首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Per-Arnt-Sim (PAS) domains play a critical role in signal transduction in multidomain proteins by sensing diverse environmental signals and regulating the activity of output domains. Multiple PAS domains are often found within a single protein. The NifL regulatory protein from Azotobacter vinelandii contains tandem PAS domains, the most N-terminal of which, PAS1, contains a FAD cofactor and is responsible for redox sensing, whereas the second PAS domain, PAS2, has no apparent cofactor and its function is unknown. Amino acid substitutions in PAS2 were identified that either lock NifL in a form that constitutively inhibits NifA or that fail to respond to the redox status, suggesting that PAS2 plays a pivotal role in transducing the redox signal from PAS1 to the C-terminal output domains. The isolated PAS2 domain is a homodimer in solution and the subunits are in rapid exchange. PAS2 dimerization is maintained in the redox signal transduction mutants, but is inhibited by substitutions in PAS2 that lock NifL in the inhibitory conformer. Our results support a model for signal transduction in NifL, whereby redox-dependent conformational changes in PAS1 are relayed to the C-terminal domains via changes in the quaternary structure of the PAS2 domain.  相似文献   

20.
The Per-ARNT-Sim (PAS) domain is a conserved α/β fold present within a plethora of signalling proteins from all kingdoms of life. PAS domains are often dimeric and act as versatile sensory and interaction modules to propagate environmental signals to effector domains. The NifL regulatory protein from Azotobacter vinelandii senses the oxygen status of the cell via an FAD cofactor accommodated within the first of two amino-terminal tandem PAS domains, termed PAS1 and PAS2. The redox signal perceived at PAS1 is relayed to PAS2 resulting in conformational reorganization of NifL and consequent inhibition of NifA activity. We have identified mutations in the cofactor-binding cavity of PAS1 that prevent 'release' of the inhibitory signal upon oxidation of FAD. Substitutions of conserved β-sheet residues on the distal surface of the FAD-binding cavity trap PAS1 in the inhibitory signalling state, irrespective of the redox state of the FAD group. In contrast, substitutions within the flanking A'α-helix that comprises part of the dimerization interface of PAS1 prevent transmission of the inhibitory signal. Taken together, these results suggest an inter-subunit pathway for redox signal transmission from PAS1 that propagates from core to the surface in a conformation-dependent manner requiring a flexible dimer interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号