首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preservation of genetic information in DNA relies on shielding the nucleobases from damage within the double helix. Thermal fluctuations lead to infrequent events of the Watson-Crick basepair opening, or DNA "breathing", thus making normally buried groups available for modification and interaction with proteins. Fluctuational basepair opening implies the disruption of hydrogen bonds between the complementary bases and flipping of the base out of the helical stack. Prediction of sequence-dependent basepair opening probabilities in DNA is based on separation of the two major contributions to the stability of the double helix: lateral pairing between the complementary bases and stacking of the pairs along the helical axis. The partition function calculates the basepair opening probability at every position based on the loss of two stacking interactions and one base-pairing. Our model also includes a term accounting for the unfavorable positioning of the exposed base, which proceeds through a formation of a highly constrained small loop, or a ring. Quantitatively, the ring factor is found as an adjustable parameter from the comparison of the theoretical basepair opening probabilities and the experimental data on short DNA duplexes measured by NMR spectroscopy. We find that these thermodynamic parameters suggest nonobvious sequence dependent basepair opening probabilities.  相似文献   

2.
Tau could protect DNA double helix structure   总被引:5,自引:0,他引:5  
The hyperchromic effect has been used to detect the effect of tau on the transition of double-stranded DNA to single-stranded DNA. It was shown that tau increased the melting temperature of calf thymus DNA from 67 to 81 degrees C and that of plasmid from 75 to 85 degrees C. Kinetically, rates of increase in absorbance at 260 nm of DNA incubated with tau were markedly slower than those of DNA and DNA/bovine serum albumin used as controls during thermal denaturation. In contrast, rates of decrease in the DNA absorbance with tau were faster than those of controls when samples were immediately transferred from thermal conditions to room temperature. It revealed that tau prevented DNA from thermal denaturation, and improved renaturation of DNA. Circular dichroic spectra results indicated that there were little detectable conformational changes in DNA double helix when tau was added. Furthermore, tau showed its ability to protect DNA from hydroxyl radical (.OH) attacking in vitro, implying that tau functions as a DNA-protecting molecule to the radical.  相似文献   

3.
Semenza G 《FEBS letters》2003,544(1-3):1-3
  相似文献   

4.
Y G Chu  I Tinoco 《Biopolymers》1983,22(4):1235-1246
The kinetics of helix formation were investigated using the temperature-jump technique for the following two molecules: dC-G-T-G-A-A-T-T-C-G-C-G, which forms a double helix containing a G·T base pair(the G·T 12-mer), and dC-G-C-A-G-A-A-T-T-C-G-C-G, which forms a double helix containing an extra adenine (the 13-mer). When data were analyzed in an all-or-none model, the activation energy for the helix association process was 22 ± 4 kcal/mol for the G·T 12-mer and 16 ± 7 kcal/mol for the 13-mer. The activation energy for the helix-dissociation process was 68 ± 2 kcal/mol for the G·T 12-mer and 74 ± 3 kcal/mol for the 13-mer. Rate constants for recombination were near 105s?1M?1 in the temperature range from 32 to 47°C; for the dissociation process, the rate constants varied from 1s?1 near 32°C to 130s?1 near 47°C. Possible effects of hairpin loops and fraying ends on the above data are discussed.  相似文献   

5.
Four different crystal forms of the self-complementary oligonucleotide pCpGpCpGpCpG have been obtained. The space groups and the unit cell parameters of these crystals, as well as the location of the base-stacking reflections, indicate that the oligonucleotide is able to assume different double helical conformations that are dependent on the crystallization conditions.  相似文献   

6.
The possibility of determining the free energy of stabilization ΔG0 of native DNA structure with the help of calorimetric data on heats ΔH of transition from the native to denaturated state is considered. Results of microcalorimetric measurements of heats of denaturation of T2 phage DNA at, different values of pH and ionic strength of solution are given. Values of free energy of stabilization of the DNA native structure ΔG0 under various conditions have been obtained. It is shown that under conditions close to physiological ΔG0 approaches 1200 cal/mole per base pair.  相似文献   

7.
8.
9.
10.
During the past decade, the issue of strong bending of the double helix has attracted a lot of attention. Here, we overview the major experimental and theoretical developments in the field sorting out reliably established facts from speculations and unsubstantiated claims. Theoretical analysis shows that sharp bends or kinks have to facilitate strong bending of the double helix. It remains to be determined what is the critical curvature of DNA that prompts the appearance of the kinks. Different experimental and computational approaches to the problem are analyzed. We conclude that there is no reliable evidence that any anomalous behavior of the double helix happens when DNA fragments in the range of 100 bp are circularized without torsional stress. The anomaly starts at the fragment length of about 70 bp when sharp bends or kinks emerge in essentially every molecule. Experimental data and theoretical analysis suggest that kinks may represent openings of isolated base pairs, which had been experimentally detected in linear DNA molecules. The calculation suggests that although the probability of these openings in unstressed DNA is close to 10−5, it increases sharply in small DNA circles reaching 1 open bp per circle of 70 bp.  相似文献   

11.
12.
A series of DNA 21-mers containing a variety of the 4 x 4 internal loop sequence 5'-CAAG-3'/3'-ACGT-5' were studied using nuclear magnetic resonance (NMR) methodology and distance geometry (DG)/molecular dynamics (MD) approaches. Such oligomers exhibit excellent resolution in the NMR spectra and reveal many unusual NOEs (nuclear Overhauser effect) that allow for the detailed characterization of a DNA hairpin incorporating a track of four different non-Watson-Crick base-pairs in the stem. These include a wobble C.A base-pair, a sheared A.C base-pair, a sheared A.G base-pair, and a wobble G.T base-pair. Significantly different twisting angles were observed between the base-pairs in internal loop that results with excellent intra-strand and inter-strand base stacking within the four consecutive mismatches and the surrounding canonical base-pairs. This explains why it melts at 52 degrees C even though five out of ten base-pairs in the stem adopt non-Watson-Crick pairs. However, the 4 x 4 internal loop still fits into a B-DNA double helix very well without significant change in the backbone torsion angles; only zeta torsion angles between the tandem sheared base-pairs are changed to a great extent from the gauche(-) domain to the trans domain to accommodate the cross-strand base stacking in the internal loop. The observation that several consecutive non-canonical base-pairs can stably co-exist with Watson-Crick base-pairs greatly increases the limited repertoire of irregular DNA folds and reveals the possibility for unusual structural formation in the functionally important genomic regions that have potential to become single-stranded.  相似文献   

13.
14.
DNA self-assembly has crucial implications in reading out the genetic information in the cell and in nanotechnological applications. In a recent paper, self-assembled DNA crystals displaying spectacular triangular motifs have been described (Zheng et al., 2009). The authors claimed that their data demonstrate the possibility to rationally design well-ordered macromolecular 3D DNA lattice with precise spatial control using sticky ends. However, the authors did not recognize the fundamental features that control DNA self-assembly in the lateral direction. By analysing available crystallographic data and simulating a DNA triangle, we show that the double helix geometry, sequence-specific cytosine–phosphate interactions and divalent cations are in fact responsible for the precise spatial assembly of DNA.  相似文献   

15.
The geometric features of the DNA molecule in the supercoiled state were considered. A model of the supercoiled structure of the DNA molecule was constructed; the model takes into account its natural helicity. The force factors arising in the molecule at various superhelix angles were calculated.  相似文献   

16.
17.
We demonstrate in this paper that one example of a biologically important and molecular self-assembling complex system is a collagen–DNA ordered aggregate which spontaneously forms in aqueous solutions. Interaction between the collagen and the DNA leads to destruction of the hydration shell of the triple helix and stabilization of the double helix structure. From a molecular biology point of view this nano-scale self-assembling superstructure could increase the stability of DNA against the nucleases during collagen diseases and the growth of collagen fibrills in the presence of DNA.  相似文献   

18.
Hydrogen-bonding effects and 13C-NMR of the DNA double helix   总被引:1,自引:1,他引:0       下载免费PDF全文
13C-nmr chemical shifts of the nucleotides in DNA are sensitive to hydrogen bonding, especially for three of the carbons immediately bonded to exocyclic oxygen or nitrogen atoms acting as H-bond acceptors or donors. GuoC2, GuoC6 and ThdC4 are strongly deshielded (about 1 ppm) upon Watson-Crick pairing in oligodeoxynucleotide duplexes, regardless of the base sequence. Deshielding at these sites may be useful to distinguish bases involved in Watson-Crick pairs from unpaired bases.  相似文献   

19.
Powell SW  Jiang L  Russu IM 《Biochemistry》2001,40(37):11065-11072
Nuclear magnetic resonance spectroscopy has been used to characterize opening reactions and stabilities of individual base pairs in two related DNA structures. The first is the triplex structure formed by the DNA 31-mer 5'-AGAGAGAACCCCTTCTCTCTTTTTCTCTCTT-3'. The structure belongs to the YRY (or parallel) family of triple helices. The second structure is the hairpin double helix formed by the DNA 20-mer 5'-AGAGAGAACCCCTTCTCTCT-3' and corresponds to the duplex part of the YRY triplex. The rates of exchange of imino protons with solvent in the two structures have been measured by magnetization transfer from water and by real-time exchange at 10 degrees C in 100 mM NaCl and 5 mM MgCl2 at pH 5.5 and in the presence of two exchange catalysts. The results indicate that the exchange of imino protons in protonated cytosines is most likely limited by the opening of Hoogsteen C+G base pairs. The base pair opening parameters estimated from imino proton exchange rates suggest that the stability of individual Hoogsteen base pairs in the DNA triplex is comparable to that of Watson-Crick base pairs in double-helical DNA. In the triplex structure, the exchange rates of imino protons in Watson-Crick base pairs are up to 5000-fold lower than those in double-helical DNA. This result suggests that formation of the triplex structure enhances the stability of Watson-Crick base pairs by up to 5 kcal/mol. This stabilization depends on the specific location of each triad in the triplex structure.  相似文献   

20.
By assuming that the realistic DNA chains are random sequence of bases and using the Tung-Harvey formula for the prediction of twist angles, it is shown that the mean value of the sequence of twist angles is almost sequence-independent. In general the variance for the A, T-rich sequence is larger than that of G, C-rich sequence. There exists an upper bound for the variance of all possible sequences, i.e., the variance is not greater than 27 deg2. It is pointed out that the large conformational deviation from ideal DNA is an important factor for the recognition of DNA with protein/enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号