首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When used in a helper phage capacity, phages 29, 52, 52A, 79, 80, 55, 71, 53, 83A, 85, 95, 96, phi11, and 80 alpha, all serological group B Staphylococcus phages, conferred competence for transformation to S. aureus 8325-4, a strain that does not normally become competent. Of the serological group A phages tested, only phage 3A showed significant competence-conferring activity. Phages 29, 55, 53, 83A, .85, 95, phi11, and 80 alpha showed an enhancement of competence-conferring activity if exposure to the cells occurred in the presence of nromal rabbit serum. All of the propagating strains for the Staphylococcus reference typing phages were rendered competent for transformation by exposure to at least one of these helper phages. The use of a helper phage to confer competence to S. aureus did not result in distortion of the genetic linkages observed in an inherently competent strain. Lysogenization by phages phi11 or 83A is shown not to be required for the expression of competence, and evidence is presented which indicates that competence in the inherently competent 8325 strain is due to a helper phage effect initiated by the adsorption to cells of phi11 virion parts [or phi11 particles in the case of the single lysogen 8325-4(phi11)] that have been liberated by prophage induction.  相似文献   

2.
Thirteen virulent phages and two temperate phages of two closely related bacterial species (Lactobacillus lactis and L. bulgaricus) were compared for their protein composition, their antigenic properties, their restriction endonuclease patterns, and their DNA homology. The immunoblotting studies and the DNA-DNA hybridizations showed that the phages could be differentiated into two groups. One group contained 2 temperate phages of L. bulgaricus and 11 virulent phages of L. lactis. Inside each group, at least two common proteins of identical sizes could be detected for each phage. These proteins were able to cross-react in immunoblotting experiments with an antiserum raised against one phage of the same group. Temperate phage DNAs showed partial homology with DNAs from some virulent phages. These homologies seem to be located on the region coding for the structural proteins since recombinant plasmids coding for one of the major phage proteins of one phage were able to hybridize with the DNAs from phages of the same group. These results suggest that temperate and virulent phages may be related to one another.  相似文献   

3.
Three Lactobacillus casei bacteriophages, LC-Nu, PL-1, and ?FSW, were compared. Phage LC-Nu, which has not been previously characterized, originated from a local cheese plant in Finland. Phages PL-1 and ?FSW (isolated in Japan) represent the most thoroughly studied L.casei phages so far. All three phages had similar morphotypes, but still had different patterns of structural proteins, as analyzed by SDS-PAGE. The phages differed also in types of genome organization: LC-Nu and PL-1 had cohesive ends in their DNAs, and the DNA of ?FSW was circularly permuted. The initiation site and orientation of packaging of ?FSW DNA were identified. The homologies between the phage genomes were analyzed by Southern hybridization. About one-third of each phage gem me was highly homologous with other phages (homology over 85%), and two-thirds were slightly homologous (homology between 65% and 76%). DNAs from five industrial L. casei strains were also tested for homology with phage LC-Nu DNA. Phage LC-Nu related sequences were present in all the L. casei strains tested.  相似文献   

4.
Overlapping, sheared DNA fragments from the B95-8 strain of Epstein-Barr virus were cloned in Charon 4A. Eleven recombinant phages plus one recombinant plasmid contained all of the sequences found in B95-8 virion DNA. Analysis of recombinant DNA molecules revealed a previously undetected site of homology to the internal repetition found in Epstein-Barr virus DNA. This site was adjacent to or at a site which was unstable when the recombinant DNA was propagated as phage DNA in procaryotic hosts.  相似文献   

5.
Phages encoding production of Vero cytotoxins VT1 or VT2 were isolated from strains of Escherichia coli of human and bovine origin. Two human strains of serotype O157: H7 produced both VT1 and VT2 and each carried two separate phages encoding either VT1 or VT2. The phages were morphologically similar to each other and to a VT2 phage previously isolated from a strain of serotype O157: H-; all had regular hexagonal heads and short tails. The phages had similar genome sizes and DNA hybridization and restriction enzyme digestion showed that the DNAs were very closely related. This contrasts with another report that one of the strains tested (933) released two clearly distinguishable phages separately encoding VT1 and VT2. The O157 phages differed from a VT1 phage isolated from a bovine E. coli strain belonging to serotype O26: H11 and from the reference VT1 phage isolated previously from a human strain, H19, of serotype O26: H11. The two O26 phages were morphologically similar with elongated heads and long tails. They had similar genome sizes and DNA hybridization indicated a high level of homology between them. Hybridization of an O157 phage DNA probe to DNA of the O26 phages, and vice versa, showed there was some cross-hybridization between the two types of phage. A phage from a bovine strain of serotype O29: H34 had a regular hexagonal head and short tail resembling those of the O157 phages. The DNA was distinguishable from that of all the other phages tested in restriction digest patterns but hybridized significantly to that of an O157 phage. Hybridization of the phage genomes with VT1 and VT2 gene probes showed that sequences encoding these toxins were highly conserved in the different phages from strains belonging to the three serogroups.  相似文献   

6.
7.
Thirty-three virulent and five temperate phages of Streptococcus lactis and Streptococcus cremoris were differentiated into three groups by DNA homology. A complete lack of DNA homology was demonstrated between the phage groups. Within each group, large parts of the phage genomes were homologous except for a few phages. One group consisted of five temperate and two virulent phages suggesting that virulent phages isolated during abnormal fermentations and temperate phages isolated after induction from lactic streptococcal starter cultures may be related to one another. We observed a good correlation between the grouping of phages by DNA homology and by their protein composition since within the same DNA homology group, the protein composition of a phage exhibited some similarities with that of the other phages of the group. Therefore, the DNA homologies seemed to be located, at least, in the region coding for the structural proteins. By immunoblotting, we confirmed the relatedness between the proteins of the phages belonging to the same DNA homology group. The important host range factor in bacterium-phage interactions appeared to be an unreliable criterion in determining phage taxonomy.  相似文献   

8.
A set of 83 lytic dairy bacteriophages (phages) infecting flavor-producing mesophilic starter strains of the Leuconostoc genus was characterized, and the first in-depth taxonomic scheme was established for this phage group. Phages were obtained from different sources, i.e., from dairy samples originating from 11 German dairies (50 Leuconostoc pseudomesenteroides [Ln. pseudomesenteroides] phages, 4 Ln. mesenteroides phages) and from 3 external phage collections (17 Ln. pseudomesenteroides phages, 12 Ln. mesenteroides phages). All phages belonged to the Siphoviridae family of phages with isometric heads (diameter, 55 nm) and noncontractile tails (length, 140 nm). With the exception of one phage (i.e., phage ΦLN25), all Ln. mesenteroides phages lysed the same host strains and revealed characteristic globular baseplate appendages. Phage ΦLN25, with different Y-shaped appendages, had a unique host range. Apart from two phages (i.e., phages P792 and P793), all Ln. pseudomesenteroides phages shared the same host range and had plain baseplates without distinguishable appendages. They were further characterized by the presence or absence of a collar below the phage head or by unique tails with straight striations. Phages P792 and P793 with characteristic fluffy baseplate appendages could propagate only on other specific hosts. All Ln. mesenteroides and all Ln. pseudomesenteroides phages were members of two (host species-specific) distinct genotypes but shared a limited conserved DNA region specifying their structural genes. A PCR detection system was established and was shown to be reliable for the detection of all Leuconostoc phage types.  相似文献   

9.
Temperate phages were induced from Streptococcus cremoris R1, BK5, and 134. DNA from the three induced phages was shown to be homologous with prophage DNA in the bacterial chromosomes of their lysogenic hosts by the Southern blot hybridization technique. 32P-labeled DNA from 11 lytic phages which had been isolated on cheese starters was similarly hybridized with DNA from 36 strains of lactic streptococci. No significant homology was detected between the phage and bacterial DNA. Phages and lactic streptococci used included phages isolated in a recently opened cheese plant and all the starter strains used in the plant since it commenced operation. The three temperate phages were compared by DNA-DNA hybridizations with 25 lytic phages isolated on cheese starters. Little or no homology was found between DNA from the temperate and lytic phages. In contrast, temperate phages showed a partial relationship with one another. Temperate phage DNA also showed partial homology with DNA from a number of strains of lactic streptococci, many of which have been shown to be lysogenic. This suggests that many temperate phages in lactic streptococci may be related to one another and therefore may be homoimmune with one another. These findings indicate that the release of temperate phages from starter cells currently in use is unlikely to be the predominant source of lytic phages in cheese plants.  相似文献   

10.
【目的】本研究旨在通过驯化提高噬菌体的裂解能力并降低其宿主菌耐受性产生的速度,从而提高对重要病原菌-碳青霉烯类耐药肺炎克雷伯菌(carbapenem-resistant Klebsiella pneumoniae, CRKp)的杀菌效果。【方法】以临床CRKp菌株Kp2092为宿主菌,利用双层琼脂平板法从污水中分离噬菌体并分析其裂解谱;对其中的广谱强裂解性噬菌体通过透射电镜观察其形态特征并进行全基因组测序;通过噬菌体-宿主连续培养进行噬菌体驯化,并比较驯化前后噬菌体生物学特性的差异。【结果】分离得到的9株肺炎克雷伯菌噬菌体中,噬菌体P55anc裂解能力强且裂解谱广,透射电镜观察发现其为短尾噬菌体。P55anc基因组全长40 301 bp,包含51个编码序列,其中27个具有已知功能,主要涉及核酸代谢、噬菌体结构蛋白、DNA包装和细胞裂解等。噬菌体P55anc经9 d的驯化后,得到3株驯化噬菌体。驯化后噬菌体杀菌能力增强,主要表现为细菌生长曲线显著下降、噬菌体暴发量增多、裂解谱扩大,且宿主菌对其产生抗性的概率显著降低。与此同时,驯化后的噬菌体在热处理、紫外暴露以及血清等环境下保持较好的稳定性。【结论】利用噬菌体-宿主连续培养的方法可对噬菌体进行驯化和筛选,驯化后的噬菌体杀菌效果更强,且在不同压力处理下的稳定性良好,而细菌产生噬菌体抗性的概率也降低。  相似文献   

11.
Abstract Several Staphylococcus aureus strains were lysogenized by the phages of serological group B (phages φ53, φ85) as well as by some of serological group F (phages φ77, φ84) and macrorestriction fragment patterns of genomic DNA were estimated in the lysogenized, non-lysogenic and delysogenized (cured of prophages) strains. It was shown that the integration of phage DNA into chromosome of S. aureus leads to specific changes in restriction fragment pattern in all the lysogenized strains. These changes correlate well with the Sma I restriction map of S. aureus NCTC 8325 since they concern the restriction fragments defined in this map. Phages φ53 and φ85 integrate into Sma I fragment B. On the other hand, phages φ77 and φ84 integrate into Smal fragment E of the S. aureus restriction map. The prophages of strain NCTC 8511 have their integration sites, as follows: the phage designated by us φM integrates in fragment A, whereas the integration site for phage φJ lies in fragment E. Phage φM was estimated to be genetically related to phages of serological group A and phage φJ to those of serological group F. Evidence was given that lysogenization of S. aureus strains by at least four prophages does not cast any doubt upon the estimation of their genetic relatedness based on their similarity in restriction pattern.  相似文献   

12.
Molecular taxonomy of Lactobacillus phages   总被引:4,自引:0,他引:4  
Forty-eight strains of lactobacilli used as starter strains in the dairy industry were examined for lysogeny after treatment with mitomycin C. Two strains of L. delbrueckii subsp. bulgaricus were able to produce active phages. These temperate phages as well as 4 virulent phages isolated during abnormal fermentations were compared to a previously characterized phage mv4 which is temperate. All these phages were shown to be partially homologous by DNA-DNA hybridization. Genes that code for viral proteins seem to be well conserved since 2 major virion polypeptides of 18 (or 19) kD and 34 kD could be detected in the protein composition of each phage. Immunoblotting studies of the 7 phages using serum raised against phage mv4 confirmed that the proteins of the different phages were related. All these phages can be classified in the previously constituted group a, which now comprises 4 temperate and 15 virulent phages. These results show that some virulent phages appearing during abnormal fermentations and some temperate phages isolated by appearing during abnormal fermentations and some temperate phages isolated by induction of starter strains can be closely related genetically. Five virulent phages of L. helveticus were also compared according to their restriction pattern and their DNA homology. They were shown to be related to one another, but unrelated to phages of other lactic acid bacteria species.  相似文献   

13.
14 new transposable phages (TP) were isolated from approx. 200 clinical isolates of Pseudomonas aeruginosa. The frequent occurrence of TP of P. aeruginosa has been confirmed. There are at least two different groups of TP, namely, the group of D3112 and that of B3. The distinctive features of phages belonging to the groups are as follows: 1) low level of DNA-DNA homology (less than 10%), the whole region of homology in phage genomes of different groups being located on right genome end (29-38 kb); only one of phages of the B3 group shows an additional homology with D3112 DNA outside the above mentioned region; 2) a variable DNA is observed on the left end of the B3 group phage genomes and no such DNA is revealed on the left end of genomes of the D3112 group phages; 3) all phages of the B3 group have specific type of interaction with RPL11 plasmid, which distinguish them from phages of the D3112 group; 4) phages belonging to the two groups differ greatly in their growth in cells harbouring pMG7 plasmid which mediates production of PaeR7 endonuclease and in the number of DNA sites sensitive to SalGI, PstI, BglII endonucleases. Since some of the B3 group phage genomes possess BamH1 sites, resistance to this enzyme cannot be regarded as a general characteristics for all TP of P. aeruginosa, as it was earlier proposed. Some aspects of modular hypothesis of bacteriophage evolution concerning, in particular, the ways of module formation are discussed.  相似文献   

14.
A comparative study of 30 phages of Streptococcus thermophilus was performed based on DNA restriction profiles, DNA homology, structural proteins, packaging mechanisms, and host range data. All phages exhibited distinct DNA restriction profiles, with some phages displaying similarly sized restriction fragments. DNA homology was shown to be present among all 30 phages. The phages could be divided into two groups on the basis of their packaging mechanism as was derived from the appearance of submolar DNA fragments in restriction enzyme digests and the presence (cos-containing phages) or absence (pac-containing phages) of cohesive genomic extremities. Interestingly, the 19 identified cos-containing phages possessed two major structural proteins (32 and 26 kDa) in contrast to the remaining 11 pac-containing phages, which possessed three major structural proteins (41, 25, and 13 kDa). Southern hybridization demonstrated that all pac-containing phages tested contain homologs of the genes encoding the three major structural proteins of the pac-containing phage O1205, whereas all cos-containing phages tested exhibit homology to the gene specifying one of the structural components of the cos-containing phage phi 7201. Fifty-seven percent of the phages (both cos and pac containing) possessed the previously identified 2.2-kb EcoRI fragment of the temperate S. thermophilus phage Sfi18 (H. Brüssow, A. Probst, M. Frémont, and J. Sidoti, Virology 200:854-857, 1994). No obvious correlation was detected between grouping based on packaging mechanism and host range data obtained with 39 industrial S. thermophilus strains.  相似文献   

15.
The genomic DNA of 58 isolates of methicillin-resistant Staphylococcus aureus (MRSA) obtained during an infection outbreak at two major Canberra hospitals was analysed for restriction fragment length polymorphism (RFLP) by digestion with the endonuclease SmaI and resolution of the fragments by pulsed-field gel electrophoresis. Based on the fraction of common fragments generated by the endonuclease, DNA similarities among the isolates were estimated. Distance matrix analysis showed that the MRSA isolates could be divided into two major clusters (RFLP types I and II) and one minor one (type 46). A fourth group of miscellaneous isolates was found to be heterogeneous in terms of DNA sequence similarity. The epidemiological data indicated that RFLP type I was most common in the intensive care units in the two hospitals, with particular subtypes of RFLP type I concentrated in individual units. RFLP type II and the miscellaneous group were more generally distributed. Type 46 isolates appear to be related to a group which was present in epidemics in Melbourne hospitals in the early 1980s. Using the standard phage set, the RFLP type I group was largely untypable. However, type II isolates were all phage typable, with a shared susceptibility to phages 29/85/95/90; type 46 isolates had a shared susceptibility to phages 85/90. The miscellaneous isolates were of variable phage types.  相似文献   

16.
Study of two recently isolated giant bacteriophages Lu11 and OBP that are active on Pseudomonas putida var. Manila and Pseudomonas fluorescens, respectively, demonstrated their similarity in morphology, genome size, and size of phage particles, with giant bacteriophages of Pseudomonas aeruginosa assigned to the supergroup of phiKZ-like phages of the family Myoviridae designated in this manner according to the best studied phage phiKZ that belongs to the species of this group widely distributed in nature. Comparison of major polypeptide sizes of mature particles suggests the similarity of certain proteins in the phages examined. In OBP particles visualized with an electron microscope, an "inner body" was detected, which points to the specific DNA package intrinsic to phages of phiKZ group. In the meantime, phages Lul11 and OBP do not exhibit resemblance among themselves or with any of earlier described phiKZ-like phages in respect to other traits; particularly, they have no detectable DNA homology. Note that phage Lu11 of P. putida var. Manila exhibits very slight homology with phage Lin68 of the family of P. aeruginosa phiKZ-like phages detected only in blot hybridization. This suggests the possible involvement of these phages in interspecies recombination ("gene shuffling") between phages of various bacterial species. Results of partial sequencing of phage genomes confirmed the phylogenetic relatedness of phage OBP to phages of the phiKZ-supergroup, whereas phage Lu11 most probably belongs to a novel species that is not a member of supergroup phiKZ composition. The results of the study are discussed in terms of the evolution of these phages.  相似文献   

17.
Bacteriophages uc1001 and uc1002, which are lytic for Streptococcus cremoris UC501 and UC502, respectively, were characterized in detail. Comparisons were made with a previously characterized phage, P008, which is lytic for Streptococcus lactis subsp. diacetylactis F7/2, and uc3001, which is a lytic phage for S. cremoris UC503. Phages uc1001 and uc1002 had small isometric heads (diameters, 52 and 50 nm, respectively) and noncontractile tails (lengths, 152 and 136 nm, respectively), and uc1002 also had a collar. Both had 30.1 ± 0.6 kilobase pairs (kbp) of DNA with cross-complementary cohesive ends. Restriction endonuclease maps made with seven endonucleases showed no common fragments. Despite this there was a very high level of homology between uc1001 and uc1002, and results of cross-hybridization experiments showed that the organization of both phage genomes was similar. Heteroduplex analysis confirmed this and quantified the level of homology at 83%. The regions of nonhomology comprised 2.1−, 1.1−, and 1.0-kbp deletion loops and 13 smaller loops and bubbles. The sodium dodecyl sulfate-polyacrylamide gel electrophoretic structural protein profiles were related, with a major band of about 40,000 molecular weight and minor bands of 35,000 and 34,000 molecular weight in common. There were also differences, however, in that uc1001 had a second major band of 68,000 molecular weight and two extra minor bands. Except for the restriction maps, which were strain specific, phages uc1001, uc1002, and P008 were closely related by all the criteria listed above. Their DNAs also showed a very significant bias against the cleavage sites of 9 of 11 restriction endonucleases. Phage uc3001 was unrelated to uc1001, uc1002, or P008 in that it had a prolate head (53 by 39 nm) and a shorter tail (105 nm), contained approximately 22 kbp of DNA, had unrelated cohesive ends, showed no DNA homology with the isometric-headed phages, and displayed a very different structural protein profile.  相似文献   

18.
Sixty-three virulent bacteriophages of Lactococcus lactis were differentiated by DNA-DNA hybridization. The results, including those of a previous classification of 38 phages of the same bacterial species (P. Relano, M. Mata, M. Bonneau, and P. Ritzenthaler, J. Gen. Microbiol. 133:3053-3063, 1987) show that 48% of the phages analyzed belong to a unique DNA homology group (group III). Phages of this most abundant group had small isometric heads. Group I comprised 29% of the phages analyzed and was characterized by a small phage genome (19 to 22 kilobases) and a particular morphology with a prolate head. Like group III, this group contained representative phages of other classifications. Group II (21%) included virulent and temperate phages with small isometric heads. Two large isometric-headed phages, phi 109 and phi 111, were not related to the three DNA homology groups I, II, and III. The genome of phi 111 was unusually large (134 kilobases) and revealed partial DNA homology with another large isometric phage, 1289, described by Jarvis (type e) (A. W. Jarvis, Appl. Environ. Microbiol. 47:343-349, 1984). The protein compositions of phi 111 and 1289 were similar (three common major proteins of 21, 28, and 32 kilodaltons).  相似文献   

19.
Two inducible bacteriophages, alpha 1 and alpha 2, isolated from Clostridium botulinum type A strain 190L and their deoxyribonucleic acids (DNAs) were purified and characterized. Phage alpha 1, which is unable to form plaques on any strain of C. botulinum, was produced in large quantities after treatment with mitomycin C (MC), whereas phage alpha 2, which was induced in much lower quantities than phage alpha 1, propagated in cultures of type A strain Hall. The phage DNAs were exclusively synthesized after induction with MC. Alpha 1 and alpha 2 DNAs had sedimentation coefficients of 34.0 and 30.6 S, corresponding to molecular weights of 31.9 x 10(6) and 23.5 x 10(6), respectively. The buoyant density in CsC1 was 1.682 g/cm3 for alpha 1 DNA and 1.680 g/cm3 for alpha 2 DNA. Based on thermal denaturation characteristics, the genomes of both phages were shown to be double-stranded DNAs. Agarose gel electrophoretic profiles of the phage DNAs digested with restriction endonuclease EcoRI revealed nine fragments for alpha 1 DNA and six fragments for alpha 2 DNA. The molecular weights of the phage DNAs as determined by restriction enzyme analysis were 30.55 x 10(6) for alpha 1 DNA and 25.83 x 10(6) for alpha 2 DNA. Nontoxigenic mutants obtained from strain 190L could, like the toxigenic parent strain, produce the two phages after treatment with MC. Lysogenic conversion to toxigenicity by phage alpha 2 was not observed with the nontoxigenic mutants. It seems likely that there is no relationship between either phage genome and the toxigenicity of C. botulinum type A.  相似文献   

20.
Three newly isolated phages, K1, K2, and C1, specific for A. cicer rhizobia were characterized by their morphology, host range, rate of adsorption, restriction endonuclease patterns, and DNA molecular weights. All three phages were classified to the morphological group B of Bradley's (Siphoviridae family) on the basis of presence of hexagonal in outline heads and long noncontractile tails. Phages K1, K2, and C1 are related by host range and restriction endonuclease patterns. The molecular weights of phage DNAs estimated from restriction enzyme digests were in the range from 64.6 kb to 68.5 kb. Received: 21 July 1999 / Accepted: 25 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号