER but this is not associated with inhibition of the activation of SOCs. The possible involvement of a small sub-region of the ER (or another intracellular Ca2+ store), which contains thapsigargin-insensitive (Ca2++Mg2+)ATP-ases, in the activation of SOCs is briefly discussed.  相似文献   

7.
Pulmonary vascular medial hypertrophy due to proliferation of pulmonary artery smooth muscle cells (PASMC) greatly contributes to the increased pulmonary vascular resistance in pulmonary hypertension patients. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) is an important stimulus for cell growth in PASMC. Resting [Ca2+]cyt, intracellularly stored [Ca2+], capacitative Ca2+ entry (CCE), and store-operated Ca2+ currents (I(SOC)) are greater in proliferating human PASMC than in growth-arrested cells. Expression of TRP1, a transient receptor potential gene proposed to encode the channels responsible for CCE and I(SOC), was also upregulated in proliferating PASMC. Our aim was to determine if inhibition of endogenous TRP1 gene expression affects I(SOC) and CCE and regulates cell proliferation in human PASMC. Cells were treated with an antisense oligonucleotide (AS, for 24 h) specifically designed to cleave TRP1 mRNA and then returned to normal growth medium for 40 h before the experiments. Then, mRNA and protein expression of TRP1 was downregulated, and amplitudes of I(SOC) and CCE elicited by passive depletion of Ca2+ from the sarcoplasmic reticulum using cyclopiazonic acid were significantly reduced in the AS-treated PASMC compared with control. Furthermore, the rate of cell growth was decreased by 50% in AS-treated PASMC. These results indicate that TRP1 may encode a store-operated Ca2+ channel that plays a critical role in PASMC proliferation by regulating CCE and intracellular [Ca2+](cyt).  相似文献   

8.
Thrombin-induced calcium movements in platelet activation   总被引:5,自引:0,他引:5  
The thrombin-induced Ca2+ fluxes and their coupling to platelet aggregation of the human platelet were studied using quin2 as a measure of the cytoplasmic Ca2+ concentration [( Ca2+]cyt) and chlorotetracycline (CTC) as a measure of internally sequestered Ca2+. Evidence is given that the CTC fluorescence change is proportional to the free internal Ca2+ concentration in the dense tubular lumen. The intracellular quin2 concentration was 1 mM and analysis showed that it did not perturb the processes reported herein. The value of [Ca2+]cyt at rest and during thrombin activation was analyzed in terms of Ca2+ influx, Ca2+ release, Ca2+ sequestration, and Ca2+ extrusion. Influx was distinguished from internal release by removing extracellular Ca2+ 1 min before thrombin activation. In the presence of 2 mM external Ca2+, the thrombin-induced Ca2+ influx accounts for most of the increase in [Ca2+]cyt (over 80%). Thrombin-induced Ca2+ influx and release have somewhat different EC50 values (0.17 U/ml vs. 0.35 U/ml). The contribution of influx can be inhibited by verapamil, bepridil and Cd2+ (IC50 values of 19 microM, 2 microM and 50 microM). The influx results were analyzed in terms of a thrombin-activated channel. Indomethacin pretreatment experiments suggest that activation of the arachidonic pathway accounts for approx. 50% of the influx-related [Ca2+]cyt elevation. Elevation of [Ca2+]cyt by intracellular release is not inhibited by verapamil or Cd2+ but is inhibited by bepridil with a high IC50 (25 microM). It is only 15-20% inhibited by indomethacin and is thus not dependent on thromboxane A2 formation. The release reaction does not require Ca2+ influx. The rate of thrombin-activated platelet aggregation is shown to have an approximately fourth-power dependence on [Ca2+]cyt with an apparent Km of 0.4 microM. Comparisons of aggregation rates of the partially thrombin-activated vs. fully thrombin-activated, partially verapamil-inhibited conditions suggest that this dependence on [Ca2+]cyt is the major determinant of the aggregation behavior. Analysis shows that calcium influx is the major pathway for elevating [Ca2+]cyt by thrombin when physiological concentrations of external Ca2+ are present.  相似文献   

9.
Auxin addition to protoplasts isolated from leaves of 6-day-old wheat seedlings (Triticum aestivum L. cv. Kadett) induced a rapid increase in the cytosolic calcium concentration [Ca2+]cyt. The shifts in [Ca2+]cyt were detected by use of fluorescence microscopy in single protoplasts loaded with the calcium binding tetra[acetoxymethyl]ester of the fluorescent dye, Fura 2. Addition of the synthetic auxin naphthyl acetic acid, 1-NAA, induced an increase in [Ca2+]cyt within 5-10s, while the physiologically non-active analogue, 2-NAA, did not. The amplitude of calcium increase depended on the concentration of 1-NAA. Since the process was affected by different concentrations of Ca2+ in the external medium, and since the calcium channel blockers (nifedipine and verapamil) postponed and inhibited the reaction, it is suggested that auxin primarily activates Ca2+-permeable channels in the plasma membrane. In the presence of low external calcium concentration (0.1 mM), 5 mM LiCl almost totally blocked the increase in [Ca2+]cyt, indicating a possible involvement of tonoplast Ca2+-channels in the auxin-induced [Ca2+]cyt shift. Thus, calcium signalling induced by auxin involves both external and internal Ca2+ pools.  相似文献   

10.
We assessed the roles of the protein kinase C (PKC) and the tyrosine kinase (TK) signaling pathways in regulating capacitative calcium entry (CCE) in human pulmonary artery smooth muscle cells (PASMCs) and investigated the effects of intravenous anesthetics (midazolam, propofol, thiopental, ketamine, etomidate, morphine, and fentanyl) on CCE in human PASMCs. Fura-2-loaded human PASMCs were placed in a dish (37 degrees C) on an inverted fluorescence microscope. Intracellular Ca2+ concentration ([Ca2+]i) was measured as the 340/380 fluorescence ratio in individual PASMCs. Thapsigargin, a sarcoplasmic reticulum Ca2+-adenosine triphosphatase inhibitor, was used to deplete intracellular Ca2+ stores after removing extracellular Ca2+. CCE was then activated by restoring extracellular Ca2+ (2.2 mM). The effects of PKC activation and inhibition, TK inhibition, and the intravenous anesthetics on CCE were assessed. Thapsigargin caused a transient increase in [Ca2+]i. Restoring extracellular Ca2+ caused a rapid peak increase in [Ca2+]i, followed by a sustained increase in [Ca2+]i; i.e., CCE was stimulated in human PASMCs. PKC activation attenuated (P < 0.05), whereas PKC inhibition potentiated (P < 0.05), both peak and sustained CCE. TK inhibition attenuated (P < 0.05) both peak and sustained CCE. Midazolam, propofol, and thiopental each attenuated (P < 0.05) both peak and sustained CCE, whereas ketamine, etomidate, morphine, and fentanyl had no effect on CCE. Our results suggest that CCE in human PASMCs is influenced by both the TK and PKC signaling pathways. Midazolam, propofol, and thiopental each attenuated CCE, whereas ketamine, etomidate, morphine, and fentanyl had no effect on CCE.  相似文献   

11.
In many cells, inhibition of sarcoplasmic reticulum (SR) Ca2+-ATPase activity induces a steady-state increase in cytosolic calcium concentration ([Ca2+]i) that is sustained by calcium influx. The goal was to characterize the response to inhibition of SR Ca2+-ATPase activity in bovine airway smooth muscle cells. Cells were dispersed from bovine trachealis and loaded with fura 2-AM (0.5 microM) for imaging of single cells. Cyclopiazonic acid (CPA; 5 microM) inhibited refilling of both caffeine- and carbachol-sensitive calcium stores. In the presence of extracellular calcium, CPA caused a transient increase in [Ca2+]i from 166 +/- 11 to 671 +/- 100 nM, and then [Ca2+]i decreased to a sustained level (CPA plateau; 236 +/- 19 nM) significantly above basal. The CPA plateau spontaneously declined toward basal levels after 10 min and was attenuated by discharging intracellular calcium stores. When CPA was applied during sustained stimulation with caffeine or carbachol, decreases in [Ca2+]i were observed. We concluded that the CPA plateau depended on the presence of SR calcium and that SR Ca2+-ATPase activity contributed to sustained increases in [Ca2+]i during stimulation with caffeine and, to a lesser extent, carbachol.  相似文献   

12.
Jan CR  Ho CM  Wu SN  Tseng CJ 《Life sciences》1999,64(4):259-267
We studied the effect of thapsigargin on intracellular calcium levels ([Ca2+]i) measured by fura-2 fluorimetry in Madin Darby canine kidney (MDCK) cells. Thapsigargin elevated [Ca2+]i dose dependently with an EC50 of approximately 0.15 microM. The Ca2+ signal consisted of a slow rise, a gradual decay and a plateau. Depletion of the endoplasmic reticulum Ca2+ store with thapsigargin for 7 min abolished the [Ca2+]i increases evoked by bradykinin. Removal of extracellular Ca2+ reduced the thapsigargin response by approximately 50%. The Ca2+ signal was initiated by Ca2+ release from the internal store followed by capacitative Ca2+ entry (CCE). The thapsigargin-evoked CCE was abolished by La3 and Gd3+, and was partly inhibited by SKF 96365 and econazole. After depletion of the internal Ca2+ store for 30 min with another inhibitor of the internal Ca2+ pump, cyclopiazonic acid, thapsigargin failed to increase [Ca2+]i, thus suggesting that the thapsigargin-evoked Ca2+ influx was solely due to CCE. We investigated the mechanism of decay of the thapsigargin response. Pretreatment with La3+ (or Gd3+) or alkalization of extracellular medium to pH 8 significantly potentiated the Ca2+ signal; whereas pretreatment with carbonylcyanide m-chlorophynylhydrozone (CCCP) or removal of extracellular Na+ had no effect. Collectively, our results imply that thapsigargin increased [Ca2+]i in MDCK cells by depleting the internal Ca2+ store followed by CCE, with both pathways contributing equally. The decay of the thapsigargin response might be significantly governed by efflux via the plasmalemmal Ca2+ pump.  相似文献   

13.
Mitochondria have been found to sequester and release Ca2+ during cell stimulation with inositol 1,4,5-triphosphate-generating agonists, thereby generating subplasmalemmal microdomains of low Ca2+ that sustain activity of capacitative Ca2+ entry (CCE). Procedures that prevent mitochondrial Ca2+ uptake inhibit local Ca2+ buffering and CCE, but it is not clear whether Ca2+ has to transit through or remains trapped in the mitochondria. Thus, we analyzed the contribution of mitochondrial Ca2+ efflux on the ability of mitochondria to buffer subplasmalemmal Ca2+, to maintain CCE, and to facilitate endoplasmic reticulum (ER) refilling in endothelial cells. Upon the addition of histamine, the initial mitochondrial Ca2+ transient, monitored with ratio-metric-pericam-mitochondria, was largely independent of extracellular Ca2+. However, subsequent removal of extracellular Ca2+ produced a reversible decrease in [Ca2+]mito, indicating that Ca2+ was continuously taken up and released by mitochondria, although [Ca2+]mito had returned to basal levels. Accordingly, inhibition of the mitochondrial Na+/Ca2+ exchanger with CGP 37157 increased [Ca2+]mito and abolished the ability of mitochondria to buffer subplasmalemmal Ca2+, resulting in an increased activity of BKCa channels and a decrease in CCE. Hence, CGP 37157 also reversibly inhibited ER refilling during cell stimulation. These effects of CGP 37157 were mimicked if mitochondrial Ca2+ uptake was prevented with oligomycin/antimycin A. Thus, during cell stimulation a continuous Ca2+ flux through mitochondria underlies the ability of mitochondria to generate subplasmalemmal microdomains of low Ca2+, to facilitate CCE, and to relay Ca2+ from the plasma membrane to the ER.  相似文献   

14.
The effects of thrombin on cytosolic calcium levels ([Ca2+]cyt), and on gonadotropin-releasing hormone (GnRH) release, were characterized in cultured GT1-7 neurons. GnRH release from GT1-7 neurons was pulsatile with an average pulse amplitude of 14.3+/-5.8 pg x min x ml(-1) and an average pulse duration of 21.3+/-4.2 min. The [Ca2+]cyt response to 0.005 to 0.2 U/ml thrombin was saturable and concentration dependent (EC50 = 0.0268 U/ml). Ethyleneglycotetraacetic acid (EGTA) chelation of extracellular Ca2+ resulted in an approximately 70% attenuation of thrombin-stimulated increase in [Ca2+]cyt. By use of a special superfusion system, a 5-min exposure to 0.1 U/ml thrombin significantly increased the amplitude (193.2+/-67.8 pg x min x ml(-1); P = 0.001) but not the duration (22.5+/-2.4 min; P = 0.8) of GnRH release. These results suggest that thrombin increases [Ca2+]cyt and GnRH release from GT1-7 neurons via specific membrane-bound receptors.  相似文献   

15.
Regulation of cytosolic Ca2+ in clonal human muscle cell cultures   总被引:4,自引:0,他引:4  
Human muscle cells were grown in culture and clonally selected for fusion potential. The concentration of cytoplasmic ionized calcium, [Ca2+]i, was measured in monolayers of fused myotubes using the Ca2+ indicator indo-1. The contributions of independent routes of Ca2+ influx and efflux to/from the cytoplasm on [Ca2+]i were investigated. The resting [Ca2+]i was 170-190 nM in different cell clones. Acetylcholine increased [Ca2+]i by about 2-fold in the presence of absence of extracellular Ca2+. Cell depolarization by K+ elevated [Ca2+]i about 3-fold, and this increase was largely dependent on extracellular Ca2+. Replacing Na+ by N-methylglucammonium+ raised [Ca2+]i greater than 5-fold, and 50% of this increase was dependent on extracellular Ca2+. All these increases in [Ca2+]i were transient, returning to basal [Ca2+]i within 2 min. It is concluded that cells in culture [Ca2+]i can be elevated transiently by acetylcholine through Ca2+ release from intracellular stores, and by K through Ca2+ influx. The return to basal [Ca2+]i is due to Na+/Ca2+ exchange and Ca2+-ATPase activity.  相似文献   

16.
Acidic extracellular pH is a common feature of tumor tissues. We have reported that culturing cells at acidic pH (5.4-6.5) induced matrix metalloproteinase-9 expression through phospholipase D, extracellular signal regulated kinase 1/2 and p38 mitogen-activated protein kinases and nuclear factor-kappaB. Here, we show that acidic extracellular pH signaling involves both pathways of phospholipase D triggered by Ca2+ influx and acidic sphingomyelinase in mouse B16 melanoma cells. We found that BAPTA-AM [1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl) ester], a chelator of intracellular free calcium, and the voltage dependent Ca2+ channel blockers, mibefradil (for T-type) and nimodipine (for L-type), dose-dependently inhibited acidic extracellular pH-induced matrix metalloproteinase-9 expression. Intracellular free calcium concentration ([Ca2+]i) was transiently elevated by acidic extracellular pH, and this [Ca2+]i elevation was repressed by EGTA and the voltage dependent Ca2+ channel blockers but not by phospholipase C inhibitor, suggesting that acidic extracellular pH increased [Ca2+]i through voltage dependent Ca2+ channel. In contrast, SR33557, an L-type voltage dependent Ca2+ channel blocker and acidic sphingomyelinase inhibitor, attenuated matrix metalloproteinase-9 induction but did not affect calcium influx. We found that acidic sphingomyelinase activity was induced by acidic extracellular pH and that the specific acidic sphingomyelinase inhibitors (perhexiline and desipramine) and siRNA targeting aSMase/smpd1 could inhibit acidic extracellular pH-induced matrix metalloproteinase-9 expression. BAPTA-AM reduced acidic extracellular pH-induced phospholipase D but not acidic sphingomyelinase acitivity. The acidic sphingomyelinase inhibitors did not affect the phosphorylation of extracellular signal regulated kinase 1/2 and p38, but they suppressed nuclear factor-kappaB activity. These data suggest that the calcium influx-triggered phospholipase D and acidic sphingomyelinase pathways of acidic extracellular pH induced matrix metalloproteinase-9 expression, at least in part, through nuclear factor-kappaB activation.  相似文献   

17.
Elevation of intracellular cAMP is shown to increase the rate (V) and maximal extent of Ca2+ uptake by the dense tubules in intact human platelets. Elevation of [cAMP] was accomplished by preincubation with the adenylate cyclase activator forskolin or with dibutyryl-cAMP (Bt2-cAMP). The free concentration of Ca2+ in the dense tubular lumen ([Ca2+]dt) was monitored using the fluorescence of chlorotetracycline (CTC) according to protocols developed in this laboratory. The free cytoplasmic Ca2+ concentration ([Ca2+]cyt) was monitored in parallel experiments with quin2. Both [Ca2+]cyt and [Ca2+]dt were analyzed in terms of competition between pump and leak mechanisms in the plasma membrane (PM) and dense tubular membrane (DT). When platelets are incubated in media with approx. 1 microM external Ca2+, [Ca2+]cyt is approx. 50 nM and [Ca2+]dt is very low. When 2 mM external Ca2+ is added, [Ca2+]cyt rises to approx. 100 nM and the process of dense tubular Ca2+ uptake can be resolved. Forskolin (10 microM) and Bt2-cAMP increase the rate of dense tubular Ca2+ uptake (V) to 2.1 +/- 0.60 and 1.70 +/- 40 times control values (respectively). The agents also increase the final [Ca2+]dt to 1.70 +/- 0.21 and 1.72 +/- 0.60 times control values (respectively). Titrations with ionomycin (Iono) showed that the increase was due to an increase in the Vm of the dense tubular Ca2+ pump. With [Iono] = 500 nM, [Ca2+]cyt was raised to greater than or equal to 1.0 microM and Vm of the dense tubular pump was elicited. (At [Iono] = 1.0 microM, the final [Ca2+]dt values were degraded 15% due to shunting of Ca2+ uptake.) Analysis showed that forskolin (10 microM) and Bt2-cAMP (1 mM) increase the Vm by a factors of 1.56 +/- 40 and 1.56 +/- 40, respectively. Analysis showed that neither agent changed the Km of the pump significantly from its control value of 180 nM. Neither agent changed the rate constant for passive leakage of Ca2+ across the DT membrane (1.7 min-1).  相似文献   

18.
The chemoattractant cAMP elicits a transient efflux of K+ in cell suspensions of Dictyostelium discoideum. This cellular response displayed half-maximal activity at about 1 microM cAMP and saturated at 100 microM cAMP, cAMP-stimulated K+ efflux, measured with a K+-sensitive electrode, depended on the extracellular free Ca2+ concentration ([Ca2+]0) and was maximal in the presence of EGTA. Usually more than 90% of the K+ release could be inhibited by the addition of Ca2+. Half-maximal reduction occurred at about 2 microM [Ca2+]0. Inhibition was also observed in the presence of caffeine or A23187, drugs known to elevate the intracellular free Ca2+ concentration ([Ca2+]i). Under conditions where [Ca2+]0 was maintained at a low level, half-maximal inhibition was 1 mM for caffeine and 3 microM for A23187. These results indicate that Cai2+ is involved in the regulation of K+ efflux. Simultaneous measurements of Ca2+ uptake and K+ efflux induced by cAMP as well as free running oscillations of both ions revealed that initiation and termination of Ca2+ uptake slightly preceded those of K+ efflux.  相似文献   

19.
Hypoxic pulmonary vasoconstriction (HPV) requires influx of extracellular Ca2+ in pulmonary arterial smooth muscle cells (PASMCs). To determine whether capacitative Ca2+ entry (CCE) through store-operated Ca2+ channels (SOCCs) contributes to this influx, we used fluorescent microscopy and the Ca2+-sensitive dye fura-2 to measure effects of 4% O2 on intracellular [Ca2+] ([Ca2+]i) and CCE in primary cultures of PASMCs from rat distal pulmonary arteries. In PASMCs perfused with Ca2+-free Krebs Ringer bicarbonate solution (KRBS) containing cyclopiazonic acid to deplete Ca2+ stores in sarcoplasmic reticulum and nifedipine to prevent Ca2+ entry through L-type voltage-operated Ca2+ channels (VOCCs), hypoxia markedly enhanced both the increase in [Ca2+]i caused by restoration of extracellular [Ca2+] and the rate at which extracellular Mn2+ quenched fura-2 fluorescence. These effects, as well as the increased [Ca2+]i caused by hypoxia in PASMCs perfused with normal salt solutions, were blocked by the SOCC antagonists SKF-96365, NiCl2, and LaCl3 at concentrations that inhibited CCE >80% but did not alter [Ca2+]i responses to 60 mM KCl. In contrast, the VOCC antagonist nifedipine inhibited [Ca2+]i responses to hypoxia by only 50% at concentrations that completely blocked responses to KCl. The increased [Ca2+]i caused by hypoxia was completely reversed by perfusion with Ca2+-free KRBS. LaCl3 increased basal [Ca2+]i during normoxia, indicating effects other than inhibition of SOCCs. Our results suggest that acute hypoxia enhances CCE through SOCCs in distal PASMCs, leading to depolarization, secondary activation of VOCCs, and increased [Ca2+]i. SOCCs and CCE may play important roles in HPV.  相似文献   

20.
In animal cells, capacitative calcium entry (CCE) mechanisms become activated specifically in response to depletion of calcium ions (Ca(2+)) from secretory organelles. CCE serves to replenish those organelles and to enhance signaling pathways that respond to elevated free Ca(2+) concentrations in the cytoplasm. The mechanism of CCE regulation is not understood because few of its essential components have been identified. We show here for the first time that the budding yeast Saccharomyces cerevisiae employs a CCE-like mechanism to refill Ca(2+) stores within the secretory pathway. Mutants lacking Pmr1p, a conserved Ca(2+) pump in the secretory pathway, exhibit higher rates of Ca(2+) influx relative to wild-type cells due to the stimulation of a high-affinity Ca(2+) uptake system. Stimulation of this Ca(2+) uptake system was blocked in pmr1 mutants by expression of mammalian SERCA pumps. The high-affinity Ca(2+) uptake system was also stimulated in wild-type cells overexpressing vacuolar Ca(2+) transporters that competed with Pmr1p for substrate. A screen for yeast mutants specifically defective in the high-affinity Ca(2+) uptake system revealed two genes, CCH1 and MID1, previously implicated in Ca(2+) influx in response to mating pheromones. Cch1p and Mid1p were localized to the plasma membrane, coimmunoprecipitated from solubilized membranes, and shown to function together within a single pathway that ensures that adequate levels of Ca(2+) are supplied to Pmr1p to sustain secretion and growth. Expression of Cch1p and Mid1p was not affected in pmr1 mutants. The evidence supports the hypothesis that yeast maintains a homeostatic mechanism related to CCE in mammalian cells. The homology between Cch1p and the catalytic subunit of voltage-gated Ca(2+) channels raises the possibility that in some circumstances CCE in animal cells may involve homologs of Cch1p and a conserved regulatory mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号