首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reiter TA  Reiter NJ  Rusnak F 《Biochemistry》2002,41(51):15404-15409
Bacteriophage lambda protein phosphatase (lambdaPP) is a member of a large family of metal-containing phosphoesterases, including purple acid phosphatase, protein serine/threonine phosphatases, 5'-nucleotidase, and DNA repair enzymes such as Mre11. lambdaPP can be activated several-fold by various divalent metal ions, with Mn(2+) and Ni(2+) providing the most significant activation. Despite the extensive characterization of purified lambdaPP in vitro, little is known about the identity and stoichiometry of metal ions used by lambdaPP in vivo. In this report, we describe the use of metal analysis, activity measurements, and whole cell EPR spectroscopy to investigate in vivo metal binding and activation of lambdaPP. Escherichia coli cells overexpressing lambdaPP show a 22.5-fold increase in intracellular Mn concentration and less dramatic changes in the intracellular concentration of other biologically relevant metal ions compared to control cells that do not express lambdaPP. Phosphatase activity assessed using para-nitrophenylphosphate as substrate is increased 850-fold in cells overexpressing lambdaPP, indicating the presence of metal-activated enzyme in cell lysate. EPR spectra of intact cells overexpressing lambdaPP exhibit resonances previously attributed to mononuclear Mn(2+) and dinuclear [(Mn(2+))(2)] species bound to lambdaPP. Spin quantitation of EPR spectra of intact E. coli cells overexpressing lambdaPP indicates the presence of approximately 40 microM mononuclear Mn(2+)-lambdaPP and 60 microM [(Mn(2+))(2)]-lambdaPP. The data suggest that overexpression of lambdaPP results in a mixture of apo-, mononuclear-Mn(2+), and dinuclear-[(Mn(2+))(2)] metalloisoforms and that Mn(2+) is a physiologically relevant activating metal ion in E. coli.  相似文献   

2.
Reiter TA  Rusnak F 《Biochemistry》2004,43(3):782-790
Bacteriophage lambda protein phosphatase (lambdaPP) is a member of a large superfamily of metallophosphoesterases, including serine/threonine protein phosphatases, purple acid phosphatases, 5'-nucleotidase, and DNA repair enzymes such as Mre11. Members of this family share several common characteristics, including a common phosphoesterase motif, secondary structural fold (betaalphabetaalphabeta), and metal ligand environment, and often accommodate a dinuclear metal center. The identity of the active site metals often differs between family members. Despite the extensive spectroscopic studies of several family members, only the standard redox potential of porcine purple acid phosphate (PAP) has been measured. In this report, we investigate the redox properties of another member of this protein family. The standard redox potentials of the mono-Fe, Fe-Zn, and Fe-Fe metalloisoforms of lambdaPP were determined from anaerobic redox titration experiments. Two different S = 5/2, mono-Fe3+ lambdaPP species were identified: the first with an E/D approximately 0.17, g = 8.9 and 4.8, and an Eo' approximately +130 mV; the second with E/D approximately 0.05, g = 6.7, 5.9, and 4.4, and an Eo' approximately +120 mV. The first and second mono-Fe3+ species are thought to represent Fe present in the M2 and M1 sites, respectively. The addition of Zn2+ to mono-Fe3+ lambdaPP results in a decrease in both mono-Fe3+ species and the appearance of a new S = 5/2, Fe(3+)-Zn2+ species (E/D approximately 0.02, g = 5.9, and an Eo' > +175 mV). The Fe-Fe lambdaPP titration revealed an S = 1/2, Fe(3+)-Fe2+ (g < 2) species with an Eo' > +128 mV. These results suggest that the active site of lambdaPP supports a high oxidation potential for both metal sites and may indicate an equally oxidizing active site for other member metallophosphoesterases.  相似文献   

3.
Bacteriophage lambda protein phosphatase (lambdaPP) with Mn(2+) as the activating metal cofactor was studied using phosphatase inhibition kinetics and electron paramagnetic resonance (EPR) spectroscopy. Orthophosphate and the oxoanion analogues orthovanadate, tungstate, molybdate, arsenate, and sulfate were shown to inhibit the phosphomonoesterase activity of lambdaPP, albeit with inhibition constants (K(i)) that range over 5 orders of magnitude. In addition, small organic anions were tested as inhibitors. Phosphonoacetohydroxamic acid (PhAH) was found to be a strong competitive inhibitor (K(i) = 5.1 +/- 1.6 microM) whereas phosphonoacetic acid (K(i) = 380 +/- 45 microM) and acetohydroxamic acid (K(i) > 75 mM) modestly inhibited lambdaPP. Low-temperature EPR spectra of Mn(2+)-reconstituted lambdaPP in the presence of oxoanions and PhAH demonstrate that inhibitor binding decreases the spin-coupling constant, J, compared to the native enzyme. This suggests a change in the bridging interaction between Mn(2+) ions of the dimer due to protonation or replacement of a bridging ligand. Inhibitor binding also induces several spectral shifts. Hyperfine splitting characteristic of a spin-coupled (Mn(2+))(2) dimer is most prominent upon the addition of orthovanadate (K(i) = 0.70 +/- 0.20 microM) and PhAH, indicating that these inhibitors tightly interact with the (Mn(2+))(2) form of lambdaPP. These EPR and inhibition kinetic results are discussed in the context of establishing a common mechanism for the hydrolysis of phosphate esters by lambdaPP and other serine/threonine protein phosphatases.  相似文献   

4.
The protein phosphatase encoded by bacteriophage lambda (lambda PP) belongs to a family of Ser/Thr phosphatases (Ser/Thr PPases) that includes the eukaryotic protein phosphatases 1 (PP1), 2A (PP2A), and 2B (calcineurin). These Ser/Thr PPases and the related purple acid phosphatases (PAPs) contain a conserved phosphoesterase sequence motif that binds a dinuclear metal center. The mechanisms of phosphoester hydrolysis by these enzymes are beginning to be unraveled. To utilize lambda PP more effectively as a model for probing the catalytic mechanism of the Ser/Thr PPases, we have determined its crystal structure to 2.15 A resolution. The overall fold resembles that of PP1 and calcineurin, including a conserved beta alpha beta alpha beta structure that comprises the phosphoesterase motif. Substrates and inhibitors probably bind in a narrow surface groove that houses the active site dinuclear Mn(II) center. The arrangement of metal ligands is similar to that in PP1, calcineurin, and PAP, and a bound sulfate ion is present in two novel coordination modes. In two of the three molecules in the crystallographic asymmetric unit, sulfate is coordinated to Mn2 in a monodentate, terminal fashion, and the two Mn(II) ions are bridged by a solvent molecule. Two additional solvent molecules are coordinated to Mn1. In the third molecule, the sulfate ion is triply coordinated to the metal center with one oxygen coordinated to both Mn(II) ions, one oxygen coordinated to Mn1, and one oxygen coordinated to Mn2. The sulfate in this coordination mode displaces the bridging ligand and one of the terminal solvent ligands. In both sulfate coordination modes, the sulfate ion is stabilized by hydrogen bonding interactions with conserved arginine residues, Arg 53 and Arg 162. The two different active site structures provide models for intermediates in phosphoester hydrolysis and suggest specific mechanistic roles for conserved residues.  相似文献   

5.
Analysis of sequence alignments of alkaline phosphatases revealed a correlation between metal specificity and certain amino acid side chains in the active site that are metal-binding ligands. The Zn(2+)-requiring Escherichia coli alkaline phosphatase has an Asp at position 153 and a Lys at position 328. Co(2+)-requiring alkaline phosphatases from Thermotoga maritima and Bacillus subtilis have a His and a Trp at these positions, respectively. The mutations D153H, K328W, and D153H/K328W were induced in E. coli alkaline phosphatase to determine whether these residues dictate the metal dependence of the enzyme. The wild-type and D153H enzymes showed very little activity in the presence of Co(2+), but the K328W and especially the D153H/K328W enzymes effectively use Co(2+) for catalysis. Isothermal titration calorimetry experiments showed that in all cases except for the D153H/K328W enzyme, a possible conformation change occurs upon binding Co(2+). These data together indicate that the active site of the D153H/K328W enzyme has been altered significantly enough to allow the enzyme to utilize Co(2+) for catalysis. These studies suggest that the active site residues His and Trp at the E. coli enzyme positions 153 and 328, respectively, at least partially dictate the metal specificity of alkaline phosphatase.  相似文献   

6.
Calcineurin, a calmodulin-regulated phosphatase, is composed of two distinct subunits (A and B) and requires certain metal ions for activity. The binding of the two most potent activators, Ni2+ and Mn2+, to calcineurin and its subunits has been studied. Incubation of the protein with 63Ni2+ (or 54Mn2+) followed by gel filtration to separate free and protein-bound ions indicated that calcineurin could maximally bind 2 mol/mol of Ni2+ or Mn2+. While isolated A subunit also bound 2 mol/mol of Ni2+, no Mn2+ binding was demonstrated for either isolated A or B subunit. When bindings were monitored by nitrocellulose filter assay, only 1 mol/mol bound Ni2+ or Mn2+ was detected, suggesting that the two Ni2+ (or Mn2+) binding sites had different relative affinities and that only metal ions bound at the higher affinity sites were detected by the filter assay. Preincubation of calcineurin with Mn2+ (or Ni2+) decreased the filter assay-measured Ni2+ (or Mn2+) binding by only 30%. Preincubation of the protein with Zn2+ decreased the filter assay-measured Ni2+ or Mn2+ binding by 90 or 17%, respectively. The results suggest that the higher affinity sites are a Ni2+-specific site and a distinct Mn2+-specific site. Preincubation of calcineurin with Mn2+ (or Ni2+) decreased the gel filtration-determined Ni2+ (or Mn2+) binding from 2 to 1 mol/mol suggesting that calcineurin also contains a site which binds either metal ion. The time course of Ni2+ (or Mn2+) binding was correlated with that of the enzyme activation, and the extent of deactivation of the Ni2+-activated calcineurin by EDTA or by incubation with Ca2+ and calmodulin (Pallen, C. J., and Wang, J. H. (1984) J. Biol. Chem. 259, 6134-6141) was correlated with the release of the bound ions, thus suggesting that the bound ion is directly responsible for enzyme activation.  相似文献   

7.
The effects of ATP and divalent cations on a divalent cation-independent phosphorylase phosphatase of Mr = 35,000 (phosphatase S) purified from canine cardiac muscle have been studied. The enzyme can be rapidly inactivated by ATP or other nucleoside di- and triphosphates and PPi, but not by AMP, adenosine, adenine, Pi, EDTA, ethylene glycol bis(beta-aminoethyl ether)N,N' -tetraacetic acid, 1,10-phenanthroline, or 8-hydroxyquinoline. After removing the inactivating agent, such as ATP or PPi, by gel filtraiton followed by exhaustive dialysis, the inactivated enzyme (apophosphatase S) can be reactivated by preincubating with Mn2+ or Co2+, but not with Mg2+, Ca2+, Ni2+, Zn2+, Fe2+, Cu2+, Ba2+, Hg2+, Pb2+, or Cd2+. The Mn2+ -reactivated enzyme, which is less active than the Co2+ -reactivated enzyme, can be again inactivated by preincubating with ATP. The present findings indicate that phosphatase S contains a tightly bound divalent cation, probably Mn2+, in the active site. ATP and PPi, due to their structural similarity to the phosphoprotein substrate and their ability to chelate metal ions, can readily enter the active site to remove the divalent cation(s) essential for the catalytic function. The present findings also indicate that phosphatase S, a common catalytic subunit of several larger molecular forms of nospecific phosphoprotein phosphatase in cardiac muscle, can exist in two interconvertible forms, a metallized form (active) and a demetallized form (inactive). ATP and metal ions may regulate this class of isozymes by mediating the interconversions.  相似文献   

8.
Harris TK  Wu G  Massiah MA  Mildvan AS 《Biochemistry》2000,39(7):1655-1674
The MutT enzyme catalyzes the hydrolysis of nucleoside triphosphates (NTP) to NMP and PP(i) by nucleophilic substitution at the rarely attacked beta-phosphorus. The solution structure of the quaternary E-M(2+)-AMPCPP-M(2+) complex indicated that conserved residues Glu-53, -56, -57, and -98 are at the active site near the bound divalent cation possibly serving as metal ligands, Lys-39 is positioned to promote departure of the NMP leaving group, and Glu-44 precedes helix I (residues 47-59) possibly stabilizing this helix which contributes four catalytic residues to the active site [Lin, J. , Abeygunawardana, C., Frick, D. N., Bessman, M. J., and Mildvan, A. S. (1997) Biochemistry 36, 1199-1211]. To test these proposed roles, the effects of mutations of each of these residues on the kinetic parameters and on the Mn(2+), Mg(2+), and substrate binding properties were examined. The largest decreases in k(cat) for the Mg(2+)-activated enzyme of 10(4.7)- and 10(2.6)-fold were observed for the E53Q and E53D mutants, respectively, while 97-, 48-, 25-, and 14-fold decreases were observed for the E44D, E56D, E56Q, and E44Q mutations, respectively. Smaller effects on k(cat) were observed for mutations of Glu-98 and Lys-39. For wild type MutT and its E53D and E44D mutants, plots of log(k(cat)) versus pH exhibited a limiting slope of 1 on the ascending limb and then a hump, i.e., a sharply defined maximum near pH 8 followed by a plateau, yielding apparent pK(a) values of 7.6 +/- 0.3 and 8.4 +/- 0.4 for an essential base and a nonessential acid catalyst, respectively, in the active quaternary MutT-Mg(2+)-dGTP-Mg(2+) complex. The pK(a) of 7.6 is assigned to Glu-53, functioning as a base catalyst in the active quaternary complex, on the basis of the disappearance of the ascending limb of the pH-rate profile of the E53Q mutant, and its restoration in the E53D mutant with a 10(1.9)-fold increase in (k(cat))(max). The pK(a) of 8.4 is assigned to Lys-39 on the basis of the disappearance of the descending limb of the pH-rate profile of the K39Q mutant, and the observation that removal of the positive charge of Lys-39, by either deprotonation or mutation, results in the same 8.7-fold decrease in k(cat). Values of k(cat) of both wild type MutT and the E53Q mutant were independent of solvent viscosity, indicating that a chemical step is likely to be rate-limiting with both. A liganding role for Glu-53 and Glu-56, but not Glu-98, in the binary E-M(2+) complex is indicated by the observation that the E53Q, E53D, E56Q, and E56D mutants bound Mn(2+) at the active site 36-, 27-, 4.7-, and 1.9-fold weaker, and exhibited 2.10-, 1.50-, 1.12-, and 1.24-fold lower enhanced paramagnetic effects of Mn(2+), respectively, than the wild type enzyme as detected by 1/T(1) values of water protons, consistent with the loss of a metal ligand. However, the K(m) values of Mg(2+) and Mn(2+) indicate that Glu-56, and to a lesser degree Glu-98, contribute to metal binding in the active quaternary complex. Mutations of the more distant but conserved residue Glu-44 had little effect on metal binding or enhancement factors in the binary E-M(2+) complexes. Two-dimensional (1)H-(15)N HSQC and three-dimensional (1)H-(15)N NOESY-HSQC spectra of the kinetically damaged E53Q and E56Q mutants showed largely intact proteins with structural changes near the mutated residues. Structural changes in the kinetically more damaged E44D mutant detected in (1)H-(15)N HSQC spectra were largely limited to the loop I-helix I motif, suggesting that Glu-44 stabilizes the active site region. (1)H-(15)N HSQC titrations of the E53Q, E56Q, and E44D mutants with dGTP showed changes in chemical shifts of residues lining the active site cleft, and revealed tighter nucleotide binding by these mutants, indicating an intact substrate binding site. (ABSTRACT TRUNCATED)  相似文献   

9.
The central phosphatase domain of Clostridium thermocellum polynucleotide kinase/phosphatase (CthPnkp) belongs to the dinuclear metallophosphoesterase superfamily. Prior mutational studies of CthPnkp identified 7 individual active site side chains (Asp-187, His-189, Asp-233, Asn-263, His-323, His-376, and Asp-392) required for Ni2+-dependent hydrolysis of p-nitrophenyl phosphate. Here we find that Mn2+-dependent phosphomonoesterase activity requires two additional residues, Arg-237 and His-264. We report that CthPnkp also converts bis-p-nitrophenyl phosphate to p-nitrophenol and inorganic phosphate via a processive two-step mechanism. The Ni2+-dependent phosphodiesterase activity of CthPnkp requires the same seven side chains as the Ni2+-dependent phosphomonoesterase. However, the Mn2+-dependent phosphodiesterase activity does not require His-189, Arg-237, or His-264, each of which is critical for the Mn2+-dependent phosphomonoesterase. Mutations H189A, H189D, and D392N transform the metal and substrate specificity of CthPnkp such that it becomes a Mn2+-dependent phosphodiesterase. The H189E change results in a Mn2+/Ni2+-dependent phosphodiesterase. Mutations H376N, H376D, and D392E convert the enzyme into a Mn2+-dependent phosphodiesterase-monoesterase. The phosphodiesterase activity is strongly stimulated compared with wild-type CthPnkp when His-189 is changed to Asp, Arg-237 is replaced by Ala or Gln, and His-264 is replaced by Ala, Asn, or Gln. Steady-state kinetic analysis of wild-type and mutated enzymes illuminates the structural features that affect substrate affinity and kcat. Our results highlight CthPnkp as an "undifferentiated" diesterase-monoesterase that can evolve toward narrower metal and substrate specificities via alterations of the active site milieu.  相似文献   

10.
Yeast exopolyphosphatase (scPPX) processively splits off the terminal phosphate group from linear polyphosphates longer than pyrophosphate. scPPX belongs to the DHH phosphoesterase superfamily and is evolutionarily close to the well characterized family II pyrophosphatase (PPase). Here, we used steady-state kinetic and binding measurements to elucidate the metal cofactor requirement for scPPX catalysis over the pH range 4.2-9.5. A single tight binding site for Mg(2+) (K(d) of 24 microm) was detected by equilibrium dialysis. Steady-state kinetic analysis of tripolyphosphate hydrolysis revealed a second site that binds Mg(2+) in the millimolar range and modulates substrate binding. This step requires two protonated and two deprotonated enzyme groups with pK(a) values of 5.0-5.3 and 7.6-8.2, respectively. The catalytic step requiring two deprotonated groups (pK(a) of 4.6 and 5.6) is modulated by ionization of a third group (pK(a) of 8.7). Conservative mutations of Asp(127), His(148), His(149) (conserved in scPPX and PPase), and Asn(35) (His in PPase) reduced activity by a factor of 600-5000. N35H and D127E substitutions reduced the Mg(2+) affinity of the tight binding site by 25-60-fold. Contrary to expectations, the N35H variant was unable to hydrolyze pyrophosphate, but markedly altered metal cofactor specificity, displaying higher catalytic activity with Co(2+) bound to the weak binding site versus the Mg(2+)- or Mn(2+)-bound enzyme. These results provide an initial step toward understanding the dynamics of scPPX catalysis and reveal significant functional differences between structurally similar scPPX and family II PPase.  相似文献   

11.
Boeggeman E  Qasba PK 《Glycobiology》2002,12(7):395-407
The catalytic domain of bovine beta1,4-galactosyltransferase (beta4Gal-T1) has been shown to have two metal binding sites, each with a distinct binding affinity. Site I binds Mn(2+) with high affinity and does not bind Ca(2+), whereas site II binds a variety of metal ions, including Ca(2+). The catalytic region of beta4Gal-T1 has DXD motifs, associated with metal binding in glycosyltransferases, in two separate sequences: D(242)YDYNCFVFSDVD(254) (region I) and W(312)GWGGEDDD(320) (region II). Recently, the crystal structure of beta4Gal-T1 bound with UDP, Mn(2+), and alpha-lactalbumin was determined in our laboratory. It shows that in the primary metal binding site of beta4Gal-T1, the Mn(2+) ion, is coordinated to five ligands, two supplied by the phosphates of the sugar nucleotide and the other three by Asp254, His347, and Met344. The residue Asp254 in the D(252)VD(254) sequence in region I is the only residue that is coordinated to the Mn(2+) ion. Region II forms a loop structure and contains the E(317)DDD(320) sequence in which residues Asp318 and Asp319 are directly involved in GlcNAc binding. This study, using site-directed mutagenesis, kinetic, and binding affinity analysis, shows that Asp254 and His347 are strong metal ligands, whereas Met344, which coordinates less strongly, can be substituted by alanine or glutamine. Specifically, substitution of Met344 to Gln has a less severe effect on the catalysis driven by Co(2+). Glu317 and Asp320 mutants, when partially activated by Mn(2+) binding to the primary site, can be further activated by Co(2+) or inhibited by Ca(2+), an effect that is the opposite of what is observed with the wild-type enzyme.  相似文献   

12.
Four independent mutations were introduced to the Escherichia coli alkaline phosphatase active site, and the resulting enzymes characterized to study the effects of Glu as a metal ligand. The mutations D51E and D153E were created to study the effects of lengthening the carboxyl group by one methylene unit at the metal interaction site. The D51E enzyme had drastically reduced activity and lost one zinc per active site, demonstrating importance of the position of Asp(51). The D153E enzyme had an increased k(cat) in the presence of high concentrations of Mg(2+), along with a decreased Mg(2+) affinity as compared to the wild-type enzyme. The H331E and H412E enzymes were created to probe the requirement for a nitrogen-containing metal ligand at the Zn(1) site. The H331E enzyme had greatly decreased activity, and lost one zinc per active site. In the absence of high concentrations of Zn(2+), dephosphorylation occurs at an extremely reduced rate for the H412E enzyme, and like the H331E enzyme, metal affinity is reduced. Except at the 153 position, Glu is not an acceptable metal chelating amino acid at these positions in the E. coli alkaline phosphatase active site.  相似文献   

13.
A metal-ion-independent, nonspecific phosphoprotein phosphatase (Mr = 35000) which represents the major phosphorylase phosphatase activity in bovine adrenal cortex has been purified to apparent homogeneity. An alkaline phosphatase activity (p-nitrophenyl phosphate as a substrate) of the same molecular weight, which requires both a metal ion (Mg2+ greater than Mn2+ greater than Co2+) and a sulfhydryl compound for activity, has been found to co-purify with the phosphoprotein phosphatase throughout the purification procedures. Characterization of the phosphoprotein and the alkaline phosphatase activities with respect to their catalytic properties, substrate and metal ion specificities, relationship with large molecular forms of the enzymes and responses to various effectors has been carried out. The results indicate that the phosphoprotein phosphatase can be converted by pyrophosphoryl compounds (e.g. PPi and ATP) to a metal-ion-dependent form which, subsequently, can be reactivated by Co2+ greater than Mn2+ but not by Mg2+ or Zn2+. The results also indicate that, although the phosphoprotein and the alkaline phosphatase activities are closely associated, they exhibit distinct physical and catalytic properties. Discussions concerning whether these two activities represent two different forms of the same protein or two different yet very similar polypeptide chains have been presented.  相似文献   

14.
F Rusnak  L Yu  S Todorovic  P Mertz 《Biochemistry》1999,38(21):6943-6952
The interaction of bacteriophage lambda protein phosphatase with Mn2+ was studied using biochemical techniques and electron paramagnetic resonance spectrometry. Reconstitution of bacteriophage lambda protein phosphatase in the presence of excess MnCl2 followed by rapid desalting over a gel filtration column resulted in the retention of approximately 1 equiv of Mn2+ ion bound to the protein. This was determined by metal analyses and low-temperature EPR spectrometry, the latter of which provided evidence of a mononuclear high-spin Mn2+ ion in a ligand environment of oxygen and nitrogen atoms. The Mn2+-reconstituted enzyme exhibited negligible phosphatase activity in the absence of added MnCl2. The EPR spectrum of the mononuclear species disappeared upon the addition of a second equivalent of Mn2+ and was replaced by a spectrum attributed to an exchange-coupled (Mn2+)2 cluster. EPR spectra of the dinuclear (Mn2+)2 cluster were characterized by the presence of multiline features with a hyperfine splitting of 39 G. Temperature-dependent studies indicated that these features arose from an excited state. Titrations of the apoprotein with MnCl2 provided evidence of one Mn2+ binding site with a micromolar affinity and at least one additional Mn2+ site with a 100-fold lower affinity. The dependence of the phosphatase activity on Mn2+ concentration indicates that full enzyme activity probably requires occupation of both Mn2+ sites. These results are discussed in the context of divalent metal ion activation of this enzyme and possible roles for Mn2+ activation of other serine/threonine protein phosphatases.  相似文献   

15.
gamma-Glultamylcysteine synthetase (gamma-GCS) catalyzes the first step in the de novo biosynthesis of glutathione. In trypanosomes, glutathione is conjugated to spermidine to form a unique cofactor termed trypanothione, an essential cofactor for the maintenance of redox balance in the cell. Using extensive similarity searches and sequence motif analysis we detected homology between gamma-GCS and glutamine synthetase (GS), allowing these proteins to be unified into a superfamily of carboxylate-amine/ammonia ligases. The structure of gamma-GCS, which was previously poorly understood, was modeled using the known structure of GS. Two metal-binding sites, each ligated by three conserved active site residues (n1: Glu-55, Glu-93, Glu-100; and n2: Glu-53, Gln-321, and Glu-489), are predicted to form the catalytic center of the active site, where the n1 site is expected to bind free metal and the n2 site to interact with MgATP. To elucidate the roles of the metals and their ligands in catalysis, these six residues were mutated to alanine in the Trypanosoma brucei enzyme. All mutations caused a substantial loss of activity. Most notably, E93A was able to catalyze the l-Glu-dependent ATP hydrolysis but not the peptide bond ligation, suggesting that the n1 metal plays an important role in positioning l-Glu for the reaction chemistry. The apparent K(m) values for ATP were increased for both the E489A and Q321A mutant enzymes, consistent with a role for the n2 metal in ATP binding and phosphoryl transfer. Furthermore, the apparent K(d) values for activation of E489A and Q321A by free Mg(2+) increased. Finally, substitution of Mn(2+) for Mg(2+) in the reaction rescued the catalytic deficits caused by both mutations, demonstrating that the nature of the metal ligands plays an important role in metal specificity.  相似文献   

16.
The Escherichia coli AcpH acyl carrier protein phosphodiesterase (also called ACP hydrolyase) is the only enzyme known to cleave a phosphodiester-linked post-translational protein modification. AcpH hydrolyzes the link between 4'-phosphopanthetheine and the serine-36 side chain of acyl carrier protein (ACP). Although the existence of this enzyme activity has long been known, study of the enzyme was hampered by its recalcitrant properties and scarcity. We recently isolated the gene encoding AcpH and have produced the recombinant enzyme in quantity (Thomas, J., and Cronan, J. E., (2005) J. Biol. Chem. 280, 34675-34683), thus allowing the first studies of its reaction mechanism. AcpH requires Mn2+ for activity, and thus, we focused on the metal binding ligands in order to locate the active site. Bioinformatic investigations indicated that AcpH and its homologues were weakly related to a phosphodiesterase of known structure, the hydrolyase domain of the bifunctional bacterial protein, SpoT, suggesting that AcpH is a member of the HD family of phosphatases/ phosphodiesterases despite lacking the characteristic histidine of the motif. Indeed, we found that AcpH could be convincingly modeled on the SpoT structure with acceptable parameters, which allowed the identification of putative metal binding ligands. These were then tested by site-directed mutagenesis. Mutagenic removal of any of the putative ligands resulted in a severe or total loss of phosphodiesterase activity. In two cases, the H6Q and D24N proteins, the residual activities could be markedly stimulated by addition of high Mn2+ concentrations, thereby demonstrating a role for these residues in metal binding. We conclude that AcpH is a member of the HD protein family despite the lack of the signature histidine residue.  相似文献   

17.
18.
B Shen  J P Nolan  L A Sklar    M S Park 《Nucleic acids research》1997,25(16):3332-3338
Human flap endonuclease-1 (hFEN-1) is highly homologous to human XPG, Saccharomyces cerevisiae RAD2 and S.cerevisiae RTH1 and shares structural and functional similarity with viral exonucleases such as T4 RNase H, T5 exonuclease and prokaryotic DNA polymerase 5'nucleases. Sequence alignment of 18 structure-specific nucleases revealed two conserved nuclease domains with seven conserved carboxyl residues and one positively charged residue. In a previous report, we showed that removal of the side chain of each individual acidic residue results in complete loss of flap endonuclease activity. Here we report a detailed analysis of substrate cleavage and binding of these mutant enzymes as well as of an additional site-directed mutation of a conserved acidic residue (E160). We found that the active mutant (R103A) has substrate binding and cleavage activity indistinguishable from the wild type enzyme. Of the inactive mutants, one (D181A) has substrate binding properties comparable to the wild type, while three others (D34A, D86A and E160A) bind with lower apparent affinity (2-, 9- and 18-fold reduced, respectively). The other mutants (D158A, D179A and D233A) have no detectable binding activity. We interpret the structural implications of these findings using the crystal structures of related enzymes with the flap endonuclease activity and propose that there are two metal ions (Mg2+or Mn2+) in hFEN enzyme. These two metal coordinated active sites are distinguishable but interrelated. One metal site is directly involved in nucleophile attack to the substrate phosphodiester bonds while the other may stabilize the structure for the DNA substrate binding. These two sites may be relatively close since some of carboxyl residues can serve as ligands for both sites.  相似文献   

19.
Escherichia coli alkaline phosphatase exhibits maximal activity when Zn(2+) fills the M1 and M2 metal sites and Mg(2+) fills the M3 metal site. When other metals replace the zinc and magnesium, the catalytic efficiency is reduced by more than 5000-fold. Alkaline phosphatases from organisms such as Thermotoga maritima and Bacillus subtilis require cobalt for maximal activity and function poorly with zinc and magnesium. Previous studies have shown that the D153H alkaline phosphatase exhibited very little activity in the presence of cobalt, while the K328W and especially the D153H/K328W mutant enzymes can use cobalt for catalysis. To understand the structural basis for the altered metal specificity and the ability of the D153H/K328W enzyme to utilize cobalt for catalysis, we determined the structures of the inactive wild-type E. coli enzyme with cobalt (WT_Co) and the structure of the active D153H/K328W enzyme with cobalt (HW_Co). The structural data reveal differences in the metal coordination and in the strength of the interaction with the product phosphate (P(i)). Since release of P(i) is the slow step in the mechanism at alkaline pH, the enhanced binding of P(i) in the WT_Co structure explains the observed decrease in activity, while the weakened binding of P(i) in the HW_Co structure explains the observed increase in activity. These alterations in P(i) affinity are directly related to alterations in the coordination of the metals in the active site of the enzyme.  相似文献   

20.
Aldose-ketose isomerization by xylose isomerase requires bivalent cations such as Mg2+, Mn2+, or Co2+. The active site of the enzyme from Actinoplanes missouriensis contains two metal ions that are involved in substrate binding and in catalyzing a hydride shift between the C1 and C2 substrate atoms. Glu 186 is a conserved residue located near the active site but not in contact with the substrate and not with a metal ligand. The E186D and E186Q mutant enzymes were prepared. Both are active, and their metal specificity is different from that of the wild type. The E186Q enzyme is most active with Mn2+ and has a drastically shifted pH optimum. The X-ray analysis of E186Q was performed in the presence of xylose and either Mn2+ or Mg2+. The Mn2+ structure is essentially identical to that of the wild type. In the presence of Mg2+, the carboxylate group of residue Asp 255, which is part of metal site 2 and a metal ligand, turns toward Gln 186 and hydrogen bonds to its side-chain amide. Mg2+ is not bound at metal site 2, explaining the low activity of the mutant with this cation. Movements of Asp 255 also occur in the wild-type enzyme. We propose that they play a role in the O1 to O2 proton relay accompanying the hydride shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号