共查询到20条相似文献,搜索用时 0 毫秒
1.
Lopez-Vazquez CM Song YI Hooijmans CM Brdjanovic D Moussa MS Gijzen HJ van Loosdrecht MM 《Biotechnology and bioengineering》2007,97(3):483-495
Proliferation of glycogen accumulating organisms (GAO) has been identified as a potential cause of enhanced biological phosphorus removal (EBPR) failure in wastewater treatment plants (WWTP). GAO compete for substrate with polyphosphate accumulating organisms (PAO) that are the microorganisms responsible for the phosphorus removal process. In the present article, the effects of temperature on the anaerobic metabolism of GAO were studied in a broad temperature range (from 10 to 40 degrees C). Additionally, maximum acetate uptake rate of PAO, between 20 and 40 degrees C, was also evaluated. It was found that GAO had clear advantages over PAO for substrate uptake at temperatures higher than 20 degrees C. Below 20 degrees C, maximum acetate uptake rates of both microorganisms were similar. However, lower maintenance requirements at temperature lower than 30 degrees C give PAO metabolic advantages in the PAO-GAO competition. Consequently, PAO could be considered to be psychrophilic microorganisms while GAO appear to be mesophilic. These findings contribute to understand the observed stability of the EBPR process in WWTP operated under cold weather conditions. They may also explain the proliferation of GAO in WWTP and thus, EBPR instability, observed in hot climate regions or when treating warm industrial effluents. It is suggested to take into account the observed temperature dependencies of PAO and GAO in order to extend the applicability of current activated sludge models to a wider temperature range. 相似文献
2.
Pijuan M Saunders AM Guisasola A Baeza JA Casas C Blackall LL 《Biotechnology and bioengineering》2004,85(1):56-67
An enhanced biological phosphorus removal (EBPR) system was developed in a sequencing batch reactor (SBR) using propionate as the sole carbon source. The microbial community was followed using fluorescence in situ hybridization (FISH) techniques and Candidatus 'Accumulibacter phosphatis' were quantified from the start up of the reactor until steady state. A series of SBR cycle studies was performed when 55% of the SBR biomass was Accumulibacter, a confirmed polyphosphate accumulating organism (PAO) and when Candidatus 'Competibacter phosphatis', a confirmed glycogen-accumulating organism (GAO), was essentially undetectable. These experiments evaluated two different carbon sources (propionate and acetate), and in every case, two different P-release rates were detected. The highest rate took place while there was volatile fatty acid (VFA) in the mixed liquor, and after the VFA was depleted a second P-release rate was observed. This second rate was very similar to the one detected in experiments performed without added VFA.A kinetic and stoichiometric model developed as a modification of Activated Sludge Model 2 (ASM2) including glycogen economy, was fitted to the experimental profiles. The validation and calibration of this model was carried out with the cycle study experiments performed using both VFAs. The effect of pH from 6.5 to 8.0 on anaerobic P-release and VFA-uptake and aerobic P-uptake was also studied using propionate. The optimal overall working pH was around 7.5. This is the first study of the microbial community involved in EBPR developed with propionate as a sole carbon source along with detailed process performance investigations of the propionate-utilizing PAOs. 相似文献
3.
Zeng RJ Saunders AM Yuan Z Blackall LL Keller J 《Biotechnology and bioengineering》2003,83(2):140-148
Two laboratory-scale sequencing batch reactors (SBRs) were operated for enhanced biological phosphorus removal (EBPR) in alternating anaerobic-aerobic or alternating anaerobic-anoxic modes, respectively. Polyphosphate-accumulating organisms (PAOs) were enriched in the anaerobic-aerobic SBR and denitrifying PAOs (DPAOs) were enriched in the anaerobic-aerobic SBR. Fluorescence in situ hybridization (FISH) demonstrated that the well-known PAO, \"Candidatus Accumulibacter phosphatis\" was abundant in both SBRs, and post-FISH chemical staining with 4,6-diamidino-2-phenylindol (DAPI) confirmed that they accumulated polyphosphate. When the anaerobic-anoxic SBR enriched for DPAOs was converted to anaerobic-aerobic operation, aerobic uptake of phosphorus by the resident microbial community occurred immediately. However, when the anaerobic-aerobic SBR enriched for PAOs was exposed to one cycle with anoxic rather than aerobic conditions, a 5-h lag period elapsed before phosphorus uptake proceeded. This anoxic phosphorus-uptake lag phase was not observed in the subsequent anaerobic-aerobic cycle. These results demonstrate that the PAOs that dominated the anaerobic-aerobic SBR biomass were the same organisms as the DPAOs enriched under anaerobic-anoxic conditions. 相似文献
4.
Carlota Tayà Javier Guerrero Gianni Vanneste Albert Guisasola Juan A. Baeza 《Biotechnology and bioengineering》2013,110(2):391-400
The presence of suitable carbon sources for enhanced biological phosphorus removal (EBPR) plays a key role in phosphorus removal from wastewater in urban WWTP. For wastewaters with low volatile fatty acids (VFAs) content, an external carbon addition is necessary. As methanol is the most commonly external carbon source used for denitrification it could be a priori a promising alternative, but previous attempts to use it for EBPR have failed. This study is the first successful report of methanol utilization as external carbon source for EBPR. Since a direct replacement strategy (i.e., supply of methanol as a sole carbon source to a propionic‐fed PAO‐enriched sludge) failed, a novel process was designed and implemented successfully: development of a consortium with anaerobic biomass and polyphosphate accumulating organisms (PAOs). Methanol‐degrading acetogens were (i) selected against other anaerobic methanol degraders from an anaerobic sludge; (ii) subjected to conventional EBPR conditions (anaerobic + aerobic); and (iii) bioaugmented with PAOs. EBPR with methanol as a sole carbon source was sustained in a mid‐term basis with this procedure. Biotechnol. Bioeng. 2013; 110: 391–400. © 2012 Wiley Periodicals, Inc. 相似文献
5.
Guisasola A Pijuan M Baeza JA Carrera J Casas C Lafuente J 《Biotechnology and bioengineering》2004,85(7):722-733
The main processes involved in enhanced biological phosphorus removal (EBPR) under anaerobic and subsequently aerobic conditions are widely described in the literature. Polyphosphate accumulating organisms (PAO) are the organisms responsible for this process. However, the mechanisms of PAO are not fully established yet under conditions that differ from the classical anaerobic/aerobic conditions. In this work, we made a comparison between the behavior of PAO under classical EBPR conditions and its behavior when consuming substrate under only aerobic conditions. In addition, oxygen uptake rate (OUR) was measured in the set of experiments under aerobic conditions to improve the characterization of the process. A kinetic and stoichiometric model based on Activated Sludge Model No.2 (ASM2) and including glycogen economy (AnOx model), calibrated for classical anaerobic/aerobic conditions, was not able to describe the experimental data since it underestimated the acetate consumption, the PHB storage, and the OUR. Two different hypotheses for describing the experimental measurements were proposed and modeled. Both hypotheses considered that PAO, under aerobic conditions, uptake acetate coupled to PHB storage, glycogen degradation, and phosphorus release as in anaerobic conditions. Moreover, the first hypothesis (PAO-hypothesis) considered that PAO were able to store acetate as PHB linked to oxygen consumption and the second one (OHO hypothesis) considered that this storage was due to ordinary heterotrophic organisms (OHO). Both hypotheses were evaluated by simulation extending the AnOx model with additional equations. The main differences observed were the predictions for PHB degradation during the famine phase and the OUR profile during both feast and famine phases. The OHO hypothesis described the experimental profiles more accurately than the PAO hypothesis. 相似文献
6.
Lopez-Vazquez CM Song YI Hooijmans CM Brdjanovic D Moussa MS Gijzen HJ van Loosdrecht MC 《Biotechnology and bioengineering》2008,101(2):295-306
Short-term temperature effects on the aerobic metabolism of glycogen-accumulating organisms (GAO) were investigated within a temperature range from 10 to 40 degrees C. Candidatus Competibacter Phosphatis, known GAO, were the dominant microorganisms in the enriched culture comprising 93 +/- 1% of total bacterial population as indicated by fluorescence in situ hybridization (FISH) analysis. Between 10 and 30 degrees C, the aerobic stoichiometry of GAO was insensitive to temperature changes. Around 30 degrees C, the optimal temperature for most of the aerobic kinetic rates was found. At temperatures higher than 30 degrees C, a decrease on the aerobic stoichiometric yields combined with an increase on the aerobic maintenance requirements were observed. An optimal overall temperature for both anaerobic and aerobic metabolisms of GAO appears to be found around 30 degrees C. Furthermore, within a temperature range (10-30 degrees C) that covers the operating temperature range of most of domestic wastewater treatment systems, GAOs aerobic kinetic rates exhibited a medium degree of dependency on temperature (theta = 1.046-1.090) comparable to that of phosphorus accumulating organisms (PAO). We conclude that GAO do not have metabolic advantages over PAO concerning the effects of temperature on their aerobic metabolism, and competitive advantages are due to anaerobic processes. 相似文献
7.
Nitrogen and phosphorus removal from wastewater is now considered essential for the protection of our waterways. Biological nutrient removal processes are generally the most efficient and cost-effective solution to achieve this. While the principles of these processes are well known, intriguing and useful details are being discovered with the recent advances in bio-process engineering and microbial sciences. Phosphorus accumulating organisms have only been identified in recent years, and there are now competing glycogen accumulating organisms being found in biological phosphorus removal systems. These can possibly explain the reasons for the variable phosphorus removal performance of certain systems, and their control can help in the development of more stable and better performing processes. Detailed investigations of the traditional nitrification-denitrification systems, but also of novel developments for nitrogen removal, reveal a more complex and diverse range of processes involved in these transformations. Increasingly, linked phosphorus and nitrogen removal processes are being developed, creating further opportunities to optimise the technologies. However, this might also bring certain risks such as the potential to produce the greenhouse-gas nitrous oxide (N2O) rather than nitrogen gas as the final denitrification product. A range of recent developments in these areas is covered in this paper. 相似文献
8.
Propionate, a carbon substrate abundant in many prefermenters, has been shown in several previous studies to be a more favorable substrate than acetate for enhanced biological phosphorus removal (EBPR). The anaerobic metabolism of propionate by polyphosphate accumulating organisms (PAOs) is studied in this paper. A metabolic model is proposed to characterize the anaerobic biochemical transformations of propionate uptake by PAOs. The model is demonstrated to predict very well the experimental data from a PAO culture enriched in a laboratory-scale reactor with propionate as the sole carbon source. Quantitative fluorescence in-situ hybridization (FISH) analysis shows that Candidatus Accumulibacter phosphatis, the only identified PAO to date, constitute 63% of the bacterial population in this culture. Unlike the anaerobic metabolism of acetate by PAOs, which induces mainly poly-beta-hydroxybutyrate (PHB) production, the major fractions of poly-beta-hydroxyalkanoate (PHA) produced with propionate as the carbon source are poly-beta-hydroxyvalerate (PHV) and poly-beta-hydroxy-2-methylvalerate (PH2MV). PHA formation correlates very well with a selective (or nonrandom) condensation of acetyl-CoA and propionyl-CoA molecules. The maximum specific propionate uptake rate by PAOs found in this study is 0.18 C-mol/C-mol-biomass . h, which is very similar to the maximum specific acetate uptake rate reported in literature. The energy required for transporting 1 carbon-mole of propionate across the PAO cell membrane is also determined to be similar to the transportation of 1 carbon-mole of acetate. Furthermore, the experimental results suggest that PAOs possess a similar preference toward acetate and propionate uptake on a carbon-mole basis. 相似文献
9.
Glycogen-accumulating organisms (GAO) have the potential to directly compete with polyphosphate-accumulating organisms (PAO) in EBPR systems as both are able to take up VFA anaerobically and grow on the intracellular storage products aerobically. Under anaerobic conditions GAO hydrolyse glycogen to gain energy and reducing equivalents to take up VFA and to synthesise polyhydroxyalkanoate (PHA). In the subsequent aerobic stage, PHA is being oxidised to gain energy for glycogen replenishment (from PHA) and for cell growth. This article describes a complete anaerobic and aerobic model for GAO based on the understanding of their metabolic pathways. The anaerobic model has been developed and reported previously, while the aerobic metabolic model was developed in this study. It is based on the assumption that acetyl-CoA and propionyl-CoA go through the catabolic and anabolic processes independently. Experimental validation shows that the integrated model can predict the anaerobic and aerobic results very well. It was found in this study that at pH 7 the maximum acetate uptake rate of GAO was slower than that reported for PAO in the anaerobic stage. On the other hand, the net biomass production per C-mol acetate added is about 9% higher for GAO than for PAO. This would indicate that PAO and GAO each have certain competitive advantages during different parts of the anaerobic/aerobic process cycle. 相似文献
10.
Different alternative configurations and strategies for the simultaneous biological removal of organic matter and nutrients (N and P) in wastewater have been proposed in the literature. This work demonstrates a new successful strategy to bring in enhanced biological phosphorus removal (EBPR) to a conventional nitrification/denitrification system by means of bioaugmentation with an enriched culture of phosphorus accumulating organisms (PAO). This strategy was tested in a sequencing batch reactor (SBR), where an 8 h configuration with 3 h anoxic, 4.5 h aerobic and 25 min of settling confirmed that nitrification, denitrification and PAO activity could be maintained for a minimum of 60 days of operation after the bioaugmentation step. The successful bioaugmentation strategy opens new possibilities for retrofitting full-scale WWTP originally designed for only nitrification/denitrification. These systems could remove P simultaneously to COD and N if they were bioaugmented with waste purge of an anaerobic/aerobic SBR operated in parallel treating part of the influent wastewater. 相似文献
11.
Membrane filtration was integrated with a post-denitrification process to form an innovative membrane bioreactor (MBR) system for effective organic degradation and nutrient (N and P) removal. The system comprised of an aerobic tank, an anoxic tank, an intermediate sedimentation tank, and a membrane filtration tank. The sedimentation tank functioned not only as a rough settler for sludge–water separation before membrane filtration but also as an anaerobic chamber for P release. While half of the influent flowed into the aerobic tank, the other half was fed into the anoxic tank to favor the proliferation of phosphorus accumulating organisms (PAOs). The experiment was conducted continuously for about 430 days. With a short overall treatment time of less than 10 h for municipal wastewater, the MBR-based process could achieve the total organic carbon, total nitrogen, and total phosphorus removals of around 94%, 85%, and 87%, respectively. The growth and activity of PAOs in the MBR system were evidenced by the significant P release in the anaerobic chamber followed by the luxury P uptake in the membrane tank. With the DAPI and PAOmix probe staining, the increases of PAOs and polyhydroxybutyrate (PHB) in sludge during the experiment were well observed under the fluorescent microscope. 相似文献
12.
This paper proposes a new metabolic model for acetate uptake by a mixed culture of phosphate- and glycogen-accumulating organisms (PAOs and GAOs) under anaerobic conditions. The model uses variable overall stoichiometry based on the assumption that PAOs may have the ability of using the glyoxylate pathway to produce the required reducing power for polyhydroxyalkonate (PHA) synthesis. The proposed model was tested and verified by experimental results. A sequencing batch reactor system was operated for enhanced biological phosphorus removal (EBPR) with acetate as the sole carbon source at different influent acetate/phosphate ratios. The resulting experimental data supported the validity of the proposed model, indicating the presence of GAOs for all tested HAc/P ratios, especially under P-limiting conditions. Strong agreement is observed between experimental values and model predictions for all model components, namely, PHB production, PHA composition, glycogen utilization, and P release. 相似文献
13.
Effect of nitrite from nitritation on biological phosphorus removal in a sequencing batch reactor treating domestic wastewater 总被引:3,自引:0,他引:3
Although nitrite effect on enhanced biological phosphorus removal (EBPR) has been previously studied, very limited research has been undertaken about the effect of nitrite accumulation caused by nitritation on EBPR. This paper focused on nitrite effect from nitritation on EBPR in a sequencing batch reactor treating domestic wastewater. Results showed that nitrite of below 10 mg/L did not inhibit P-uptake and release; whereas EBPR deterioration was observed when nitrite accumulation reached 20 mg/L. Due to P-uptake prior to nitritation, nitrite of 20 mg/L has no effect on aerobic P-uptake. The main reason leading to EBPR deterioration was the competition of carbon source. Batch tests were conducted to investigate nitrite effect on anaerobic P-release. Under sufficient carbon source, nitrite of 30 mg/L had no impact on poly-β-hydroxyalkanoate (PHA) storage; contrarily, under insufficient carbon source, denitrifiers competing for carbon source with phosphorus accumulating organisms resulted in decrease of PHA synthesis and P-release. 相似文献
14.
Filipe et al. (2001) proposed an anaerobic metabolic model for glycogen-accumulating organisms (GAO) in which the succinate-propionate pathway was used to describe the production of propionyl-CoA. However, propionyl-CoA is only an intermediate product in the above pathway. Stopping at propionyl-CoA instead of propionate (the end product of the pathway) results in the consumption of one ATP from succinate to succinyl-CoA, which was not accounted for in the model of Filipe et al. (2001). This resulted in significant errors in the stoichiometric coefficients in the final metabolic model. A modified model is presented in this communication and is shown to fit the experimental data significantly better than the original model. 相似文献
15.
Heavy metal and radionuclide contamination presents a significant environmental problem worldwide. Precipitation of heavy metals on membranes of cells that secrete phosphate has been shown to be an effective method of reducing the volume of these wastes, thus reducing the cost of disposal. A consortium of organisms, some of which secrete large quantities of phosphate, was enriched in a laboratory-scale sequencing batch reactor performing Enhanced Biological Phosphorus Removal, a treatment process widely used for removing phosphorus. Organisms collected after the aerobic phase of this process secreted phosphate and precipitated greater than 98% of the uranyl from a 1.5 mM uranyl nitrate solution when supplemented with an organic acid as a carbon source under anaerobic conditions. Transmission electron microscopy, energy dispersive x-ray spectroscopy, and fluorescence spectroscopy were used to identify the precipitate as membrane-associated uranyl phosphate, UO2HPO4. 相似文献
16.
Effect of different carbon sources on the enhanced biological phosphorus removal in a sequencing batch reactor 总被引:1,自引:0,他引:1
Hollender Juliane van der Krol Doris Kornberger Liane Gierden Edith Dott Wolfgang 《World journal of microbiology & biotechnology》2002,18(4):359-364
The effect of the different carbon sources acetate, acetate/glucose or glucose on the enhanced biological phosphorus removal
(EBPR) process was studied by experiments under alternating anaerobic–aerobic conditions in one sequencing batch reactor for
each carbon source. The glucose was consumed completely within the first 30 min of the anaerobic phase whereas acetate degradation
was slow and incomplete. Phosphate was released independently of the carbon source during the whole anaerobic phase. The highest
phosphate release (27 mg P l−1) and polyhydroxyalkanoate (PHA) storage (20 mg C g−1 dry matter (DM)) during the anaerobic phase as well as the highest polyphosphate (poly-P) (8 mg P g−1 DM) and glycogen storage (17 mg C g−1 DM) during the aerobic phase were observed with acetate. In contrast to other investigations, glycogen storage did not increase
with glucose as substrate but was significantly smaller than with acetate. The PHA composition was also influenced strongly
by the carbon source. The polyhydroxyvalerate (PHV) portion of the PHA was maximal 17% for acetate and 82% for glucose. Due
to the strong influence of the carbon source on the PHA concentration and composition, PHA storage seems to regulate mainly
the phosphate release and uptake.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
17.
Which are the polyphosphate accumulating organisms in full-scale activated sludge enhanced biological phosphate removal systems in Australia? 总被引:1,自引:0,他引:1
AIMS: To see if the compositions of the microbial communities in full scale enhanced biological phosphorus removal activated sludge systems were the same as those from laboratory scale sequencing batch reactors fed a synthetic sewage. METHODS: Biomass samples taken from nine full scale enhanced biological phosphate removal (EBPR) activated sludge plants in the eastern states of Australia were analysed for their populations of polyphosphate (polyP)-accumulating organisms (PAO) using semi-quantitative fluorescence in situ hybridization (FISH) in combination with DAPI (4'-6-diamidino-2-phenylindole) staining for polyP. RESULTS: Very few betaproteobacterial Rhodocyclus related organisms could be detected by FISH in most of the plants examined, and even where present, not all these cells even within a single cluster, stained positively for polyP with DAPI. In some plants in samples from aerobic reactors the Actinobacteria dominated populations containing polyP. CONCLUSIONS: The PAO populations in full-scale EBPR systems often differ to those seen in laboratory scale reactors fed artificial sewage, and Rhodocyclus related organisms, dominating these latter communities may not be as important in full-scale systems. Instead Actinobacteria may be the major PAO. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings illustrate how little is still known about the microbial ecology of EBPR processes and that more emphasis should now be placed on analysis of full-scale plants if microbiological methods are to be applied to monitoring their performances. 相似文献
18.
Activated sludge systems are designed and operated globally to remove phosphorus microbiologically, a process called enhanced biological phosphorus removal (EBPR). Yet little is still known about the ecology of EBPR processes, the microbes involved, their functions there and the possible reasons why they often perform unreliably. The application of rRNA-based methods to analyze EBPR community structure has changed dramatically our understanding of the microbial populations responsible for EBPR, but many substantial gaps in our knowledge of the population dynamics of EBPR and its underlying mechanisms remain. This review critically examines what we once thought we knew about the microbial ecology of EBPR, what we think we now know, and what still needs to be elucidated before these processes can be operated and controlled more reliably than is currently possible. It looks at the history of EBPR, the currently available biochemical models, the structure of the microbial communities found in EBPR systems, possible identities of the bacteria responsible, and the evidence why these systems might operate suboptimally. The review stresses the need to extend what have been predominantly laboratory-based studies to full-scale operating plants. It aims to encourage microbiologists and process engineers to collaborate more closely and to bring an interdisciplinary approach to bear on this complex ecosystem. 相似文献
19.
An anaerobic aerobic laboratory scale sequencing batch reactor (SBR) was operated to study the effect of pH on enhanced biological phosphorus removal. Seven steady states were achieved under different operating conditions. In all of them, a slight variation in the pH value was observed during anaerobic phase. However, pH rose significantly during aerobic phase. The increase observed was due to phosphorus uptake and carbon dioxide stripping. When pH was higher than 8.2-8.25 the phosphorus uptake rate clearly decreased. The capability of Activated Sludge Model No. 2d (ASM2d) and Biological Nutrient Removal Model No. 1 (BNRM1) to simulate experimental results was evaluated. Both models successfully characterized the enhanced biological phosphorus removal performance of the SBR. Furthermore, BNRM1 also reproduced the pH variations observed and the decrease in the phosphorus uptake rate. This model includes a switch function in the kinetic expressions to represent the pH inhibition in biological processes. The pH inhibition constants related to polyphosphate storage process were obtained by adjusting model predictions to measured phosphorus concentrations. On the other hand, pH inhibition should be included in ASM2d to accurately simulate experimental phosphorus evolution observed in an A/O SBR. 相似文献
20.
Nitrite has been found in previous research an inhibitor on anoxic phosphorus uptake in enhanced biological phosphorus removal systems (EBPR). However, the inhibiting nitrite concentration reported varied in a large range. This study investigates the nitrite inhibition on anoxic phosphorus uptake by using four different mixed cultures performing EBPR with pH considered an important factor. The results showed that the protonated species of nitrite, HNO(2) (or free nitrous acid, FNA), rather than nitrite, is likely the actual inhibitor on the anoxic phosphorus uptake, as revealed by the much stronger correlation of the phosphorus uptake rate with the FNA than with the nitrite concentration. All the four EBPR sludges showed decreased anoxic phosphorus uptake rates with increased FNA concentrations in the studied range of 0.002-0.02 mg HNO(2)-N/L. The phosphorus uptake by all four cultures was completely inhibited at 0.02 mg HNO(2)-N/L. Granular sludge appeared to be more tolerant to HNO(2) than flocular sludge likely due to its stronger resistance to the transfer of nitrite into the bacterial aggregates. Furthermore, denitrification by the phosphorus-accumulating organisms (PAOs) was also found to be inhibited by HNO(2). The denitrification rate decreased by approximately 40% when the FNA concentration was increased from 0.002 to 0.02 mg HNO(2)-N/L. 相似文献